Technical Papers
Aug 25, 2012

Ladle Furnace Slag in the Construction of Embankments: Expansive Behavior

Publication: Journal of Materials in Civil Engineering
Volume 25, Issue 8

Abstract

This paper examines the use of ladle furnace steelmaking slag (LFS) as a material for the construction of embankments in civil works. It reports the chemical, mineralogical, and geotechnical properties of two soils, two LFS, and various mixtures thereof, in addition to their volumetric stability. The findings show that lengthy periods of time are required to achieve the potential expansion of LFS because of the hydration of certain aluminates and calcium oxide in addition to the slow hydrocarbonation reactions of magnesium oxide. The expansion test on the soil-LFS mixtures revealed slight swelling, attributable to the pozzolanic reactions of clay minerals with portlandite and brucite in addition to accommodation within the soil-slag pore structure. The cation exchange capacity of clay minerals affects the interaction between soil and LFS; minerals such as montmorillonite, with a high cation exchange capacity, improve the California bearing ratio and reduce the potential expansion. Not all soils are suitable for improvement with LFS because of the mineral compounds of their clay fraction.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the Ministerio de Fomento del Gobierno de España (Spanish Government Ministry of Public Works) for providing the University of León (Spain) with the funds to conduct the research project “Improvement of unsuitable soils by means of ladle furnace slag in embankment construction” (Ref. 80029/A04), the results of which are reported in this paper. The writers make a special note in the memory of Professor Sánchez Alciturri, after whom the geotechnical laboratory of the University of Cantabria (UC) has been named, in addition to Professor Sagaseta Millán (UC), for their support to the University of León research group, which laid the groundwork for the authors’ research.

