Technical Papers
Jun 28, 2021

Numerical Modeling of Soil Water–Heat Transport under Oxo-Biodegradable Film Mulch and the Optimal Mulching Period

Publication: Journal of Irrigation and Drainage Engineering
Volume 147, Issue 9

Abstract

Timely monitoring and regulation of the transport and distribution of soil water and heat are appropriate methods to ensure and improve crop yields. With the degradation of the oxo-biodegradable film, the upper boundary condition is a time-variable boundary, and soil water-heat transport is more complicated, comparing with conventional plastic film. Based on HYDRUS-2D version 2.02 and the characteristics of mulching films, a soil water-heat coupled transport mathematical model of drip irrigation was established, and the simulated soil water content and temperature were tested against three-year field observations for calibration and validation purposes. The model prediction demonstrated that the induction periods of oxo-biodegradable film mulching differed in different hydrological years. In normal flow years, an induction period of 50–80 days had higher water use efficiency. While the window would increase to 50–100 days in low flow years. As for temperature, comparing with conventional plastic film mulching, the decreasing trend of temperature started to slow down when the induction period increased to 70 days. Therefore, the optimal induction period of the oxo-biodegradable film is 50–70 days.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was funded by the National Natural Science Foundation of China (51539005, and 51769024), the Program for Technology Support (2014BAD12B03). Yayang Feng conducted the statistical analysis and wrote the paper. The research ideas and methods were affirmed by Professor Haibin Shi, who helped to revise the paper. Qiong Jia, Jingwei Li, Ning Wang, and Kunlun Zhu helped in data collection. Xuesong Cao and Qingfeng Miao helped with language editing and some data analyses.

References

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: Food and Agriculture Organization.
Bu, L. D., J. L. Liu, L. Zhu, S. S. Luo, X. P. Chen, S. Q. Li, R. L. Hill, and Y. Zhao. 2013. “The effects of mulching on maize growth, yield and water use in a semi-arid region.” Agric. Water Manage. 123 (May): 71–78. https://doi.org/10.1016/j.agwat.2013.03.015.
Chen, B. Q., E. K. Liu, X. R. Mei, C. R. Yan, and S. Garre. 2018. “Modelling soil water dynamic in rain-fed spring maize field with plastic mulching.” Agric. Water Manage. 198 (Feb): 19–27. https://doi.org/10.1016/j.agwat.2017.12.007.
Chen, L. J., Q. Feng, F. R. Li, and C. S. Li. 2014. “A bidirectional model for simulating soil water flow and salt transport under mulched drip irrigation with saline water.” Agric. Water Manage. 146 (Dec): 24–33. https://doi.org/10.1016/j.agwat.2014.07.021.
Chen, L. J., Q. Feng, F. R. Li, and C. S. Li. 2015. “Simulation of soil water and salt transfer under mulched furrow irrigation with saline water.” Geoderma 241–242 (Mar): 87–96. https://doi.org/10.1016/j.geoderma.2014.11.007.
Chen, N., X. Y. Li, J. Simunek, H. B. Shi, Z. J. Ding, and Z. Y. Peng. 2019. “Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field.” Agric. Water Manage. 226 (Dec): 105788. https://doi.org/10.1016/j.agwat.2019.105788.
Chen, N., X. Y. Li, J. Simunek, H. B. Shi, Z. J. Ding, and Y. H. Zhang. 2020. “The effects of biodegradable and plastic film mulching on nitrogen uptake, distribution, and leaching in a drip-irrigated sandy field.” Agric. Ecosystems Environ. 292 (Apr): 106817. https://doi.org/10.1016/j.agee.2020.106817.
Cook, F. J., P. J. Thorburn, K. L. Bristow, and C. M. Cote. 2003a. “Infiltration from surface and buried point sources: The average wetting water content.” Water Resour. Res. 39 (12): 1364. https://doi.org/10.1029/2003WR002554.
Cook, F. J., P. J. Thorburn, P. Fitch, and K. L. Bristow. 2003b. “WetUp: A software tool to display approximate wetting patterns from drippers.” Irrig. Sci. 22 (3–4): 129–134. https://doi.org/10.1007/s00271-003-0078-2.
Costa, R., A. Saraiva, L. Carvalho, and E. Duarte. 2014. “The use of biodegradable mulch films on strawberry crop in Portugal.” Sci. Hortic. 173 (Jun): 65–70. https://doi.org/10.1016/j.scienta.2014.04.020.
