Technical Papers
May 10, 2018

Evaluating the Effects of Sugarcane-Bagasse Ash and Rice-Husk Ash on the Mechanical and Durability Properties of Mortar

Publication: Journal of Materials in Civil Engineering
Volume 30, Issue 7

Abstract

The influence of sugarcane-bagasse ash (SCBA) and rice-husk ash (RHA) as cement replacement materials on the mechanical and durability properties of mortars was investigated in this study. Portland cement was replaced by RHA and SCBA at a rate of 10–30% and 10–25% by weight of cementitious materials, respectively. Also, ternary mixtures were prepared by the incorporation of both additives. Replacement dosages were selected based on the former research studies to cast the mortar. Additionally, a control mixture, containing only cement, was prepared to clarify the effectiveness of replacement materials. Compressive strength tests were conducted to evaluate the mechanical performances of the specimens. In addition, the transport tests (water absorption and capillary absorption), electrical resistivity, rapid chloride migration test (RCMT), and acid resistance of mortars were evaluated in order to investigate the effect of SCBA and RHA on the durability properties of mortar. Results showed that RHA was more effective at enhancing the mechanical properties of mortars than SCBA. However, according to the durability tests’ results, both SCBA and RHA were found to be effective since ternary mixtures were more durable when compared to the control mixture.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abbas, S., S. M. Kazmi, and M. J. Munir. 2017. “Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates.” Constr. Build. Mater. 132 (1): 61–70. https://doi.org/10.1016/j.conbuildmat.2016.11.126.
Ahmed, A. E., and F. Adam. 2007. “Indium incorporated silica from rice husk and its catalytic activity.” Microporous Mesoporous Mater. 103 (1): 284–295. https://doi.org/10.1016/j.micromeso.2007.01.055.
Aigbodion, V. S., S. B. Hassan, T. Ause, and G. B. Nyior. 2010. “Potential utilization of solid waste (bagasse ash).” J. Min. Mater. Char. Eng. 9 (1): 67. https://doi.org/10.4236/jmmce.2010.91006.
Alarcon-Ruiz, L., G. Platret, E. Massieu, and A. Ehrlacher. 2005. “The use of thermal analysis in assessing the effect of temperature on a cement paste.” Cem. Concr. Res. 35 (3): 609–613. https://doi.org/10.1016/j.cemconres.2004.06.015.
Antiohos, S. K., V. G. Papadakis, and S. Tsimas. 2014. “Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness.” Cem. Concr. Res. 61 (1): 20–27. https://doi.org/10.1016/j.cemconres.2014.04.001.
Ardalan, R. B., N. Jamshidi, H. Arabameri, A. Joshaghani, M. Mehrinejad, and P. Sharafi. 2017a. “Enhancing the permeability and abrasion resistance of concrete using colloidal nano-SiO2 oxide and spraying nanosilicon practices.” Constr. Build. Mater. 146 (1): 128–135. https://doi.org/10.1016/j.conbuildmat.2017.04.078.
Ardalan, R. B., A. Joshaghani, and R. D. Hooton. 2017b. “Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume.” Constr. Build. Mater. 134 (1): 116–122. https://doi.org/10.1016/j.conbuildmat.2016.12.090.
Arenas-Piedrahita, J. C.,P. Montes-García, J. M. Mendoza-Rangel, H. L. Calvo, P. L. Valdez-TamezMarti, and J. Martínez-Reyes. 2016. “Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash.” Constr. Build. Mater. 105 (1): 69–81. https://doi.org/10.1016/j.conbuildmat.2015.12.047.
Arif, E., M. W. Clark, and N. Lake. 2016. “Sugar cane bagasse ash from a high efficiency co-generation boiler: Applications in cement and mortar production.” Constr. Build. Mater. 128 (1): 287–297. https://doi.org/10.1016/j.conbuildmat.2016.10.091.
ASTM. 2012. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM C1202. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard specification for portland cement. ASTM C150. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard specification for standard sand. ASTM C778. West Conshohocken, PA: ASTM.
ASTM. 2016c. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. West Conshohocken, PA: ASTM.
ASTM. 2016d. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM C109. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete. ASTM C311. West Conshohocken, PA: ASTM.