References

Anagnostopoulos, N., Sideres, K. K., and Georgiadis, A. (2009). “Mechanical characteristics of self-compacting concrete with filler materials, exposed to elevated temperatures.” Mater. Struct., 42(10), 1393–1405.
Asociación Española de Normalización y Certificación (AENOR). (1993). “Determinación del contenido de materia orgánica oxidable de un suelo por el método del permanganato potásico.” UNE 103-204/93 (in Spanish).
Asociación Española de Normalización y Certificación (AENOR). (2006a). “Equivalente a la norma UNE: UNE 103206:2006, Determinación del contenido de yeso soluble de un suelo.” NLT-115/99 (in Spanish).
Asociación Española de Normalización y Certificación (AENOR). (2006b). “Equivalente a la norma UNE: UNE 103205:2006, Determinación del contenido de sales solubles en el suelo.” NLT-114/99 (in Spanish).
Asociación Española de Normalización y Certificación (AENOR). (2006c). “Equivalente a la norma UNE: UNE 103406:2006, Ensayo de colapso en suelos.” NLT-254/99 (in Spanish).
ASTM. (1999). “CBR (California bearing ratio) of laboratory-compacted soils.” D1883-99, West Conshohocken, PA.
ASTM. (2000a). “Laboratory compaction characteristics of soil using standard effort (12,400ft-lbf/ft3(600kN-m/m3)).” D698-00, West Conshohocken, PA.
ASTM. (2000b). “Potential expansion of aggregates from hydration reactions.” D4792-00, West Conshohocken, PA.
ASTM. (2003a). “Graded aggregate materials for bases or subbases for highways or airports.” D2940-03, West Conshohocken, PA.
ASTM. (2003b). “One-dimensional swell or settlement potential of cohesive soils.” D4546-03, West Conshohocken, PA.
ASTM. (2003c). “Standard test method for measurement of collapse potential of soils.” D5333-03, West Conshohocken, PA.
Bruni, S., Cariati, F., Fermo, P., Pozzi, A., and Toniolo, L. (1998). “Characterization of ancient magnesian mortars coming from northern Italy.” Thermochim. Acta, 321(1), 161–165.
Celemín, M., Montenegro, J. M., Cañizal, J., and González, J. J. (2007). “Primeros estudios sobre la utilización de la escoria blanca de acería eléctrica para la mejora de suelos marginales en la construcción de terraplenes.” Actas, en CD, del VI Congreso Chileno de Geotecnia, Sociedad Geotécnica Chilena (in Spanish).
Celemín Matachana, M., Montenegro Cooper, J., Delgado Alvarado, A., Cañizal Berini, J., and y Covián Regales, E. (2011). “Utilización de Materiales Marginales e Inadecuados en la Construcción de Infraestructuras del Transporte mediante su mezcla con escoria blanca de acería eléctrica.” Informe final del contrato: Universidad de León-Vías y Construcciones, S.A., 153 (in Spanish).
Center for Studies, and Experimentation of Public Works. (CEDEX). (2013). “Waste catalogue.” 〈http://www.cedexmateriales.vsf.es/view/default.aspx〉 (Apr. 23, 2013) (in Spanish).
Chen, Q., Johnson, D. C., Zhu, L., Yuan, M., and Hills, C. D. (2007). “Accelerated carbonation and leaching behavior of the slag from iron and steel making industry.” J. Univ. Sci. Technol. Beijing, 14(4), 297–301.
Crawford, C. B., and Burn, R. N. (1969). “Building damage from expansive steel slag backfill.” J. Soil Mech. Found. Div., 95(6), 1325–1334.
Euroslag. (2013). “Fertilisers from blast furnace slag and steel slags.” Technical Leaflet No. 3, Duisburg-Rheinhausen, Germany, 〈http://www.euroslag.org/researchlibrarydownloads/fact-sheets〉 (Apr. 23, 2013).
Geiseler, J. (1996). “Use of steelworks slags in Europe.” Waste Manage., 16(1), 59–63.
Geiseler, J., and Schlosser, R. (1988). “Investigation concerning the structure and properties of steel slags.” Proc., Int. Conf. on Molten Slags and Fluxes, Iron and Steel Institute of Japan, Tokyo, 40–42.
Hewlett, P. C., ed. (1998). LEA’s, chemistry of cement and concrete, Arnold Publishers, London.
Iguchi, Y., Narushima, T., and Izumi, C. (2001). “Calorimetric study on hydration of CaO-based oxides.” J. Alloys Compounds, 321(2), 276–281.
Juckes, L. M. (2003). “The volume stability of modern steelmaking slags.” Trans. Inst. Min. Metall. C, 112(3), 117–197.
Kanagawa, A., and Kuwayama, T. (1997). “The improvement of soft clayey soils utilizing reducing slag produced from electric arc furnace.” Denki Seiko, 68(4), 261–267.
Koros, P. J. (2003). “Dust, scale, slags, sludges…Not wastes, but sources of profits.” Metall. Mater. Trans. B, 34(6), 769–779.
Lun, Y., Liu, S., Zhou, M., and Liu, X. (2011). “Stress-chemistry mechanism of mortars made with steel slag sand.” Adv. Mater. Res., 163–167(1), 899–903.
Manso, J. M., Hernández, D., Losáñez, M. M., and González, J. J. (2011). “Design and elaboration of concrete mixtures using steelmaking slags.” ACI Mater. J., 108(6), 673–681.
Manso, J. M., Losáñez, M., Polanco, J. A., and González, J. (2005). “Ladle furnace slag in construction.” J. Mater. Civ. Eng., 17(5), 513–518.
Markov, L., Blaskov, V., Klissurski, D., and Nikolov, S. (1990). “The thermal decomposition of iron (III) hydroxide carbonate to α-Fe2O3.” J. Mater. Sci., 25(7), 3096–3100.
Mehta, P. K. (1989). “Pozzolanic and cementitious by-products in concrete—Another look.” Fly ash, silica fume, slag and natural pozzolans in concrete, V. M. Malhotra, ed., Vol. 2, SP 114, American Concrete Institute (ACI), Farmington Hills, MI, 1–43.
Ministerio de Fomento. (2010). “Pliego de prescripciones técnicas generales para obras de carreteras y puentes PG-3.” Spanish standards for roads and bridges, Madrid, Spain (in Spanish).