Erenstein, O. 2002. “Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications.” Soil Tillage Res. 67 (2): 115–133. https://doi.org/10.1016/S0167-1987(02)00062-4.
Feddes, R. A., P. J. Kowalik, and H. Zaradny. 1978. Simulation of field water use and crop yield. Simulation monographs. Wageningen, Netherlands: Pudoc.
Filipovic, V., D. Romic, M. Romic, J. Borosic, L. Filipovic, F. J. K. Mallmann, and D. A. Robinson. 2016. “Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study.” Agric. Water Manage. 176 (Oct): 100–110. https://doi.org/10.1016/j.agwat.2016.04.020.
Gao, H., C. Yan, Q. Liu, W. Ding, B. Chen, and Z. Li. 2019. “Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis.” Sci. Total Environ. 651 (Part 1): 484–492. https://doi.org/10.1016/j.scitotenv.2018.09.105.
Ghimire, S., A. L. Wszelaki, J. C. Moore, D. A. Inglis, and C. Miles. 2018. “The use of biodegradable mulches in pie pumpkin crop production in two diverse climates.” Hortscience 53 (3): 288–294. https://doi.org/10.21273/HORTSCI12630-17.
Gu, X. B., Y. N. Li, and Y. D. Du. 2017. “Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.).” Soil Tillage Res. 171 (Aug): 42–50. https://doi.org/10.1016/j.still.2017.04.008.
Han, M., C. Y. Zhao, G. Feng, Y. Y. Yan, and Y. Sheng. 2015. “Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D.” Water 7 (12): 2622–2640. https://doi.org/10.3390/w7062622.
He, H. J., Z. H. Wang, L. Guo, X. R. Zheng, J. Z. Zhang, W. H. Li, and B. H. Fan. 2018a. “Distribution characteristics of residual film over a cotton field under long-term film mulching and drip irrigation in an oasis agroecosystem.” Soil Tillage Res. 180 (Aug): 194–203. https://doi.org/10.1016/j.still.2018.03.013.
He, Q. S., S. E. Li, S. Z. Kang, H. B. Yang, and S. J. Qin. 2018b. “Simulation of water balance in a maize field under film-mulching drip irrigation.” Agric. Water Manage. 210 (Nov): 252–260. https://doi.org/10.1016/j.agwat.2018.08.005.
Jia, Q., H. B. Shi, R. P. Li, Y. Y. Feng, H. Li, and J. W. Zheng. 2018. “Drip irrigation schedules of maize in Tongliao.” Drain. Irrig. Mach. 36 (9): 897–902. https://doi.org/10.3969/j.issn.1674-8530.18.1060.
Jiang, X. J., W. J. Liu, E. H. Wang, T. Z. Zhou, and P. Xin. 2017. “Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, Northwestern China.” Soil Tillage Res. 166 (Mar): 100–107. https://doi.org/10.1016/j.still.2016.10.011.
Kandelous, M. M., T. Kamai, J. A. Vrugt, J. Simunek, B. Hanson, and J. W. Hopmans. 2012. “Evaluation of subsurface drip irrigation design and management parameters for alfalfa.” Agric. Water Manage. 109 (Jun): 81–93. https://doi.org/10.1016/j.agwat.2012.02.009.
Kasirajan, S., and M. Ngouajio. 2012. “Polyethylene and biodegradable mulches for agricultural applications: A review.” Agron. Sustainable Dev. 32 (2): 501–529. https://doi.org/10.1007/s13593-011-0068-3.
Khan, J. N., A. K. Jain, V. P. Singh, R. Kumar, R. Sharda, and M. Siag. 2016. “Simulation of Mulch and No-Mulch conditions for various soil matric potential thresholds for drip-fertigated guava (Psidium guajava L.) in the semiarid region of Northwest India.” J. Irrig. Drain. Eng. 142 (10): 04016040. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001047.
Kijchavengkul, T., R. Auras, M. Rubino, M. Ngouajio, and R. T. Fernandez. 2008a. “Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: Field study.” Chemosphere 71 (5): 942–953. https://doi.org/10.1016/j.chemosphere.2007.10.074.
Kijchavengkul, T., R. Auras, M. Rubino, M. Ngouajio, and R. T. Fernandez. 2008b. “Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions.” Chemosphere 71 (9): 1607–1616. https://doi.org/10.1016/j.chemosphere.2008.01.037.
Lazarovitch, N., A. Ben-Gal, J. Šimůnek, and U. Shani. 2007. “Uniqueness of soil hydraulic parameters determined by a combined Wooding inverse approach.” Soil Sci. Soc. Am. J. 71 (3): 860–865. https://doi.org/10.2136/sssaj2005.0420.
