Technical Papers
May 28, 2018

Geotechnical Properties of a Low-Plasticity Clay with Biopolymer

Publication: Journal of Materials in Civil Engineering
Volume 30, Issue 8

Abstract

This study presents geotechnical characteristics of a low-plasticity clay improved by xanthan gum biopolymer, which is an innocuous microbially induced polymer with high tensile strength. The samples were prepared by mixing clay at various proportions by weight of xanthan gum biopolymer (0, 0.5, 1.0, 1.5, 2.0, and 3.0%), and then tested at the end of different curing times (0, 7, 28, and 56 days). To demonstrate the influence of xanthan gum biopolymer on the clay, an intensive series of unconfined compressive strength, laboratory vane shear, fall cone, oedometer, permeability, swelling, and shrinkage tests were carried out on the samples. According to the testing results, strength of the clay samples increased with both the content of biopolymer and the curing time. The test results also indicated that permeability of the samples with xanthan gum biopolymer is lower, while the compression index and swelling percentage values are higher than the samples without treatment. Evidently, xanthan gum biopolymer application was identified as an environmentally friendly and sustainable alternative material for improving a clay.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abiodun, A. A., and Z. Nalbantoglu. 2015. “Lime pile techniques for the improvement of clay soils.” Can. Geotech. J. 52 (6): 760–768. https://doi.org/10.1139/cgj-2014-0073.
Arulrajah, A., M. M. Y. Ali, M. Disfani, J. Piratheepan, and M. W. Bo 2013. “Geotechnical performance of recycled glass-waste rock blends in footpath bases.” J. Mater. Civ. Eng. 25 (5): 653–661.
ASTM. 2013. Standard test methods for laboratory compaction characteristics of soil using modified effort. ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test method for direct shear test of soils under consolidated drained conditions. ASTM D3080. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test method for unconfined compressive strength of cohesive soil. ASTM D2166. West Conshohocken, PA: ASTM.
ASTM. 2016c. Standard test methods for laboratory miniature vane shear test for saturated fine-grained clayey soil. ASTM D4648. West Conshohocken, PA: ASTM.
ASTM. 2016d. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM D5084. West Conshohocken, PA: ASTM.
ASTM. 2016e. Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM D2435. West Conshohocken, PA: ASTM.
ASTM. 2016f. Standard test methods for one-dimensional swell or collapse of soils. ASTM D4546. West Conshohocken, PA: ASTM.
Ayeldeen, M., A. Negm, M. El-Sawwaf, and M. Kitazume. 2017. “Enhancing mechanical behaviors of collapsible soil using two biopolymers.” J. Rock Mech. Geotech. Eng. 9 (2): 329–339. https://doi.org/10.1016/j.jrmge.2016.11.007.
Becker, A., F. Katzen, A. Puhler, and L. Ielpi. 1998. “Xanthan gum biosynthesis and application: A biochemical/genetic perspective.” Appl. Microb. Biotechnol. 50 (2): 145–152. https://doi.org/10.1007/s002530051269.
Benmounah, A., K. Benyounes, K. Chalah, and D. E. Djemiat. 2017. “Effect of xanthan gum and sodium carboxymetylcellulose on the rheological properties and zeta potential of bentonite suspensions.” In Proc., 23 Congres Francais de Mecanique. Paris, France: Association Française de Mécanique.
Blanck, G., O. Cuisinier, and F. Masrouri. 2014. “Soil treatment with organic non-traditional additives for the improvement of earthworks.” Acta Geotechnica 9 (6): 1111–1122. https://doi.org/10.1007/s11440-013-0251-6.
Bo, M. W., A. Arulrajah, S. Horpibulsuk, M. Leong, and M. M. Disfani. 2014. “Densification of land reclamation sands by deep vibratory compaction.” J. Mater. Civ. Eng. 26 (8): 06014016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001010.
Bouazza, A., W. P. Gates, and P. G. Ranjith. 2009. “Hydraulic conductivity of biopolymer treated silty sand.” Géotechnique 59 (1): 71–72. https://doi.org/10.1680/geot.2007.00137.
BSI (British Standards Institution). 1990. Methods of test for soils for civil engineering purposes. BS 1377. London: BSI.
Cabalar, A. F., and H. Canakci. 2011. “Direct shear tests on sand treated with xanthan gum.” Proc. Inst. Civ. Eng. Ground Improv. 164 (2): 57–64. https://doi.org/10.1680/grim.800041.
Cabalar, A. F., Z. Karabash, and W. S. Mustafa. 2014. “Stabilising a clay using tyre buffings and lime.” Road Mater. Pavement Des. 15 (4): 872–891. https://doi.org/10.1080/14680629.2014.939697.
