Technical Papers
Aug 4, 2022

Prediction of Bed-Load Sediment Using Newly Developed Support-Vector Machine Techniques

This article has a reply.
VIEW THE REPLY
Publication: Journal of Irrigation and Drainage Engineering
Volume 148, Issue 10

Abstract

One of the significant hydrological processes affecting the sustainability of river engineering is sedimentation. Sedimentation has a major impact on reservoir and dam operations. This study conducted an experiment using a rainfall simulator with varying intensity of rainfall (13  L/min) with slopes from 0° to 5°, leading to the generation of runoff and sediment loads (SLs). Precipitation and runoff data from the rainfall simulator were used to develop a sediment load model via hybrid machine learning approaches. Predictive abilities of a robust phase space reconstruction integrated with support vector machine and firefly algorithm (PSR-SVM-FFA) were investigated for estimating sediment load. The accuracy of the PSR-SVM-FFA was assessed versus that of integrated support vector machine and firefly algorithm (SVM-FFA) and conventional support vector machine (SVM) models. In phase space reconstruction (PSR), the delay time constant and embedding dimension were determined to select optimal parameters in the SVM-FFA model. Four performance measures, namely RMS error (RMSE), mean absolute percentage error (MAPE), Willmott index (WI), and bias, were employed to evaluate the performance of the proposed models. The results revealed that prominent values of WI were 0.942, 0.955, and 0.966 for the SVM, SVM-FFA, and PSR-SVM-FFA methods, respectively, for a slope of 4°. PSR-SVM-FFA had better performance than SVM-FFA and conventional SVM for each slope. Based on analysis of the obtained results, it is evident that PSR-SVM-FFA can estimate SL more accurately.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data are available from the corresponding author upon reasonable request.

References

Abudi, I., G. Carmi, and P. Berliner. 2012. “Rainfall simulator for field runoff studies.” J. Hydrol. 454–455 (Aug): 76–81. https://doi.org/10.1016/j.jhydrol.2012.05.056.
Adnan, R. M., Z. Liang, A. El-Shafie, M. Zounemat-Kermani, and O. Kisi. 2019. “Prediction of suspended sediment load using data-driven models.” Water 11 (10): 2060. https://doi.org/10.3390/w11102060.
Aghelpour, P., O. Kisi, and V. Varshavian. 2021. “Multivariate drought forecasting in short-and long-term horizons using MSPI and data-driven approaches.” J. Hydrol. Eng. 26 (4): 04021006. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002059.
Agnihotri, A., A. Sahoo, and M. K. Diwakar. 2022. “Flood prediction using hybrid ANFIS-ACO model: A case study.” In Proc., Inventive computation and information technologies: Proceedings of ICICIT 2021, 169. Singapore: Springer.
Aksoy, H., N. E. Unal, S. Cokgor, A. Gedikli, J. Yoon, K. Koca, S. B. Inci, and E. Eris. 2012. “A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume.” Catena 98 (Nov): 63–72. https://doi.org/10.1016/j.catena.2012.06.009.
Al-Shammari, E. T., K. Mohammadi, A. Keivani, S. H. Ab-Hamid, S. Akib, S. Shamshirband, and D. Petković. 2016. “Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm.” J. Irrig. Drain. Eng. 142 (5): 04016013. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001015.
Asadi, M., A. Fathzadeh, R. Kerry, Z. Ebrahimi-Khusfi, and R. Taghizadeh-Mehrjardi. 2021. “Prediction of river suspended sediment load using machine learning models and geo-morphometric parameters.” Arabian J. Geosci. 14 (18): 1–14. https://doi.org/10.1007/s12517-021-07922-6.
Asheghi, R., and S. A. Hosseini. 2020. “Prediction of bed load sediments using different artificial neural network models.” Front. Struct. Civ. Eng. 14 (2): 374–386. https://doi.org/10.1007/s11709-019-0600-0.
Asheghi, R., S. A. Hosseini, M. Saneie, and A. A. Shahri. 2020. “Updating the neural network sediment load models using different sensitivity analysis methods: A regional application.” J. Hydroinf. 22 (3): 562–577. https://doi.org/10.2166/hydro.2020.098.
