Technical Papers
Oct 19, 2022

Irrigation Scheduling of Walnut Seedlings Using HYDRUS-1D and Taguchi Optimization Approach

Publication: Journal of Irrigation and Drainage Engineering
Volume 149, Issue 1

Abstract

Water management of seedling cultivation in nurseries necessitates proper irrigation scheduling, especially in arid and semiarid regions that cope with water shortage. To this end, triggered irrigation scheduling of walnut seedlings in a field nursery was performed using the HYDRUS-1D model and Taguchi optimization approach. Soil moisture content variation and canopy cover (CC) development were monitored in the study field by a profile probe (PR2 sensor) and aerial-view images, respectively. Cross-validation technique was performed in order to calibrate and validate the HYDRUS-1D model. Two sets of combinations comprised of four and five factors with five levels for each were designed to represent 256 and 3,125 different scenarios, respectively, for optimizing triggered irrigation using the Taguchi method. An objective function equal to the sum of irrigation efficiency (IE) and normalized transpiration (NT) was considered to maximize using the Taguchi optimization process. Results of the cross-validation technique showed a reasonable agreement between measured and simulated data [root-mean-square error (RMSE)=0.025  m3m3, mean absolute error (MAE)=0.018  m3m3, and Nash-Sutcliff efficiency (NSE)=0.79 in both calibration and validation stages on average]. Running 25 combinations for each set resulted in the objective function values of 1.50 (IE=0.52 and NT=0.98) and 1.80 (IE=0.92 and NT=0.88) for the first and second data sets, respectively. The best scenario led to 74% less water consumption compared to actual irrigation practice. The results showed that the combination of the Taguchi optimization approach and HYDRUS-1D model is successfully applicable and provides a promising method for optimizing the triggered irrigation scheduling of walnut seedlings.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. “Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56.” Fao, Rome 300 (9): D05109.
Arzani, K., H. Mansouri-Ardakan, A. Vezvaei, and M. R. Roozban. 2008. “Morphological variation among Persian walnut (Juglans regia) genotypes from central Iran.” N. Z. J. Crop Hortic. Sci. 36 (3): 159–168. https://doi.org/10.1080/01140670809510232.
Blonquist, J. M., Jr., S. B. Jones, and D. A. Robinson. 2006. “Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor.” Agric. Water Manage. 84 (1–2): 153–165. https://doi.org/10.1016/j.agwat.2006.01.014.
Bueno, M. M., P. S. dos Santos Leles, J. F. Goncalves Abreu, J. J. S. Dos Santos, and D. F. de Carvalho. 2020. “Water requirement and growth indicators of forest tree species seedlings produced with automated irrigation management.” PLoS One 15 (11): e0238677. https://doi.org/10.1371/journal.pone.0238677.
Bwambale, E., F. K. Abagale, and G. K. Anornu. 2022. “Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review.” Agric. Water Manage. 260 (Feb): 107324. https://doi.org/10.1016/j.agwat.2021.107324.
Chandel, A., S. Sharma, and V. Shankar. 2022. “Prediction of hydraulic conductivity of porous media using a statistical grain-size model.” Water Supply 22 (4): 4176–4192. https://doi.org/10.2166/ws.2022.043.
Chen, J. M., and T. A. Black. 1991. “Measuring leaf area index of plant canopies with branch architecture.” Agric. For. Meteorol. 57 (1–3): 1–12. https://doi.org/10.1016/0168-1923(91)90074-Z.
Coelho, E. F., and D. Or. 1996. “Flow and uptake patterns affecting soil water sensor placement for drip irrigation management.” Trans. ASAE 39 (6): 2007–2016. https://doi.org/10.13031/2013.27703.
Dabach, S., N. Lazarovitch, J. Šimůnek, and U. Shani. 2013. “Numerical investigation of irrigation scheduling based on soil water status.” Irrig. Sci. 31 (1): 27–36. https://doi.org/10.1007/s00271-011-0289-x.
Dane, J. H., and C. G. Topp, eds. 2020. Vol. 20 of Methods of soil analysis, Part 4: Physical methods. Madison, WI: Wiley.
Datta, S., S. Taghvaeian, T. E. Ochsner, D. Moriasi, P. Gowda, and J. L. Steiner. 2018. “Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma.” Sensors 18 (11): 3786. https://doi.org/10.3390/s18113786.