Li, F. M., A. H. Guo, and H. Wei. 1999. “Effects of clear plastic film mulch on yield of spring wheat.” Field Crops Res. 63 (1): 79–86. https://doi.org/10.1016/S0378-4290(99)00027-1.
Li, R. P., J. D. Zhao, H. B. Shi, N. Wang, Y. L. Qi, Y. Y. Feng, and Q. Jia. 2018a. “Simulation of evapotranspiration of corn under mulched drip irrigation based on SIMDual_Kc model in Tongliao area of Inner Mongolia.” Trans. Chin. Soc. Agric. Eng. 34 (3): 127–134. https://doi.org/10.11975/j.issn.1002-6819.2018.03.017.
Li, S. X., Z. H. Wang, S. Q. Li, Y. Gao, and X. H. Tian. 2013a. “Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China.” Agric. Water Manage. 116 (Jan): 39–49. https://doi.org/10.1016/j.agwat.2012.10.004.
Li, X. Y., Y. Guo, Z. J. Ding, X. Leng, T. Tian, and Q. Hu. 2018b. “Influence of different film Mulchings on soil temperature at different time scales and maize yield.” Trans. Chin. Soc. Agric. Mach. 49 (9): 247–256. https://doi.org/10.6041/j.issn.1000-1298.2018.09.029.
Li, X. Y., H. B. Shi, Z. C. Wang, Y. X. Lin, and X. Li. 2013b. “Effects of different residual plastic film quantities in soil on drip infiltration and its uncertainty analysis.” Trans. Chin. Soc. Agric. Mach. 29 (8): 84–90. https://doi.org/10.3969/j.issn.1002-6819.2013.08.010.
Liu, E. K., W. Q. He, and C. R. Yan. 2014. “‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China.” Environ. Res. Lett. 9 (9): 091001. https://doi.org/10.1088/1748-9326/9/9/091001.
Liu, Y., Z. G. Wei, Z. C. Li, and H. Liu. 2012. “Study on division of precipitation in Northern China.” Plateau Meteorology 31 (3): 638–645.
Lu, H. D., J. Q. Xue, D. W. Guo, Y. C. Hao, and P. F. Chen. 2017. “Effects of black plastic film mulching on soil temperature and humidity in root zone and photosynthetic characteristics of rainfed maize.” Trans. Chin. Soc. Agric. Mach. 33 (5): 129–135. https://doi.org/10.11975/j.issn.1002-6819.2017.05.019.
Marinari, S., R. Mancinelli, P. Brunetti, and E. Campiglia. 2015. “Soil quality, microbial functions and tomato yield under cover crop mulching in the Mediterranean environment.” Soil Tillage Res. 145 (Jan): 20–28. https://doi.org/10.1016/j.still.2014.08.002.
Marquardt, D. W. 1963. “An algorithm for least-squares estimation of nonlinear parameters.” J. Soc. Ind. Appl. Math. 11 (2): 431–441. https://doi.org/10.1137/0111030.
Moreno, M. M., A. Cirujeda, J. Aibar, and C. Moreno. 2016. “Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop.” Soil Res. 54 (2): 207–215. https://doi.org/10.1071/SR15065.
Moreno, M. M., and A. Moreno. 2008. “Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop.” Sci. Hortic. 116 (3): 256–263. https://doi.org/10.1016/j.scienta.2008.01.007.
Niu, W. Q., X. Y. Zou, J. J. Liu, M. Z. Zhang, W. Lv, and J. Gu. 2016. “Effects of residual plastic film mixed in soil on water infiltration, evaporation and its uncertainty analysis.” Trans. Chin. Soc. Agric. Mach. 32 (14): 110–119. https://doi.org/10.11975/j.issn.1002-6819.2016.14.016.
Novello, V., and L. de Palma. 2008. “Growing grapes under cover.” Acta Hortic. 785: 353–362. https://doi.org/10.17660/ActaHortic.2008.785.44.
Philip, J. R. 1968. “Steady infiltration from buried point sources and spherical cavities.” Water Resour. Res. 4 (5): 1039–1047. https://doi.org/10.1029/WR004i005p01039.
Saglam, M., H. Y. Sintim, A. I. Bary, C. A. Miles, S. Ghimire, D. A. Inglis, and M. Flury. 2017. “Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics.” Agric. Water Manage. 193 (Nov): 240–250. https://doi.org/10.1016/j.agwat.2017.08.011.