Azamathulla, H. M., A. Ab Ghani, C. K. Chang, Z. Abu Hasan, and N. A. Zakaria. 2010. “Machine learning approach to predict sediment load—A case study.” Clean Soil Air Water 38 (10): 969–976. https://doi.org/10.1002/clen.201000068.
Azimi, H., H. Bonakdari, and I. Ebtehaj. 2019. “Design of radial basis function-based support vector regression in predicting the discharge coefficient of a side weir in a trapezoidal channel.” Appl. Water Sci. 9 (4): 1–12. https://doi.org/10.1007/s13201-019-0961-5.
Azimi, H., H. Bonakdari, I. Ebtehaj, and D. G. Michelson. 2018. “A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed.” Neural Comput. Appl. 29 (6): 249–258. https://doi.org/10.1007/s00521-016-2560-9.
Baydaroğlu, Ö., and K. Koçak. 2014. “SVR-based prediction of evaporation combined with chaotic approach.” J. Hydrol. 508 (Jan): 356–363. https://doi.org/10.1016/j.jhydrol.2013.11.008.
Bhattacharya, B., R. K. Price, and D. P. Solomatine. 2007. “Machine learning approach to modeling sediment transport.” J. Hydraul. Eng. 133 (4): 440–450. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(440).
Bonakdari, H., and I. Ebtehaj. 2016. “A comparative study of extreme learning machines and support vector machines in prediction of sediment transport in open channels.” Int. J. Eng. 29 (11): 1499–1506.
Bowyer-Bower, T. A. S., and T. P. Burt. 1989. “Rainfall simulators for investigating soil response to rainfall.” Soil Technol. 2 (1): 1–16. https://doi.org/10.1016/S0933-3630(89)80002-9.
Bryan, R. B. 1981. “Soil erosion under simulated rainfall in the field and laboratory: Variability of erosion under controlled conditions.” Erosion Sediment Transp. Meas. 133 (Jun): 391–403.
Cao, L. 1997. “Practical method for determining the minimum embedding dimension of a scalar time series.” Physica D 110 (1–2): 43–50. https://doi.org/10.1016/S0167-2789(97)00118-8.
Cawley, G. C., and N. L. C. Talbot. 2010. “Over-fitting in model selection and subsequent selection bias in performance evaluation.” J. Mach. Learn. Res. 11 (Aug): 2079−2107.
Cerdà, A., S. Ibáñez, and A. Calvo. 1997. “Design and operation of a small and portable rainfall simulator for rugged terrain.” Soil Technol. 11 (2): 163–170. https://doi.org/10.1016/S0933-3630(96)00135-3.
Ch, S., S. K. Sohani, D. Kumar, A. Malik, B. R. Chahar, A. K. Nema, B. K. Panigrahi, and R. C. Dhiman. 2014. “A support vector machine-firefly algorithm based forecasting model to determine malaria transmission.” Neurocomputing 129 (Apr): 279–288. https://doi.org/10.1016/j.neucom.2013.09.030.
Cortes, C., and V. Vapnik. 1995. “Support-vector networks.” Mach. Learn. 20 (3): 273–297.
Damgaard, J. S., R. J. S. Whitehouse, and R. S. Soulsby. 1997. “Bed load sediment transport on steep longitudinal slopes.” J. Hydraul. Eng. 123 (12): 1130–1138. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1130).
Delafrouz, H., A. Ghaheri, and M. A. Ghorbani. 2018. “A novel hybrid neural network based on phase space reconstruction technique for daily river flow prediction.” Soft Comput. 22 (7): 2205–2215. https://doi.org/10.1007/s00500-016-2480-8.
Doroudi, S., A. Sharafati, and S. H. Mohajeri. 2021. “Estimation of daily suspended sediment load using a novel hybrid support vector regression model incorporated with observer-teacher-learner-based optimization method.” Complexity 2021 (Mar): 1–13. https://doi.org/10.1155/2021/5540284.
Ebtehaj, I., and H. Bonakdari. 2016. “A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes.” Water Sci. Technol. 73 (9): 2244–2250. https://doi.org/10.2166/wst.2016.064.
Ebtehaj, I., H. Bonakdari, and M. S. Es-haghi. 2018a. “Design of a hybrid ANFIS–PSO model to estimate sediment transport in open channels.” Iran. J. Sci. Technol. Trans. Civ. Eng. 43 (4): 851–857. https://doi.org/10.1007/s40996-018-0218-9.