Delta-T Devices. 2006. “User manual for the profile probe type PR2.” Accessed March 15, 2014. https://www.delta-t.co.uk/product/pr2/.
Dhakal, M., C. P. West, S. K. Deb, G. Kharel, and G. L. Ritchie. 2019. “Field calibration of PR2 capacitance probe in Pullman clay-loam soil of southern high plains.” Agrosyst. Geosci. Environ. 2 (1): 1–7. https://doi.org/10.2134/age2018.10.0043.
Doltra, J., and P. Muñoz. 2010. “Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models.” Agric. Water Manage. 97 (2): 277–285. https://doi.org/10.1016/j.agwat.2009.09.019.
Domínguez-Niño, J. M., J. Oliver-Manera, J. Girona, and J. Casadesús. 2020. “Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors.” Agric. Water Manage. 228 (Feb): 105880. https://doi.org/10.1016/j.agwat.2019.105880.
Egea, G., J. Muñiz, and A. Diaz-Espejo. 2017. “Optimization of an automatic irrigation system for precision irrigation of blueberries grown in sandy soil.” Adv. Anim. Biosci. 8 (2): 551–556. https://doi.org/10.1017/S204047001700005X.
Elbeltagi, A., N. Kumar, A. Chandel, A. Arshad, C. B. Pande, and A. R. M. Islam. 2022. “Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): An artificial neural network approach based on different combinations of meteorological data.” Environ. Monit. Assess. 194 (3): 1–20. https://doi.org/10.1007/s10661-022-09812-0.
Elmaloglou, S., K. X. Soulis, and N. Dercas. 2013. “Simulation of soil water dynamics under surface drip irrigation from equidistant line sources.” Water Resour. Manage. 27 (12): 4131–4148. https://doi.org/10.1007/s11269-013-0399-8.
El-Sanatawy, A. M., A. S. El-Kholy, M. Ali, M. F. Awad, and E. Mansour. 2021. “Maize seedling establishment, grain yield and crop water productivity response to seed priming and irrigation management in a Mediterranean arid environment.” Agronomy 11 (4): 756. https://doi.org/10.3390/agronomy11040756.
Evett, S. R., R. C. Schwartz, N. T. Mazahrih, M. A. Jitan, and I. M. Shaqir. 2011. “Soil water sensors for irrigation scheduling: Can they deliver a management allowed depletion?” Acta Hortic. 888 (888): 231–237. https://doi.org/10.17660/ActaHortic.2011.888.26.
Farahani, H. J., G. Izzi, and T. Y. Oweis. 2009. “Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton.” Agron. J. 101 (3): 469–476. https://doi.org/10.2134/agronj2008.0182s.
Feddes, R. A., P. J. Kowalik, and H. Zaradny. 1978. “Simulation of field water use and crop yield.” In Simulation of plant growth and crop production. Wageningen, Netherlands: Pudoc.
García-Vila, M., E. Fereres, L. Mateos, F. Orgaz, and P. Steduto. 2009. “Deficit irrigation optimization of cotton with AquaCrop.” Agron. J. 101 (3): 477–487. https://doi.org/10.2134/agronj2008.0179s.
Ghani, J. A., I. A. Choudhury, and H. H. Hassan. 2004. “Application of Taguchi method in the optimization of end milling parameters.” J. Mater. Process. Technol. 145 (1): 84–92. https://doi.org/10.1016/S0924-0136(03)00865-3.
Grant, O. M., M. J. Davies, H. Longbottom, and C. J. Atkinson. 2009. “Irrigation scheduling and irrigation systems: Optimising irrigation efficiency for container ornamental shrubs.” Irrig. Sci. 27 (2): 139–153. https://doi.org/10.1007/s00271-008-0128-x.
Gu, Z., Z. Qi, R. Burghate, S. Yuan, X. Jiao, and J. Xu. 2020. “Irrigation scheduling approaches and applications: A review.” J. Irrig. Drain. Eng. 146 (6): 04020007. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464.
Hassanli, A. M., M. A. Ebrahimizadeh, and S. Beecham. 2009. “The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region.” Agric. Water Manage. 96 (1): 93–99. https://doi.org/10.1016/j.agwat.2008.07.004.