Bahurudeen, A., D. Kanraj, V. G. Dev, and M. Santhanam. 2015. “Performance evaluation of sugarcane bagasse ash blended cement in concrete.” Cem. Concr. Compos. 59 (1): 77–88. https://doi.org/10.1016/j.cemconcomp.2015.03.004.
Bahurudeen, A., A. V. Marckson, A. Kishore, and M. Santhanam. 2014. “Development of sugarcane bagasse ash based portland pozzolana cement and evaluation of compatibility with superplasticizers.” Constr. Build. Mater. 68 (1): 465–475. https://doi.org/10.1016/j.conbuildmat.2014.07.013.
Bahurudeen, A., and M. Santhanam. 2015. “Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash.” Cem. Concr. Compos. 56 (1): 32–45. https://doi.org/10.1016/j.cemconcomp.2014.11.002.
Balapour, M., E. Hajibandeh, and A. Ramezanianpour. 2018. “Engineering properties and durability of mortars containing new nano rice husk ash (RHA).” In Proc., High Tech Concrete: Where Technology and Engineering Meet, 199–206. Cham, Switzerland: Springer.
Balapour, M., A. Ramezanianpour, and E. Hajibandeh. 2017. “An investigation on mechanical and durability properties of mortars containing nano and micro RHA.” Constr. Build. Mater. 132 (1): 470–477. https://doi.org/10.1016/j.conbuildmat.2016.12.017.
Batra, V. S., S. Urbonaite, and G. Svensson. 2008. “Characterization of unburned carbon in bagasse fly ash.” Fuel 87 (13): 2972–2976. https://doi.org/10.1016/j.fuel.2008.04.010.
Bie, R. S., X. F. Song, Q. Q. Liu, X. Y. Ji, and P. Chen. 2015. “Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement.” Cem. Concr. Compos. 55 (1): 162–168. https://doi.org/10.1016/j.cemconcomp.2014.09.008.
BSI (British Standards Institution). 1983. Specification for water absorption test: UDC 666.972.017:691.32:620.1. BS 1881-122. ‎London: BSI.
BSI (British Standards Institution). 2005. Admixtures for concrete, mortar and grout: Test methods: Determination of capillary absorption. BS EN 480-5.‎ London: BSI.
Celik, F., and H. Canakci. 2015. “An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA).” Constr. Build. Mater. 91 (1): 187–194. https://doi.org/10.1016/j.conbuildmat.2015.05.025.
Chao-Lung, H., B. Le Anh-Tuan, and C. Chun-Tsun. 2011. “Effect of rice husk ash on the strength and durability characteristics of concrete.” Constr. Build. Mater. 25 (9): 3768–3772. https://doi.org/10.1016/j.conbuildmat.2011.04.009.
Cheerarot, R., J. Tangpagasit, and C. Jaturapitakkul. 2004. “Compressive strength of mortars due to pozzolanic reaction of fly ash.” Spec. Publ. 221: 411–426.
Chusilp, N., C. Jaturapitakkul, and K. Kiattikomol. 2009a. “Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars.” Constr. Build. Mater. 23 (12): 3523–3531. https://doi.org/10.1016/j.conbuildmat.2009.06.046.
Chusilp, N., C. Jaturapitakkul, and K. Kiattikomol. 2009b. “Utilization of bagasse ash as a pozzolanic material in concrete.” Constr. Build. Mater. 23 (11): 3352–3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030.
Cordeiro, G. C., L. M. Tavares, and R. D. Toledo Filho. 2016. “Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classification.” Cem. Concr. Res. 89 (1): 269–275. https://doi.org/10.1016/j.cemconres.2016.08.020.
Cordeiro, G. C., R. D. Toledo Filho, and E. D. M. R. Fairbairn. 2010. “Ultrafine sugar cane bagasse ash: High potential pozzolanic material for tropical countries.” Revista IBRACON de Estruturas e Materiais 3 (1): 50–67. https://doi.org/10.1590/S1983-41952010000100004.
Cordeiro, G. C., R. D. Toledo Filho, L. M. Tavares, and E. M. R. Fairbairn. 2008. “Pozzolanic activity and filler effect of sugar cane bagasse ash in portland cement and lime mortars.” Cem. Concr. Compos. 30 (5): 410–418. https://doi.org/10.1016/j.cemconcomp.2008.01.001.