Ebtehaj, I., H. Bonakdari, S. Shamshirband, Z. Ismail, and R. Hashim. 2017. “New approach to estimate velocity at limit of deposition in storm sewers using vector machine coupled with firefly algorithm.” J. Pipeline Syst. Eng. Pract. 8 (2): 04016018. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000252.
Ebtehaj, I., H. Bonakdari, and A. H. Zaji. 2018b. “A new hybrid decision tree method based on two artificial neural networks for predicting sediment transport in clean pipes.” Alexandria Eng. J. 57 (3): 1783–1795. https://doi.org/10.1016/j.aej.2017.05.021.
Ebtehaj, I., H. Bonakdari, A. H. Zaji, and B. Gharabaghi. 2021. “Evolutionary optimization of neural network to predict sediment transport without sedimentation.” Complex Intell. Syst. 7 (1): 401–416. https://doi.org/10.1007/s40747-020-00213-9.
Fan, G.-F., L.-L. Peng, and W.-C. Hong. 2018. “Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model.” Appl. Energy 224 (Aug): 13–33. https://doi.org/10.1016/j.apenergy.2018.04.075.
Fan, X., C. Shi, Y. Zhou, and W. Shao. 2012. “Sediment rating curves in the Ningxia-inner Mongolia reaches of the upper yellow river and their implications.” Quat. Int. 282 (Dec): 152–162. https://doi.org/10.1016/j.quaint.2012.04.044.
Fraser, A. M., and H. L. Swinney. 1986. “Independent coordinates for strange attractors from mutual information.” Phys. Rev. A. 33 (2): 1134–1140. https://doi.org/10.1103/PhysRevA.33.1134.
Ghorbani, M. A., S. Shamshirband, D. Z. Haghi, A. Azani, H. Bonakdari, and I. Ebtehaj. 2017. “Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point.” Soil Tillage Res. 172 (Sep): 32–38. https://doi.org/10.1016/j.still.2017.04.009.
Grismer, M. 2012. “Standards vary in studies using rainfall simulators to evaluate erosion.” Calif. Agric. 66 (3): 102–107. https://doi.org/10.3733/ca.v066n03p102.
Guo, G., S. Liu, Y. Wu, J. Li, R. Zhou, and X. Zhu. 2018. “Short-term water demand forecast based on deep learning method.” J. Water Resour. Plann. Manage. 144 (12): 04018076. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000992.
Himanshu, S. K., A. Pandey, and B. Yadav. 2017. “Ensemble wavelet-support vector machine approach for prediction of suspended sediment load using hydrometeorological data.” J. Hydrol. Eng. 22 (7): 05017006. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001516.
Huang, S. C., and C. H. Hsieh. 2012. “Wavelet-based relevance vector regression model coupled with phase space reconstruction for exchange rate forecasting.” Int. J. Innovative Comput. Inf. Control 8 (Mar): 1917–1930.
Jain, S. K. 2012. “Modeling river stage–discharge–sediment rating relation using support vector regression.” Hydrol. Res. 43 (6): 851–861. https://doi.org/10.2166/nh.2011.101.
Jimmy, S. R., A. Sahoo, S. Samantaray, and D. K. Ghose. 2021. “Prophecy of runoff in a river basin using various neural networks.” In Communication software and networks, 709–718. Singapore: Springer.
Kakaei Lafdani, E. K., A. Moghaddam Nia, and A. Ahmadi. 2013. “Daily suspended sediment load prediction using artificial neural networks and support vector machines.” J. Hydrol. 478 (Jan): 50–62. https://doi.org/10.1016/j.jhydrol.2012.11.048.
Kanimozhi, T., and K. Latha. 2015. “An integrated approach to region based image retrieval using firefly algorithm and support vector machine.” Neurocomputing 151 (Mar): 1099–1111. https://doi.org/10.1016/j.neucom.2014.07.078.
Kaveh, K., H. Kaveh, M. D. Bui, and P. Rutschmann. 2020. “Long short-term memory for predicting daily suspended sediment concentration.” Eng. Comput. 37 (3): 1–15.