Montenegro, J. M., and Celemín, M. (2008). “Some geotechnical aspects to use marginal soils with ladle furnace slag in embankment constructions.” Proc., European Young Geotechnical Engineers’ Conf., Int. Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) of London, ISSMGE Hungarian National Committee and Széchenyi István University, Györ, Hungary, 216–223.
Motz, H., and Geiseler, J. (2001). “Products of steel slags an opportunity to save resources.” Waste Manage., 21(3), 285–293.
Oteo Mazo, C. (1993). “Escorias: Propiedades y aplicaciones geotécnicas.” Curso sobre geotecnia ambiental, Tomo I. Centro de Estudios y Experimentación de Obras Públicas (CEDEX), Ministerio de Obras Públicas y Transportes, actualmente, Ministerio de Fomento, Madrid, Spain (in Spanish).
Papayianni, I., and Anastasiou, E. (2006). “Optimization of ladle furnace slag for use as a supplementary material.” Measuring, monitoring and modeling concrete properties, M. S. Konsta-Gdoutos, ed., Springer, Rotterdam, The Netherlands, 411–417.
Papayianni, I., and Anastasiou, E. (2010). “Production of high-strength concrete using high volume of industrial by-products.” Constr. Build. Mater., 24(8), 1412–1417.
Polanco, J. A., Manso, J. M., Setién, J., and González, J. J. (2011). “Strength and durability of concrete made with electric steelmaking slag.” ACI Mater. J., 108(2), 196–203.
Rivas-Mercury, J. M., Pena, P., de Aza, A. H., and Turrillas, X. (2008). “Dehydration of Ca3Al2(SiO4)y(OH)4(3y) (0<y<0.176) studied by neutron thermodiffractometry.” J. Eur. Ceram. Soc., 28(9), 1737–1748.
Rodriguez, A., Manso, J. M., Aragón, A., and González, J. J. (2009). “Strength and workability of masonry mortars manufactured with ladle furnace slag.” Resour. Conserv. Recy., 53(11), 645–651.
Rojas, M. F., and de Rojas, M. I. S. (2004). “Chemical assessment of the electric arc furnace slag as construction material: Expansive compounds.” Cement Concr. Res., 34(10), 1883–1888.
Salas, J. A., and Alpañés, J. L. (1975). Geotecnia y cimientos I: Propiedades de los suelos y de las de rocas, 2nd Ed., Rueda Ediciones, Madrid, Spain (in Spanish).
Sedmale, G., Cimmers, A., Sedmalis, U., and Celms, A. (2009). “Characteristics of illite clay and compositions for porous building ceramics production.” Chem. Technol., 2, 18–21.
Setién, J., Hernández, D., and González, J. J. (2009). “Characterization of ladle furnace basic slag for use as a construction material.” Constr. Build. Mater., 23(5), 1788–1794.
Shi, C. (2002). “Characteristics and cementitious properties of ladle slag fines from steel production.” Cement Concr. Res., 32(3), 459–462.
Shi, C. (2004). “Steel slags—Its production, processing, characteristics, and cementitious properties.” J. Mater. Civ. Eng., 16(3), 230–236.
Shi, C., and Hu, S. (2003). “Cementitious properties of ladle slag fines under autoclave curing conditions.” Cement Concr. Res., 33(11), 1851–1856.
Taylor, H. F. W. (1990). Cement chemistry, Academic Press, London.
Tossavainen, M., Engstrom, F., Yang, Q., Menand, N., Lidstrom-Larsson, M., and Bjorkam, B. (2007). “Characteristics of steel slag under cooling conditions.” Waste Manage., 27(10), 1335–1344.
Vágvölgyi, V., Frost, R. L., Hales, M., Locke, A., and Kristóf, J. (2008). “Controlled rate thermal analysis of hydromagnesite.” J. Therm. Anal. Calorim., 92(3), 893–897.
Waligora, J., Bulteel, D., Degrugilliers, P., Damidot, D., Potdevin, J. L., and Measson, M. (2010). “Chemical and mineralogical characterization of LD converter steel slags: A multi-analytical techniques approach.” Mater. Charact., 61(1), 39–48.
Wang, H., Li, C., Peng, Z., and Zhang, S. (2011). “Characterization and thermal behavior of kaolin.” J. Therm. Anal. Calorim., 105(1), 157–160.
World Steel Association (WSA). (2013). “Steel production 2011.” 〈http://www.worldsteel.org/statistics/statistics-archive/2011-steel-production.html〉 (Apr. 23, 2013).
Xeidakis, G. S. (1996). “Stabilization of swelling clays by Mg(OH)2. Changes in clay properties after addition of Mg-hydroxide.” Eng. Geol., 44(1), 107–120.
Yildirim, I. Z., and Prezzi, M. (2011). “Chemical, mineralogical, and morphological properties of steel slag.” Adv. Civ. Eng., 2011(1), 1–13.
Yoon, S., Balunaini, U., Yildirim, I. Z., Prezzi, M., and Siddiki, N. Z. (2009). “Construction of an embankment with a fly and bottom ash mixture: Field and performance study.” J. Mater. Civ. Eng., 21(6), 271–277.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 25Issue 8August 2013
Pages: 972 - 979

History

Received: Aug 23, 2011
Accepted: Jul 31, 2012
Published online: Aug 25, 2012
Discussion open until: Jan 25, 2013
Published in print: Aug 1, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

J. M. Montenegro
Constructor Civil, Universidad de León, Avenida de Portugal, 41, León 24071, Spain.
M. Celemín-Matachana, Ph.D. [email protected]
Ingeniero de Caminos, Canales y Puertos, Universidad de León, Ave. de Portugal, 41, León 24071, Spain (corresponding author). E-mail: [email protected]
J. Cañizal, Ph.D.
Ingeniero de Caminos, Canales y Puertos, Universidad de Cantabria, 39005, Spain.
J. Setién, Ph.D.
Physicist, Universidad de Cantabria, 39005, Spain.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share