Cabalar, A. F., M. Wiszniewski, and Z. Skutnik. 2017. “Effects of xanthan gum biopolymer on the permeability, oedometer, unconfined compressive and triaxial shear behavior of a sand.” Soil Mech. Found. Eng. 54 (5): 356–361. https://doi.org/10.1007/s11204-017-9481-1.
Chang, I., and G. C. Cho 2012. “Strengthening of Korean residual soil with β-1.3/1.6-glucoan biopolymer.” Constr. Build. Mater. 30: 30–35.
Chang, I., J. Im, A. K. Prasidhi, and G. C. Cho. 2015a. “Effects of xanthan gum biopolymer on soil strengthening.” Constr. Build. Mater. 74 (Jan): 65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
Chang, I., M. Jeon, and G. C. Cho. 2015b. “Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries.” Int. J. Polym. Sci. 2015: 326745. https://doi.org/10.1155/2015/326745.
Chang, I., A. K. Prasidhi, J. Im, and G. C. Cho. 2015c. “Soil strengthening using thermo-gelation biopolymers.” Constr. Build. Mater. 77 (Feb): 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
Chen, C. S. H., and E. W. Sheppard. 1980. “Conformation and shear stability of xanthan gum in solution.” Polym. Eng. Sci. 20 (7): 512–516. https://doi.org/10.1002/pen.760200712.
Chenu, C. 1993. “Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: Water related properties and microstructure.” Geoderma 56 (1–4): 143–156. https://doi.org/10.1016/0016-7061(93)90106-U.
Comba, S., and R. Sethi. 2009. “Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum.” Water Res. 43 (15): 3717–3726. https://doi.org/10.1016/j.watres.2009.05.046.
Du, Y. J., M. L. Wei, F. Jin, and Z. B. Liu. 2013. “Stress-strain relation and strength characteristics of cement treated zinc-contaminated clay.” Eng. Geol. 77 (Dec): 20–26. https://doi.org/10.1016/j.enggeo.2013.10.005.
Estabragh, A. R., I. Beytolahpour, M. Moradi, and A. A. Javadi 2016. “Mechanical behavior of a clay soil contaminated with glycerol and ethanol.” Eur. J. Environ. Civ. Eng. 20 (5): 503–519.
Etemadi, O., I. G. Petrisor, D. Kim, M. W. Wan, and T. F. Yen. 2003. “Stabilization of metals in subsurface by biopolymers: Laboratory drainage flow studies.” Soil Sediment Contamin. 12 (5): 647–661. https://doi.org/10.1080/714037712.
García-Ochoa, F., V. E. Santos, J. A. Casas, and E. Gomez. 2000. “Xanthan gum: Production, recovery, and properties.” Biotechnol. Adv. 18 (7): 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1.
Gelder, C., and G. J. Fowmes. 2016. “Mixing and compaction of fibre and lime modified cohesive soil.” Proc. Inst. Civ. Eng. Ground Improv. 169 (2): 98–108. https://doi.org/10.1680/grim.14.00025.
Hamidi, A., and M. Hooresfand. 2013. “Effect of fiber reinforcement on triaxial shear behavior of cement treated sand.” Geotext. Geomembr. 36 (Feb): 1–9. https://doi.org/10.1016/j.geotexmem.2012.10.005.
Hassler, R. A., and D. H. Doherty. 1990. “Genetic engineering of polysaccharide structure: Production of variants of xanthan gum in Xanthomonas campestris.” Biotechnol. Prog. 6 (3): 182–187. https://doi.org/10.1021/bp00003a003.
Horpibulsuk, S., W. Katkan, W. Sirilerdwattana, and R. Rachan. 2006. “Strength development in cement stabilized low plasticity and coarse grained soils: Laboratory and field study.” Soil Found. 46 (3): 351–366.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jansson, P., L. Kenne, and B. Lindberg. 1975. “Structure of the extracellular polysaccharide from Xanthomonas campestris.” Carbohydr. Res. 45 (1): 275–282. https://doi.org/10.1016/S0008-6215(00)85885-1.
Jiang, N. J., Y. J. Du, S. Liu, M. L. Wei, S. Horpibulsuk, and A. Arulrajah. 2016. “Multi-scale laboratory evaluation of the physical, mechanical and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue.” Can. Geotech. J. 53 (3): 373–383. https://doi.org/10.1139/cgj-2015-0245.
Karol, R. H. 2003. Chemical grouting and soil stabilization. 3rd ed. New York: CRC Press.