Hoppula, K. I., and T. J. Salo. 2007. “Tensiometer-based irrigation scheduling in perennial strawberry cultivation.” Irrig. Sci. 25 (4): 401–409. https://doi.org/10.1007/s00271-006-0055-7.
Jiménez-Martínez, J., T. H. Skaggs, M. T. van Genuchten, and L. Candela. 2009. “A root zone modelling approach to estimating groundwater recharge from irrigated areas.” J. Hydrol. 367 (1–2): 138–149. https://doi.org/10.1016/j.jhydrol.2009.01.002.
Kacker, R. N., E. S. Lagergren, and J. J. Filliben. 1991. “Taguchi’s orthogonal arrays are classical designs of experiments.” J. Res. Nat. Inst. Stand. Technol. 96 (5): 577. https://doi.org/10.6028/jres.096.034.
Kolivand, F., and R. Rahmannejad. 2018. “Estimation of geotechnical parameters using Taguchi’s design of experiment (DOE) and back analysis methods based on field measurement data.” Bull. Eng. Geol. Environ. 77 (4): 1763–1779. https://doi.org/10.1007/s10064-017-1042-3.
Leij, F. J., M. T. Van Genuchten, S. R. Yates, W. B. Russell, and F. Kaveh. 1992. “RETC: A computer program for analyzing soil water retention and hydraulic conductivity data.” In Indirect methods for estimating the hydraulic properties of unsaturated soils, 263–272. Riverside, CA: Univ. of California, Riverside.
Lena, B. P., L. Bondesan, E. A. R. Pinheiro, B. V. Ortiz, G. T. Morata, and H. Kumar. 2022. “Determination of irrigation scheduling thresholds based on HYDRUS-1D simulations of field capacity for multilayered agronomic soils in Alabama, USA.” Agric. Water Manage. 259 (Jan): 107234. https://doi.org/10.1016/j.agwat.2021.107234.
Marković, M., V. Filipović, T. Legović, M. Josipović, and V. Tadić. 2015. “Evaluation of different soil water potential by field capacity threshold in combination with a triggered irrigation module.” Soil Water Res. 10 (3): 164–171. https://doi.org/10.17221/189/2014-SWR.
Masasi, B., S. Taghvaeian, P. H. Gowda, G. Marek, and R. Boman. 2020. “Validation and application of AquaCrop for irrigated cotton in the Southern Great Plains of US.” Irrig. Sci. 38 (5): 593–607. https://doi.org/10.1007/s00271-020-00665-4.
Millán, S., C. Campillo, J. Casadesús, J. M. Pérez-Rodríguez, and M. H. Prieto. 2020. “Automatic irrigation scheduling on a hedgerow olive orchard using an algorithm of water balance readjusted with soil moisture sensors.” Sensors 20 (9): 2526. https://doi.org/10.3390/s20092526.
Min, L., Y. Shen, and H. Pei. 2015. “Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain.” J. Hydrol. 527 (Aug): 305–315. https://doi.org/10.1016/j.jhydrol.2015.04.064.
Müller, T., C. R. Bouleau, and P. Perona. 2016. “Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds.” Agric. Water Manage. 177 (Nov): 54–65. https://doi.org/10.1016/j.agwat.2016.06.019.
Naghedifar, S. M., A. N. Ziaei, and H. Ansari. 2018. “Simulation of irrigation return flow from a Triticale farm under sprinkler and furrow irrigation systems using experimental data: A case study in arid region.” Agric. Water Manage. 210 (Nov): 185–197. https://doi.org/10.1016/j.agwat.2018.07.036.
Naghedifar, S. M., A. N. Ziaei, and S. A. Naghedifar. 2019. “Optimization of quadrilateral infiltration trench using numerical modeling and Taguchi approach.” J. Hydrol. Eng. 24 (3): 04018069. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001761.
Paço, T. A., M. I. Ferreira, R. D. Rosa, P. Paredes, G. C. Rodrigues, N. Conceição, C. A. Pacheco, and L. S. Pereira. 2012. “The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements.” Irrig. Sci. 30 (2): 115–126. https://doi.org/10.1007/s00271-011-0267-3.