Khosravi, K., L. Mao, O. Kisi, Z. M. Yaseen, and S. Shahid. 2018. “Quantifying hourly suspended sediment load using data mining models: Case study of a glacierized Andean catchment in Chile.” J. Hydrol. 567 (Dec): 165–179. https://doi.org/10.1016/j.jhydrol.2018.10.015.
Kothyari, U. C., M. K. Jain, and K. G. Ranga Raju. 2002. “Estimation of temporal variation of soil erosion and sediment yield using GIS.” Hydrol. Sci. J. 47 (5): 693–706. https://doi.org/10.1080/02626660209492974.
Kumar, B. 2012. “Neural network prediction of bed material load transport.” Hydrol. Sci. J. 57 (5): 956–966. https://doi.org/10.1080/02626667.2012.687108.
Meshram, S. G., V. P. Singh, O. Kisi, V. Karimi, and C. Meshram. 2020. “Application of artificial neural networks, support vector machine and multiple model-ANN to sediment yield prediction.” Water Resour. Manage. 34 (15): 4561–4575. https://doi.org/10.1007/s11269-020-02672-8.
Moazenzadeh, R., B. Mohammadi, S. Shamshirband, and K. Chau. 2018. “Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran.” Eng. Appl. Comput. Fluid Mech. 12 (1): 584–597. https://doi.org/10.1080/19942060.2018.1482476.
Mohamadi, S., M. Ehteram, and A. El-Shafie. 2020. “Accuracy enhancement for monthly evaporation predicting model utilizing evolutionary machine learning methods.” Int. J. Environ. Sci. Technol. 17 (7): 3373–3396. https://doi.org/10.1007/s13762-019-02619-6.
Mohanta, N. R., P. Biswal, S. S. Kumari, S. Samantaray, and A. Sahoo. 2020. “Estimation of sediment load using adaptive neuro-fuzzy inference system at Indus River Basin, India.” In Intelligent data engineering and analytics, 427–434. Singapore: Springer.
Mohanta, N. R., N. Patel, K. Beck, S. Samantaray, and A. Sahoo. 2021. “Efficiency of river flow prediction in river using wavelet-CANFIS: A case study.” In Intelligent data engineering and analytics, 435–443. Singapore: Springer.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Najafzadeh, M., A. Etemad-Shahidi, and S. Y. Lim. 2016. “Scour prediction in long contractions using ANFIS and SVM.” Ocean Eng. 111 (Jan): 128–135. https://doi.org/10.1016/j.oceaneng.2015.10.053.
Najafzadeh, M., and A. Ghaemi. 2019. “Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods.” Environ. Monit. Assess. 191 (6): 1–21. https://doi.org/10.1007/s10661-019-7446-8.
Najafzadeh, M., F. Homaei, and H. Farhadi. 2021. “Reliability assessment of water quality index based on guidelines of national sanitation foundation in natural streams: Integration of remote sensing and data-driven models.” Artif. Intell. Rev. 54 (6): 4619–4651. https://doi.org/10.1007/s10462-021-10007-1.
Najafzadeh, M., and G. Oliveto. 2020. “Riprap incipient motion for overtopping flows with machine learning models.” J. Hydroinf. 22 (4): 749–767. https://doi.org/10.2166/hydro.2020.129.
Najafzadeh, M., M. Rezaie-Balf, and A. Tafarojnoruz. 2018. “Prediction of riprap stone size under overtopping flow using data-driven models.” Int. J. River Basin Manage. 16 (4): 505–512. https://doi.org/10.1080/15715124.2018.1437738.
Najafzadeh, M., and F. Saberi-Movahed. 2019. “GMDH-GEP to predict free span expansion rates below pipelines under waves.” Mar. Georesour. Geotechnol. 37 (3): 375–392. https://doi.org/10.1080/1064119X.2018.1443355.
Navas, A., F. Alberto, J. Machín, and A. Galán. 1990. “Design and operation of a rainfall simulator for field studies of runoff and soil erosion.” Soil Technol. 3 (4): 385–397. https://doi.org/10.1016/0933-3630(90)90019-Y.
Niu, M., K. Gan, S. Sun, and F. Li. 2017. “Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting.” J. Environ. Manage. 196 (Jul): 110–118. https://doi.org/10.1016/j.jenvman.2017.02.071.
Niu, W.-J., Z.-K. Feng, Y.-B. Chen, H.-R. Zhang, and C.-T. Cheng. 2020. “Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition.” J. Hydrol. Eng. 25 (5): 04020008. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001902.