Khachatoorian, R., I. B. Petrisor, C. C. Kwan, and T. F. Yen. 2003. “Biopolymer plugging effect: Laboratory-pressurized pumping flow studies.” J. Pet. Sci. Eng. 38 (1–2): 13–21. https://doi.org/10.1016/S0920-4105(03)00019-6.
Khan, T. A., M. R. Taha, A. A. Firoozi, and A. A. Firoozi. 2016. “Strength tests of enzyme-treated illite and black soil mixtures.” Proc. ICE Eng. Sustain. 169 (5): 214–222. https://doi.org/10.1680/jensu.15.00023.
Khatami, H. R., and B. C. O’Kelly. 2012. “Improving mechanical properties of sand using biopolymers.” J. Geotech. Geoenviron. Eng. 139 (8): 1402–1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
Lappin-Scott, H. M., F. Cusack, and J. W. Costerton. 1988. “Nutrient resuscitation and growth of starved cells in sandstone cores: A novel approach to enhanced oil recovery.” Appl. Environ. Microbiol. 54 (6): 1373–1382.
Latifi, N., S. Horpibulsuk, C. L. Meehan, M. Z. A. Majid, and A. S. A. Rashid. 2016a. “Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat. Environ.” Earth Sci. 75 (9): 825. https://doi.org/10.1007/s12665-016-5643-0.
Latifi, N., A. Marto, and A. Eisazadeh. 2015. “Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro- and micro-structural considerations.” Environ. Earth Sci. 73 (3): 1133–1141. https://doi.org/10.1007/s12665-014-3468-2.
Latifi, N., A. Marto, and A. Eisazadeh. 2016b. “Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive.” Acta Geotechnica 11 (2): 433–443. https://doi.org/10.1007/s11440-015-0370-3.
Latifi, N., C. L. Meehan, M. Z. A. Majid, and S. Horpibulsuk. 2016c. “Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study.” Appl. Clay Sci. 132–133 (Nov): 182–193. https://doi.org/10.1016/j.clay.2016.06.004.
Little, L., B. Connor, and R. F. Carlson. 2005. Tests of soil stabilization products, phase 1. Fairbanks, AK: Univ. of Alaska Fairbanks.
Lu, T., and W. R. Bryant. 1997. “Comparison of vane shear and fall cone strengths of soft marine clay.” Mar. Geosources Geotechnol. 15 (1): 67–82. https://doi.org/10.1080/10641199709379935.
MacLeod, F. A., H. M. Lappin-Scott, and J. W. Costerton. 1988. “Plugging of a model rock system by using starved bacteria.” Appl. Environ. Microbiol. 54 (6): 1365–1372.
Mallela, J., H. V. Quintus, and K. Smith. 2004. Consideration of lime-stabilized layers in mechanistic-empirical pavement design. Arlington, VA: National Lime Association.
Milas, M., and M. Rinaudo. 1986. “Properties of xanthan gum in aqueous solutions: Role of the conformational transition.” Carbohydr. Res. 158 (Dec): 191–204. https://doi.org/10.1016/0008-6215(86)84017-4.
Milas, M., M. Rinaudo, and B. Tinland. 1985. “The viscosity dependence on concentration, molecular weight and shear rate of xanthan solutions.” Polym. Bull. 14 (2): 157–164. https://doi.org/10.1007/BF00708475.
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131 (10): 1222–1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
Nugent, R. A. 2007. “The effect of exopolymers on the compressibility and shear strength of kaolinite.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Louisiana State Univ.
Nugent, R. A., G. Zhang, and R. P. Gambrell. 2011. “The effect of exopolymers on the compressibility of clays.” In Proc., Geo-Frontiers Congress 2011: Advances in Geotechnical Engineering, 3935–3944. Reston, VA: ASCE.
Perkins, S. W., P. Gyr, and G. James. 2000. “The influence of biofilm on the mechanical behavior of sand.” Geotech. Testing J. 23 (3): 300–312. https://doi.org/10.1520/GTJ11052J.
Petri, D. F. S. 2015. “Xanthan gum: A versatile biopolymer for biomedical and technological applications.” J. Appl. Polym. Sci. 132 (23): 1–13. https://doi.org/10.1002/app.42035.
Plank, J. 2004. “Applications of biopolymers and other biotechnological products in building materials.” Appl. Microbiol. Biotechnol. 66 (1): 1–9. https://doi.org/10.1007/s00253-004-1714-3.
Puppala, A. J., and C. Musenda. 2000. “Effects of fibers reinforcement on strength and volume change behavior of expansive soils.” Transp. Res. Rec. 1736: 134–140. https://doi.org/10.3141/1736-17.