Cordeiro, G. C., R. D. Toledo Filho, L. M. Tavares, and E. M. R. Fairbairn. 2012. “Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes.” Constr. Build. Mater. 29 (1): 641–646. https://doi.org/10.1016/j.conbuildmat.2011.08.095.
De Soares, M. M., D. C. Garcia, R. B. Figueiredo, M. T. P. Aguilar, and P. R. Cetlin. 2016. “Comparing the pozzolanic behavior of sugar cane bagasse ash to amorphous and crystalline SiO2.” Cem. Concr. Compos. 71 (1): 20–25. https://doi.org/10.1016/j.cemconcomp.2016.04.005.
El-Dakroury, A., and M. S. Gasser. 2008. “Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures.” J. Nucl. Mater. 381 (3): 271–277. https://doi.org/10.1016/j.jnucmat.2008.08.026.
Ganesan, K., K. Rajagopal, and K. Thangavel. 2007. “Evaluation of bagasse ash as supplementary cementitious material.” Cem. Concr. Compos. 29 (6): 515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001.
Gao, X., Q. L. Yu, and H. J. H. Brouwers. 2015. “Characterization of alkali activated slag–fly ash blends containing nano-silica.” Constr. Build. Mater. 98 (1): 397–406. https://doi.org/10.1016/j.conbuildmat.2015.08.086.
González-Kunz, R. N., P. Pineda, A. Bras, and L. Morillas. 2017. “Plant biomass ashes in cement-based building materials. Feasibility as eco-efficient structural mortars and grouts.” Sustainable Cities Soc. 31 (1): 151–172. https://doi.org/10.1016/j.scs.2017.03.001.
Gowthami, E. R. C., E. A. A. N. Mohiddin, E. P. C. Kumar, and D. C. R. Chandrudu. 2016. “An experimental study on the strength of mortar due to filler effect of pozzolanic materials.” IJSETR 5 (3): 3048–3051.
Jamil, M., M. N. N. Khan, M. R. Karim, A. B. M. A. Kaish, and M. F. M. Zain 2013. “Physical and chemical contributions of Rice Husk Ash on the properties of mortar.” Constr. Build. Mater. 128: 185–198. https://doi.org/10.1016/j.conbuildmat.2016.10.029.
Jamil, M., M. N. N. Khan, M. R. Karim, A. B. M. A. Kaish, and M. F. M. Zain. 2016. “Physical and chemical contributions of rice husk ash on the properties of mortar.” Constr. Build. Mater. 128 (1): 185–198. https://doi.org/10.1016/j.conbuildmat.2016.10.029.
Joshaghani, A. 2017. “Workability retention and mechanical properties of self-compacting concrete (SCC) with sugar cane bagasse ash (SCBA) and rice husk ash (RHA).” Chap. 8 in Concrete and concrete structures: A review and directions for research, 1st ed., edited by D. Thomas and P. Vivien, 233–258. New York: Nova Science Publishers.
Joshaghani, A., and M. A. Moeini. 2017. “Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar.” Constr. Build. Mater. 152 (1): 818–831. https://doi.org/10.1016/j.conbuildmat.2017.07.041.
Joshaghani, A., M. A. Moeini, and M. Balapour. 2017a. “Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete.” Adv. Concr. Const. 5 (3): 241–255. https://doi.org/10.12989/acc.2017.5.3.241.
Joshaghani, A., M. A. Moeini, M. Balapour, and A. Moazenian. 2017b. “Effects of supplementary cementitious materials on mechanical and durability properties of high-performance non-shrinking grout (HPNSG).” J. Sustainable Cem. Based Mater. 7 (1), 38–56. https://doi.org/10.1080/21650373.2017.1372318.
Joshaghani, A., A. A. Ramezanianpour, and M. Jaberizadeh. 2014. “Mechanical characteristic of pervious concrete considering the gradation and size of coarse aggregates.” Res. J. Environ. Earth Sci. 6 (9): 437–442.
Joshaghani, A., A. A. Ramezanianpour, and H. Rostami. 2016. “Effect of incorporating sugarcane bagasse ash (SCBA) in mortar to examine durability of sulfate attack.” In Proc., ICCS16, II Int. Conf. on Concrete Sustainability. Madrid, Spain.
Kar, A., I. Ray, A. Unnikrishnan, and J. F. Davalos. 2012. “Estimation of C-S-H and calcium hydroxide for cement pastes containing slag and silica fume.” Constr. Build. Mater. 30 (1): 505–515. https://doi.org/10.1016/j.conbuildmat.2011.12.029.
