Technical Papers
Oct 14, 2013

Fracture-Mechanical Properties of Mortar-to-Brick Interfaces

Publication: Journal of Materials in Civil Engineering
Volume 26, Issue 9

Abstract

Buildings made of brick count for a large portion of Austrian buildings. For these masonry buildings, the compound between mortar and brick is essential. This study analyzes the fracture mechanical properties of mortar-brick compounds. A wedge splitting method is used to evaluate the notch tensile strength as well as the specific fracture energy. On the one hand, mortars with different compressive strengths are used. On the other hand, the surface of the bricks is modified during the study. It can be shown that bricks with grooves have a better compound and that the quality of the compound depends on the relation of groove depth to maximum grain size of the mortar.

Get full access to this article

View all available purchase options and get full access to this article.

References

Austrian Standards Institute. (2009). “ÖNORM B 1996-1-1:2009-03-01—Bemessung und konstruktion von mauerwerksbauten—Nationale Festlegungen [Eurocode 6: Design of masonry structures—National specifications].”, Vienna, Austria (in German).
Austrian Standards Institute. (2011a). “ÖNORM B 1998-1:2011-06-15— Auslegung von Bauwerken gegen Erdbeben—Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten—Nationale Festlegungen [Eurocode 8: Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings—National specifications].”, Vienna, Austria (in German).
Austrian Standards Institute. (2011b). “ÖNORM B 3592:2011-09-01—Bestimmung der Kerb-Spaltzugfestigkeit und der spezifischen Bruchenergie von Baustoffen, Baustoffverbindungen und Verbundwerkstoffen [Determination of cut-through-tensile splitting strength and specific fracture energy of building materials, combinations of building materials and composites—Wedge splitting method].”, Vienna, Austria (in German).
Austrian Standards Institute. (2012). “ÖNORM B 3344:2012-10-15—Baustellengemischte Mauer- und Putzmörtel [Building site mixed masonry and rendering/plastering mortars].”, Vienna, Austria (in German).
Backes, H. P. (1985). “Zum Verhalten von Mauerwerk bei Zugbeanspruchung in richtung der Lagenfugen [About the behavior of masonry under tensile loading in direction of bed joints].” Ph.D. thesis, RWTH Aachen, Aachen, Germany (in German).
Bazant, Z. P., and Planas, J. (1998). Fracture and size effects in concrete and other quasibrittle materials, CRC Press, West Palm Beach, FL.
Bosta, A. (1997). “Risse im Mauerwerk. [Cracks in masonry].”Werner Verlag, Düsseldorf, (in German).
Butenweg, C., Gellert, C., and Meskouris, K. (2007). “Mauerwerkswände unter zyklischer Schubbeanspruchung [Masonry walls under cyclic shear loading].” Mauerwerk, 11(6), 356–362 (in German).
Carpinteri, A., Chiaia, B., and Bocca, P. (1997). “Size depence of strength and fracture properties of brick mansonry walls.” J. Eng. Mech., 816–822.
European Committee for Standardization (CEN). (2006). “Methods of test for mortar for masonry—Part 11: Determination of flexural and compressive strength of hardened mortar.”, Brussels, Belgium.
European Committee for Standardization (CEN). (2012). “Design of masonry structures—Part 1-1: General rules for reinforced and unreinforced masonry structures.”, Brussels, Belgium.
European Committee for Standardization (CEN). (2013). “Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings.”, Brussels, Belgium.
Fathy, A. M., Planas, J., and Sancho, J. M. (2009). “A numerical study of masonry cracks.” Eng. Failure Anal., 16(2), 675–689.
Graubner, C. A., and Richter, L. (2007). “Diskrete FE-Modellierung von Mauerwerken zur Bestimmung der Druckfestigkeit [Discrete FE-modeling of masonry for determination of the compressive strength].” Mauerwerk, 11(6), 342–348 (in German).
Grünberg, J., Meincke, S., and Radtke, F. (2005). “Experimentelle und numerische Untersuchungen des Materialverhaltens von Mauerwerk unter Erdbebenlasten [Experimental and numerical analysis of the material behavior of masonry under earthquake loading].” Mauerwerk, 9(6), 262–269 (in German).
Harmuth, H., Kirschner, A. V., and Nilica, R. (2003). “Simulation der Schädigung von Putzschichten [Simulation of plaster damage].” 17. Int. Baustofftagung Sept. 2003, Weimar, Band 1, 993–1005, IBAUSIL, Weimar, (in German).
Hillerborg, A. (1985). “The theoretical basis of method to determine the fracture energy Gf of Concrete.” Mater. Struct., 18(4), 291–296.