Olatomiwa, L., S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petković, and C. Sudheer. 2015. “A support vector machine–firefly algorithm-based model for global solar radiation prediction.” Sol. Energy 115 (May): 632–644. https://doi.org/10.1016/j.solener.2015.03.015.
Packard, N. H., J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. 1980. “Geometry from a time series.” Phys. Rev. Lett. 45 (9): 712. https://doi.org/10.1103/PhysRevLett.45.712.
Parsakhoo, A., M. Lotfalian, A. Kavian, S. A. Hoseini, and M. Demir. 2012. “Calibration of a portable single nozzle rainfall simulator for soil erodibility study in Hyrcanian forests.” Afr. J. Agric. Res. 7 (27): 3957–3963. https://doi.org/10.5897/AJAR12.202.
Rajaee, T., V. Nourani, M. Zounemat-Kermani, and O. Kisi. 2011. “River suspended sediment load prediction: Application of ANN and wavelet conjunction model.” J. Hydrol. Eng. 16 (8): 613–627. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000347.
Riahi-Madvar, H., and A. Seifi. 2018. “Uncertainty analysis in bed load transport prediction of gravel bed rivers by ANN and ANFIS.” Arabian J. Geosci. 11 (21): 1–20. https://doi.org/10.1007/s12517-018-3968-6.
Roushangar, K., and R. Ghasempour. 2017. “Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM.” Water Sci. Technol. Water Supply 17 (2): 537–551. https://doi.org/10.2166/ws.2016.153.
Roushangar, K., and S. Shahnazi. 2020. “Evaluation and prediction of bed to total sediment load in gravel-bed rivers using classic and intelligent methods.” Watershed Eng. Manage. 12 (1): 178–189. https://doi.org/10.22092/IJWMSE.2018.116056.1372.
Saberi-Movahed, F., M. Najafzadeh, and A. Mehrpooya. 2020. “Receiving more accurate predictions for longitudinal dispersion coefficients in water pipelines: Training group method of data handling using extreme learning machine conceptions.” Water Resour. Manage. 34 (2): 529–561. https://doi.org/10.1007/s11269-019-02463-w.
Sahoo, A., A. Barik, S. Samantaray, and D. K. Ghose. 2020. “Prediction of sedimentation in a watershed using RNN and SVM.” In Communication software and networks, 701–708. Singapore: Springer.
Sahoo, A., U. K. Singh, M. H. Kumar, and S. Samantaray. 2021. “Estimation of flood in a river basin through neural networks: A case study.” In Communication software and networks, 755–763. Singapore: Springer.
Samantaray, S., and D. K. Ghose. 2019. “Sediment assessment for a watershed in arid region via neural networks.” Sādhanā 44 (10): 219. https://doi.org/10.1007/s12046-019-1199-5.
Samantaray, S., and A. Sahoo. 2020. “Assessment of sediment concentration through RBNN and SVM-FFA in arid watershed, India.” In Smart intelligent computing and applications, 701–709. Singapore: Springer.
Samantaray, S., and A. Sahoo. 2021. “Prediction of suspended sediment concentration using hybrid SVM-WOA approaches.” Geocarto Int. (Apr): 1–27. https://doi.org/10.1080/10106049.2021.1920638.
Samantaray, S., A. Sahoo, and D. K. Ghose. 2020. “Prediction of sedimentation in an arid watershed using BPNN and ANFIS.” In ICT analysis and applications, 295–302. Singapore: Springer.
Sekine, M., and G. Parker. 1992. “Bedload transport on transverse slope. I.” J. Hydraul. Eng. 118 (4): 513–535. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(513).
Singh, N., and K. M. Y. Ali. 2020. “ANN modeling of the complex discharge-sediment concentration relationship in Bhagirathi river basin of the Himalaya.” Sustainable Water Resour. Manage. 6 (3): 1–8. https://doi.org/10.1007/s40899-020-00396-6.
Sivakumar, B. 2002. “A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers.” J. Hydrol. 258 (1–4): 149–162. https://doi.org/10.1016/S0022-1694(01)00573-X.
Sridharam, S., A. Sahoo, S. Samantaray, and D. K. Ghose. 2021. “Assessment of flow discharge in a river basin through CFBPNN, LRNN and CANFIS.” In Communication software and networks, 765–773. Singapore: Springer.