Karim, M. R., M. M. Hossain, M. N. N. Khan, M. F. M. Zain, M. Jamil, and F. C. Lai. 2014. “On the utilization of pozzolanic wastes as an alternative resource of cement.” Materials 7 (12): 7809–7827. https://doi.org/10.3390/ma7127809.
Kartini, K. 2011. “Rice husk ash-pozzolanic material for sustainability.” Int. J. Appl. Sci. Technol. 1 (6): 169–178.
Khan, M. N. N., M. Jamil, M. R. Karim, M. F. M. Zain, and A. B. M. A. Kaish. 2017. “Filler effect of pozzolanic materials on the strength and microstructure development of mortar.” KSCE J. Civ. Eng. 21 (1): 274–284. https://doi.org/10.1007/s12205-016-0737-5.
Krishnasamy, T. R., and M. Palanisamy. 2015. “Bagasse ash and rice husk ash as cement replacement in self-compacting concrete.” Građevinar 67 (1): 23–31.
Kumar, K. S., U. M. Praveen, A. Prathyusha, V. Akhila, and P. Sasidhar. 2016. “A comprehensive study on partial replacement of cement with sugarcane bagasse ash: Rice husk ash & stone dust.” Int. J. Civ. Eng. Technol. 7 (3): 163–172.
Madurwar, M. V., R. V. Ralegaonkar, and S. A. Mandavgane. 2013. “Application of agro-waste for sustainable construction materials: A review.” Constr. Build. Mater. 38: 872–878.
Mehta, P. K., K. J. Folliard 1992. “Rice hush ash: A unique supplementary cementing material.” Adv. Concr. Technol. 154: 531–542.
Memon, S. A., M. A. Shaikh, and H. Akbar. 2011. “Utilization of rice husk ash as viscosity modifying agent in self compacting concrete.” Constr. Build. Mater. 25 (2): 1044–1048. https://doi.org/10.1016/j.conbuildmat.2010.06.074.
Miyandehi, B. M., A. Feizbakhsh, M. A. Yazdi, Q. F. Liu, J. Yang, and P. Alipour 2013. “Performance and properties of mortar mixed with nano-CuO and rice husk ash.” Constr. Concr. Compos. 74: 225–235.
Miyandehi, B. M., A. Feizbakhsh, M. A. Yazdi, Q. F. Liu, J. Yang, and P. Alipour. 2016. “Performance and properties of mortar mixed with nano-CuO and rice husk ash.” Cem. Concr. Compos. 74 (1): 225–235. https://doi.org/10.1016/j.cemconcomp.2016.10.006.
Nagataki, S. 1994. “Mineral admixtures in concrete: State of the art and trends.” Spec. Publ. 144 (1): 447–482.
Nehdi, M., J. Duquette, and A. El Damatty. 2003. “Performance of rice husk ash produced using a new technology as a mineral admixture in concrete.” Cem. Concr. Res. 33 (8): 1203–1210. https://doi.org/10.1016/S0008-8846(03)00038-3.
NT BUILD 492. 1999. Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Espoo, Finland:NORDTEST.
Payá, J., J. Monzó, M. V. Borrachero, L. Díaz-Pinzón, and L. M. Ordóñez. 2002. “Sugar-cane bagasse ash (SCBA): Studies on its properties for reusing in concrete production.” J. Chem. Technol. Biotechnol. 77 (3): 321–325. https://doi.org/10.1002/jctb.549.
Pilvar, A., A. A. Ramezanianpour, H. Rajaie, and S. M. Motahari. 2016. “Practical evaluation of rapid tests for assessing the chloride resistance of concretes containing silica fume.” Comput. Concr. 18 (6): 793–806. https://doi.org/10.12989/cac.2016.18.6.793.
Ramezanianpour, A. A., S. M. M. Karein, P. Vosoughi, A. Pilvar, S. Isapour, and F. Moodi. 2014. “Effects of calcined perlite powder as a SCM on the strength and permeability of concrete.” Constr. Build. Mater. 66 (1): 222–228. https://doi.org/10.1016/j.conbuildmat.2014.05.086.
Ramezanianpour, A. A., M. H. Khazali, and P. Vosoughi. 2013. “Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete.” Constr. Build. Mater. 49 (1): 807–813. https://doi.org/10.1016/j.conbuildmat.2013.08.040.