Hillerborg, A., Modeer, M., and Peterson, P. E. (1976). “Analysis of formation and crack growth in concrete by means of fracture mechanics and finite elements.” Cem. Concr. Res., 6(6), 773–782.
Kickler, J. (2000). “Bruchmechanische Berechnungsmethoden im Mauerwerksbau [Fracture mechanical calculations methods for masonry].” TU Berlin, Fraunhofer IRB Verlag, Heft 35 (in German).
Kirchner, A. V., and Harmuth, H. (2008). “Mechanisms to reduce cracking in interior plasters attached to cement bonded permanent shuttering panels.” Constr. Build. Mater., 22(2), 99–105.
Lourenço, P. B. (1996). “Computational strategies for masonry structures.” Ph.D. thesis, TU Delft, Delft., Netherlands.
Luccioni, B., and Rougier, V. C. (2010). “Shear behaviour of brick-mortar interface in CFRP retrofitted or repaird masonry.” Int. J. Mech. Sci., 52(4), 602–611.
Mann, W. (1992). “Zug- und Biegezugfestigkeiten von Mauerwerk—theoretische Grundlagen und Vergleichsergebnissen [Tensile and bending tensile strength of masonry—Theoretical foundations and test results].” Mauerwerkskalender, 601–607 (in German).
Najafgholipour, M. A., Maheri, M. R., and Lourenço, P. B. (2013). “Capacity interaction in brick masonry under simultaneous in-plane and out-of-plane loads.” Constr. Build. Mater., 38, 619–626.
Olivito, R. S., and Stumpo, P. (2001). “Fracture mechanics in the characterisation of brick masonry structures.” Mater. Struct., 34(4), 217–223.
Possler, H. P. (2009). “Oberflächenrauheit von Baustoffen [Surface roughness of building materials].” Master thesis, Vienna Univ. of Technology, Vienna, Austria (in German).
Reyes, E., Casati, M. J., and Gálvez, J. C. (2008). “Cohesive crack model for mixed mode fracture of brick masonry.” Int. J. Fract., 151(1), 29–55.
RILEM Technical Committee 50. (1985). “Determination of the fracture energy of mortar and concrete by means of three-point bending tests on notched beam.” Mater. Struct., 18(4), 287–290.
Schubert, P. (1998). “Eigenschaften von Mauerwerk, Mauersteinen und Mauermörtel [Properties of masonry, bricks and mortar].” Mauerwerkskalender, 89–105 (in German).
Schubert, P. (1999). “Eigenschaften von Mauerwerk, Mauersteinen und Mauermörtel [Properties of masonry, bricks and mortar].” Mauerwerkskalender, 93–110 (in German).
Schubert, P., and Metzemacher, H. (1991). “Zur Biegezugfestigkeit von Mauerwerk [About the bending tensile strength of masonry].” Mauerwerkskalender, 669–684 (in German).
Tomaževič, M. (2009). “Shear resistance of masonry walls and Eurocode 6: Shear versus tensile strength of masonry.” Mater. Struct., 42(7), 889–907.
Trende, U., and Büyüköztürk, O. (1998). “Size effect and influence of aggregate roughness in interface fracture on concrete composites.” ACI Mater. J., 95(4), 331–338.
Tschegg, E. K. (1991). “New equipment for fracture tests on concrete.” Mater. Test., 33, 338–342.
Tschegg, E. K., Jamek, M., and Schouenborg, B. (2008). “Fracture properties of marble-mortar compounds.” Bull. Eng. Geol. Environ., 67(2), 199–208.
Tschegg, E. K., Zikmunda, W., and Stanzl-Tschegg, S. E. (1994). “Improvement of new-old concrete bonds in road constructures—Procedures and testing method.” Proc., 7th Int. Symp. on Concrete Roads, Vol. 2–3, Cimeurope, Paris, 51–56.
Wang, S. Y., Sloan, S. W., Abbo, A. J., Masia, A. J., and Tang, C. A. (2012). “Numerical simulation of the failure process of unreinforced masonry walls due to concentrated static and dynamic loading.” Int. J. Solid. Struct., 49(2), 377–394.
Zucchini, A., and Lourenço, P. B. (2009). “A micro-mechanical homogenisation model for masonry: Application to shear walls.” Int. J. Solid. Struct., 46(3–4), 871–886.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 26Issue 9September 2014

History

Received: Jan 12, 2013
Accepted: Oct 11, 2013
Published online: Oct 14, 2013
Published in print: Sep 1, 2014
Discussion open until: Oct 15, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

A. Schneemayer
Vienna Univ. of Technology, Institute of Building Construction and Technology, Karlsplatz 13/2064, 1040 Vienna, Austria.
Vienna Univ. of Technology, Institute of Building Construction and Technology, Karlsplatz 13/2064, 1040 Vienna, Austria (corresponding author). E-mail: [email protected]
A. Kolbitsch
Professor, Vienna Univ. of Technology, Institute of Building Construction and Technology, Karlsplatz 13/2064, 1040 Vienna, Austria.
E. K. Tschegg
Professor, Vienna Univ. of Technology, Institute of Building Construction and Technology, Karlsplatz 13/2064, 1040 Vienna, Austria.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share