Sun, W., and Y. Wang. 2018. “Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network.” Energy Convers. Manage. 157 (Feb): 1–12. https://doi.org/10.1016/j.enconman.2017.11.067.
Tang, X., M. Wu, X. Dai, and P. Chai. 2014. “Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions.” Ecol. Eng. 64 (Mar): 276–284. https://doi.org/10.1016/j.ecoleng.2014.01.005.
Tao, H., L. Diop, A. Bodian, K. Djaman, P. M. Ndiaye, and Z. M. Yaseen. 2018. “Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso.” Agric. Water Manage. 208 (Sep): 140–151. https://doi.org/10.1016/j.agwat.2018.06.018.
Wang, L., N. Dalabay, P. Lu, and F. Wu. 2017. “Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall.” Soil Tillage Res. 166 (Mar): 147–156. https://doi.org/10.1016/j.still.2016.09.007.
Willmott, C. J. 1981. “On the validation of models.” Phys. Geogr. 2 (2): 184–194. https://doi.org/10.1080/02723646.1981.10642213.
Wu, L., H. Zhou, X. Ma, J. Fan, and F. Zhang. 2019. “Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: Application in contrasting climates of China.” J. Hydrol. 577 (Oct): 123960. https://doi.org/10.1016/j.jhydrol.2019.123960.
Yang, C. T., R. Marsooli, and M. T. Aalami. 2009. “Evaluation of total load sediment transport formulas using ANN.” Int. J. Sediment Res. 24 (3): 274–286. https://doi.org/10.1016/S1001-6279(10)60003-0.
Yang, X. S. 2010. “Firefly algorithm, Levy flights and global optimization.” In Research and development in intelligent systems XXVI, 209–218. London: Springer.
Yaseen, Z. M., I. Ebtehaj, H. Bonakdari, R. C. Deo, A. D. Mehr, W. H. M. Wan Mohtar, L. Diop, A. El-shafie, and V. P. Singh. 2017. “Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model.” J. Hydrol. 554 (Nov): 263–276. https://doi.org/10.1016/j.jhydrol.2017.09.007.
Yaseen, Z. M., M. I. Ghareb, I. Ebtehaj, H. Bonakdari, R. Siddique, S. Heddam, A. A. Yusif, and R. Deo. 2018. “Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA.” Water Resour. Manage. 32 (1): 105–122. https://doi.org/10.1007/s11269-017-1797-0.
Zangeneh Sirdari, Z., A. Ab Ghani, and N. Zangeneh Sirdari. 2015. “Bedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming.” Pollution 1 (1): 85–94. https://doi.org/10.7508/PJ.2015.01.008.
Zhang, Q., K. K. Lai, D. Niu, Q. Wang, and X. Zhang. 2012. “A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power.” Energies 5 (9): 3329–3346. https://doi.org/10.3390/en5093329.
Zhang, Y. C., and Y. Z. Liu. 2013. Research for the short-term climate prediction based on the neural network with phase space reconstruction, 26–27. Nan Jing, China: Nan Jing Univ. of Information Science and Technology.
Zounemat-Kermani, M., Ö. Kişi, J. Adamowski, and A. Ramezani-Charmahineh. 2016. “Evaluation of data driven models for river suspended sediment concentration modeling.” J. Hydrol. 535 (Apr): 457–472. https://doi.org/10.1016/j.jhydrol.2016.02.012.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 148Issue 10October 2022

History

Received: Feb 9, 2021
Accepted: Mar 8, 2022
Published online: Aug 4, 2022
Published in print: Oct 1, 2022
Discussion open until: Jan 4, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Sandeep Samantaray, S.M.ASCE https://orcid.org/0000-0003-3379-6087
Ph.D. Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Silchar, Assam 788010, India. ORCID: https://orcid.org/0000-0003-3379-6087
Ph.D. Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Silchar, Assam 788010, India. ORCID: https://orcid.org/0000-0003-4835-6092
Junior Research Fellow, Dept. of Civil Engineering, National Institute of Technology, Silchar, Assam 788010, India. ORCID: https://orcid.org/0000-0001-5990-3878
Dillip K. Ghose, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology, Silchar, Assam 788010, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share