Ramezanianpour, A. A., M. Mahdikhani, and Gh. Ahmadibeni. 2009. “The effect of rice husk ash on mechanical properties and durability of sustainable concretes.” Int. J. Civ. Eng. 7 (2): 83–91.
Rukzon, S., P. Chindaprasirt, and R. Mahachai. 2009. “Effect of grinding on chemical and physical properties of rice husk ash.” Int. J. Min. Metall. Mater. 16 (2): 242–247. https://doi.org/10.1016/S1674-4799(09)60041-8.
Sirirat, J., and W. Supaporn. 2010. “Pozzolanic activity of industrial sugar cane bagasse ash.” Int. J. Recent Res. Phys. Chem. Sci. 1 (2): 29–35.
Soroushian, P., R. U. D. Nassar, H. Chowdhury, and T. Ghebrab. 2010. “Testing concrete durability in sewer environment.” Proc. Inst. Civ. Eng. Constr. Mater. 163 (1): 35–44. https://doi.org/10.1680/coma.2010.163.1.35.
Tabatabaeian, M., A. Khaloo, A. Joshaghani, and E. Hajibandeh. 2017. “Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC.” Constr. Build. Mater. 147 (1): 497–509. https://doi.org/10.1016/j.conbuildmat.2017.04.181.
Tangpagasit, J., R. Cheerarot, C. Jaturapitakkul, and K. Kiattikomol. 2005. “Packing effect and pozzolanic reaction of fly ash in mortar.” Cem. Concr. Res. 35 (6): 1145–1151. https://doi.org/10.1016/j.cemconres.2004.09.030.
Van, V. T. A., C. Rößler, D. D. Bui, and H. M. Ludwig. 2013. “Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system.”Constr. Build. Mater. 43 (1): 208–216. https://doi.org/10.1016/j.conbuildmat.2013.02.004.
Venkatanarayanan, H. K., and P. R. Rangaraju. 2015. “Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete.” Cem. Concr. Compos. 55 (1): 348–363. https://doi.org/10.1016/j.cemconcomp.2014.09.021.
Vosoughi, V., S. M. M. Crin, and S. Eisapour. 2015. “Evaluation of perlite powder performance in concrete to replace part of the cement.” Cumhuriyet Sci. J. 36 (4): 771–777.
Xu, W., T. Y. Lo, and S. A. Memon. 2012. “Microstructure and reactivity of rich husk ash.” Constr. Build. Mater. 29 (1): 541–547. https://doi.org/10.1016/j.conbuildmat.2011.11.005.
Xu, W., T. Y. Lo, W. Wang, D. Ouyang, P. Wang, and F. Xing. 2016. “Pozzolanic reactivity of silica fume and ground rice husk ash as reactive silica in a cementitious system: A comparative study.” Materials 9 (3): 146. https://doi.org/10.3390/ma9030146.
Yang, C. C., and C. T. Chiang. 2005. “On the relationship between pore structure and charge passed from RCPT in mineral-free cement-based materials.” Mater. Chem. Phys. 93 (1): 202–207. https://doi.org/10.1016/j.matchemphys.2005.03.044.
Zahedi, M., A. A. Ramezanianpour, and A. M. Ramezanianpour. 2015. “Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration.” Constr. Build. Mater. 78 (1): 354–361. https://doi.org/10.1016/j.conbuildmat.2015.01.045.
Zain, M. F. M., M. N. Islam, F. Mahmud, and M. Jamil. 2011. “Production of rice husk ash for use in concrete as a supplementary cementitious material.” Constr. Build. Mater. 25 (2): 798–805. https://doi.org/10.1016/j.conbuildmat.2010.07.003.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 7July 2018

History

Received: Aug 14, 2017
Accepted: Jan 2, 2018
Published online: May 10, 2018
Published in print: Jul 1, 2018
Discussion open until: Oct 10, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Zachry Dept. of Civil Engineering, Texas A&M Univ., College Station, TX 77840 (corresponding author). ORCID: https://orcid.org/0000-0002-7997-4267. Email: [email protected]
Mohammad Amin Moeini, S.M.ASCE
Researcher, Dept. of Civil Engineering, Amirkabir Univ. of Technology, 15875-4413 Tehran, Iran.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share