Patel, N. S., P. L. Parihar, and J. S. Makwana. 2021. “Parametric optimization to improve the machining process by using Taguchi method: A review.” Mater. Today: Proc. 47 (11): 2709–2714. https://doi.org/10.1016/j.matpr.2021.03.005.
Phogat, V., M. A. Skewes, M. Mahadevan, and J. W. Cox. 2013. “Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions.” Agric. Water Manage. 118 (Feb): 1–11. https://doi.org/10.1016/j.agwat.2012.11.015.
Qi, Z., and M. J. Helmers. 2010. “The conversion of permittivity as measured by a PR2 capacitance probe into soil moisture values for Des Moines lobe soils in Iowa.” Soil Use Manage. 26 (1): 82–92. https://doi.org/10.1111/j.1475-2743.2009.00256.x.
Radcliffe, D. E., and J. Šimůnek. 2018. Soil physics with HYDRUS: Modeling and applications. London: CRC Press.
Rao, N. H., P. B. S. Sarma, and S. Chander. 1988. “Irrigation scheduling under a limited water supply.” Agric. Water Manage. 15 (2): 165–175. https://doi.org/10.1016/0378-3774(88)90109-6.
Razmi, B., R. Ghasemi-Fasaei, A. Ronaghi, and R. Mostowfizadeh-Ghalamfarsa. 2021. “Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization.” Ecotoxicol. Environ. Saf. 207 (Jan): 111315. https://doi.org/10.1016/j.ecoenv.2020.111315.
Rezaei, M., J. De Pue, P. Seuntjens, I. Joris, and W. Cornelis. 2017. “Quasi 3D modelling of vadose zone soil-water flow for optimizing irrigation strategies: Challenges, uncertainties and efficiencies.” Environ. Modell. Software 93 (Jul): 59–77. https://doi.org/10.1016/j.envsoft.2017.03.008.
Richards, L. A. 1931. “Capillary conduction of liquids through porous mediums.” Physics 1 (5): 318–333. https://doi.org/10.1063/1.1745010.
Ritchie, J. T. 1972. “Model for predicting evaporation from a row crop with incomplete cover.” Water Resour. Res. 8 (5): 1204–1213. https://doi.org/10.1029/WR008i005p01204.
Sadeghi, S. H., V. Moosavi, A. Karami, and N. Behnia. 2012. “Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method.” J. Hydrol. 448–449 (Jul): 174–180. https://doi.org/10.1016/j.jhydrol.2012.04.038.
Salahi, B., A. Nohegar, and M. Behrouzi. 2016. “The modeling of precipitation and future droughts of Mashhad plain using stochastic time series and standardized precipitation index (SPI).” Int. J. Environ. Res. 10 (4): 625–636. https://doi.org/10.22059/IJER.2016.59967.
Schaap, M. G., F. J. Leij, and M. T. van Genuchten. 2001. “Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions.” J. Hydrol. 251 (3–4): 163–176. https://doi.org/10.1016/S0022-1694(01)00466-8.
Shahbazi Manshadi, S., K. Kamali Aliabad, V. Moosavi, and A. Tajabadipour. 2022. “Using taguchi as a new method to optimization of nutritional requirement of pistachio (Pistacia vera).” Agric. Res. 11 (1): 95–103. https://doi.org/10.1007/s40003-021-00550-2.
Sharma, O. C., and S. D. Sharma. 2001. “Genetic divergence in seedling trees of Persian walnut (Juglans regia L.) for various metric nut and kernel characters in Himachal Pradesh.” Sci. Hortic. 88 (2): 163–171. https://doi.org/10.1016/S0304-4238(00)00204-1.
Šimůnek, J., and J. W. Hopmans. 2009. “Modeling compensated root water and nutrient uptake.” Ecol. Modell. 220 (4): 505–521. https://doi.org/10.1016/j.ecolmodel.2008.11.004.
Šimůnek, J., M. Šejna, and M. T. van Genuchten. 1998. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 2.0, 202 pp. Prague, Czech Republic: PC-Progress s.r.o.
Soulis, K. X., and S. Elmaloglou. 2018. “Optimum soil water content sensors placement for surface drip irrigation scheduling in layered soils.” Comput. Electron. Agric. 152 (Sep): 1–8. https://doi.org/10.1016/j.compag.2018.06.052.