Rafalko, S. D., G. M. Filz, T. L. Brandon, and J. K. Mitchell. 2007. “Rapid chemical stabilization of soft clay soils.” Transp. Res. Rec. 2026: 39–46. https://doi.org/10.3141/2026-05.
Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. “Remediation of concrete using micro-organisms.” ACI Mater. J. 98 (1): 3–9.
Reddy, K. R., A. Urbanek, and A. P. Khodadoust. 2006. “Electroosmotic dewatering of dredged sediments: Bench-scale investigation.” J. Environ. Manage. 78 (2): 200–208. https://doi.org/10.1016/j.jenvman.2005.04.018.
Rosalam, S., and R. England. 2006. “Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp.” Enzyme Microb. Technol. 39 (2): 197–207. https://doi.org/10.1016/j.enzmictec.2005.10.019.
Saadeldin, R., and S. Siddiqua. 2013. “Geotechnical characterization of clay-cement mix.” Bull. Eng. Geol. Environ. 72 (3): 601–608. https://doi.org/10.1007/s10064-013-0531-2.
Sandford, P. A., and J. Baird. 1983. “Industrial utilization of polysaccharides.” In Vol. 2 of The Polysaccharides, edited by G. O. Aspinall, 411–490. New York: Academic.
Sharma, B., and P. K. Bora. 2003. “Plastic limit, liquid limit and undrained shear strength of soil-reappraisal.” J. Geotech. Geoenviron. Eng. 129 (8): 774–777. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(774).
Shrestha, R., and A. Al-Tabbaa. 2012. “Development of predictive models for cement stabilized soils.” In Proc., Fourth Int. Conf. on Grouting and Deep Mixing, 221–230. Reston, VA: ASCE.
Singh, G. V., and B. M. Das. 1999. “Soil stabilization with sodium chloride.” Transp. Res. Rec. 1673: 46–54. https://doi.org/10.3141/1673-07.
Sutherland, I. W. 1993. “Xanthan.” In Xanthomonas, edited by J. G. Swings and E. L. Civerolo, 363–388. London, UK: Chapman & Hall.
Swain, K. 2015. “Stabilization of soil using geopolymer and biopolymer.” M.Sc. thesis, Dept. of Civil and Engineering, National Institute of Technology.
Tanaka, H., H. Hirabayashi, T. Matsuoka, and H. Kaneko. 2012. “Use of fall cone test as measurement of shear strength for soft clay materials.” Soils Found. 52 (4): 590–599. https://doi.org/10.1016/j.sandf.2012.07.002.
Tang, C. S., B. Shi, C. Liu, W. B. Suo, and L. Gao. 2011. “Experimental characterization of shrinkage and desiccation cracking in thin clay layer.” Appl. Clay Sci. 52 (1): 69–77. https://doi.org/10.1016/j.clay.2011.01.032.
Tay, Y. Y., D. I. Stewart, and T. W. Cousens. 2001. “Shrinkage and desiccation cracking in bentonite-sand landfill liners.” Eng. Geol. 60 (1–4): 263–274. https://doi.org/10.1016/S0013-7952(00)00107-1.
Tingle, J., and R. Santoni. 2003. “Stabilization of clay soils with non-traditional additives.” Transp. Res. Rec. 1819: 72–84. https://doi.org/10.3141/1819b-10.
White, W. G., and C. T. Gnanendran. 2005. “The influence of compaction method and density on the strength and modulus of cementitiously stabilized pavement material.” Int. J. Pavement Eng. 6 (2): 97–110. https://doi.org/10.1080/10298430500089593.
Yang, I. C. Y., Y. Li, J. K. Park, and T. F. Yen. 1994. “Subsurface application of slime-forming bacteria in soil matrices.” In Applied biotechnology for site remediation, edited by R. E. Hinchee, D. B. Anderson, E. B. Metting Jr., and G. D. Sayles, 268–274. Boca Raton, FL: Lewis Publishers.
Yoshida, T., and R. D. Tanner. 1993. Bioproducts and bioprocesses 2. Berlin: Springer.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 8August 2018

History

Received: Apr 5, 2017
Accepted: Feb 15, 2018
Published online: May 28, 2018
Published in print: Aug 1, 2018
Discussion open until: Oct 28, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Ali Firat Cabalar, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Univ. of Gaziantep, Gaziantep 27310, Turkey (corresponding author). Email: [email protected]
Mohammed Hiwa Awraheem
Dept. of Building and Construction Engineering, Halabja Univ., Halabja, Iraq.
Mohammed Mukhlif Khalaf
Dept. of Civil Engineering, Univ. of Gaziantep, Gaziantep 27310, Turkey.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share