Soulis, K. X., S. Elmaloglou, and N. Dercas. 2015. “Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems.” Agric. Water Manage. 148 (Jan): 258–268. https://doi.org/10.1016/j.agwat.2014.10.015.
Stevens, A., I. Miralles, and B. van Wesemael. 2012. “Soil organic carbon predictions by airborne imaging spectroscopy: Comparing cross-validation and validation.” Soil Sci. Soc. Am. J. 76 (6): 2174–2183. https://doi.org/10.2136/sssaj2012.0054.
Taghvaeian, S., A. A. Andales, L. N. Allen, I. Kisekka, S. A. O’Shaughnessy, D. O. Porter, R. Sui, S. Irmak, A. Fulton, and J. Aguilar. 2020. “Irrigation scheduling for agriculture in the United States: The progress made and the path forward.” Trans. ASABE 63 (5): 1603–1618. https://doi.org/10.13031/trans.14110.
Taguchi, G., and S. Konishi. 1987. Taguchi methods orthogonal arrays and linear graphs: Tools for quality engineering. Dearborn, MI: American Supplier Institute.
Tzeng, C. J., Y. H. Lin, Y. K. Yang, and M. C. Jeng. 2009. “Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis.” J. Mater. Process. Technol. 209 (6): 2753–2759. https://doi.org/10.1016/j.jmatprotec.2008.06.046.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
van Genuchten, M. T. 1987. A numerical model for water and solute movement in and below the root zone. Riverside, CA: US Salinity Laboratory, USDA, Agricultural Research Service.
Vrugt, J. A., M. T. van Wijk, J. W. Hopmans, and J. Šimůnek. 2001. “One-, two-, and three-dimensional root water uptake functions for transient modeling.” Water Resour. Res. 37 (10): 2457–2470. https://doi.org/10.1029/2000WR000027.
Wang, X., Y. Li, H. W. Chau, D. Tang, J. Chen, and M. Bayad. 2021. “Reduced root water uptake of summer maize grown in water-repellent soils simulated by HYDRUS-1D.” Soil Tillage Res. 209 (May): 104925. https://doi.org/10.1016/j.still.2020.104925.
Yang, T., et al. 2019a. “Where to monitor the soil-water potential for scheduling drip irrigation in Populus tomentosa plantations located on the North China Plain?” For. Ecol. Manage. 437 (Apr): 99–112. https://doi.org/10.1016/j.foreco.2019.01.036.
Yang, T., J. Šimůnek, M. Mo, B. Mccullough-Sanden, H. Shahrokhnia, S. Cherchian, and L. Wu. 2019b. “Assessing salinity leaching efficiency in three soils by the HYDRUS-1D and-2D simulations.” Soil Tillage Res. 194 (Nov): 104342. https://doi.org/10.1016/j.still.2019.104342.
Zlotnik, V. A., T. Wang, J. L. Nieber, and J. Šimůnek. 2007. “Verification of numerical solutions of the Richards equation using a traveling wave solution.” Adv. Water Resour. 30 (9): 1973–1980. https://doi.org/10.1016/j.advwatres.2007.03.008.
Zotarelli, L., M. D. Dukes, J. M. S. Scholberg, K. Femminella, and R. Munoz-Carpena. 2011. “Irrigation scheduling for green bell peppers using capacitance soil moisture sensors.” J. Irrig. Drain. Eng. 137 (2): 73–81. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000281.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 149Issue 1January 2023

History

Received: Mar 16, 2022
Accepted: Aug 9, 2022
Published online: Oct 19, 2022
Published in print: Jan 1, 2023
Discussion open until: Mar 19, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Master’s Graduate, Dept. of Irrigation and Reclamation, College of Agriculture and Natural Resources, Univ. of Tehran, Karaj 3158777871, Iran. ORCID: https://orcid.org/0000-0002-7602-6093. Email: [email protected]
Associate Professor, Dept. of Water Science and Engineering, College of Agriculture, Ferdowsi Univ. of Mashhad, Mashhad 9177948974, Iran (corresponding author). ORCID: https://orcid.org/0000-0001-6477-5719. Email: [email protected]
Seyed Mohammadreza Naghedifar [email protected]
Postdoctoral Researcher, Dept. of Water Science and Engineering, College of Agriculture, Ferdowsi Univ. of Mashhad, Mashhad 9177948974, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share