Scarascia-Mugnozza, G., E. Schettini, and G. Vox. 2004. “Effects of solar radiation on the radiometric properties of biodegradable films for agricultural applications.” Biosyst. Eng. 87 (4): 479–487. https://doi.org/10.1016/j.biosystemseng.2004.01.008.
Schaap, M. G., F. J. Leij, and M. T. Van Genuchten. 1998. “Neural network analysis for hierarchical prediction of soil hydraulic properties.” Soil Sci. Soc. Am. J. 62 (4): 847–855. https://doi.org/10.2136/sssaj1998.03615995006200040001x.
Schaap, M. G., F. J. Leij, and M. T. Van Genuchten. 2001. “Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions.” J. Hydrol. 251 (3–4): 163–176. https://doi.org/10.1016/S0022-1694(01)00466-8.
Schwartzman, M., and B. Zur. 1986. “Emitter spacing and geometry of wetted soil volume.” J. Irrig. Drain. Eng. 112 (3): 242–253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242).
Selim, T., F. Bouksila, R. Berndtsson, and M. Persson. 2013. “Soil water and salinity distribution under different treatments of drip irrigation.” Soil Sci. Soc. Am. J. 77 (4): 1144–1156. https://doi.org/10.2136/sssaj2012.0304.
Simunek, J., M. T. van Genuchten, and M. Sejna. 2016. “Recent developments and applications of the HYDRUS computer software packages.” Vadose Zone J. 15 (7): 1–25. https://doi.org/10.2136/vzj2016.04.0033.
Sintim, H. Y., and M. Flury. 2017. “Is biodegradable plastic mulch the solution to agriculture’s plastic problem?” Environ. Sci. Technol. 51 (3): 1068–1069. https://doi.org/10.1021/acs.est.6b06042.
Sophocleous, M. 1979. “Analysis of water and heat flow in unsaturated-saturated porous media.” Water Resour. Res. 15 (5): 1195–1206. https://doi.org/10.1029/WR015i005p01195.
Sun, T., G. Li, T. Y. Ning, Z. M. Zhang, Q. H. Mi, and R. Lal. 2018. “Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut.” Agric. Water Manage. 208 (Sep): 214–223. https://doi.org/10.1016/j.agwat.2018.06.027.
Van Genuchten, M. T., F. Leij, and S. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Washington, DC: USEPA.
Wang, J., S. Lv, M. Zhang, G. Chen, T. Zhu, S. Zhang, Y. Teng, P. Christie, and Y. Luo. 2016. “Effects of plastic film residues on occurrence of phthalates and microbial activity in soils.” Chemosphere 151 (May): 171–177. https://doi.org/10.1016/j.chemosphere.2016.02.076.
Wang, Z. H., Q. Wu, B. H. Fan, J. Z. Zhang, W. H. Li, X. R. Zheng, H. Lin, and L. Guo. 2019. “Testing biodegradable films as alternatives to plastic films in enhancing cotton (Gossypium hirsutum L.) yield under mulched drip irrigation.” Soil Tillage Res. 192 (Sep): 196–205. https://doi.org/10.1016/j.still.2019.05.004.
Warrick, A. W. 1974. “Time-dependent Linearized Infiltration. I. Point Sources 1.” Soil Sci. Soc. Am. J. 38 (3): 383–386. https://doi.org/10.2136/sssaj1974.03615995003800030008x.
Wesseling, J. G. 1991. Meerjarige simulatie van grondwaterstroming voor verschillende bodemprofielen, grondwatertrappen en gewassen met het model SWATRE. Wageningen, Nehterlands: DLO-Staring Centrum.
Wu, F. Q., T. Lin, T. Zumilaiti, F. N. Deng, C. Er, W. Q. He, and Q. X. Tang. 2018. “Effects of degradable plastic mulching film on soil moisture, temperature, and yield in cotton fields in southern Xinjiang, China.” J. Agro-Environ. Sci. 37 (12): 2793–2801. https://doi.org/10.11654/jaes.2018-0740.
Xu, J., C. F. Li, H. T. Liu, P. L. Zhou, Z. Q. Tao, P. Wang, Q. F. Meng, and M. Zhao. 2015. “The effects of plastic film mulching on maize growth and water use in dry and rainy years in Northeast China.” PLoS One 10 (5): e0125781. https://doi.org/10.1371/journal.pone.0125781.
Yan, C. R., W. Q. He, E. K. Liu, T. Lin, M. Pasquale, S. Liu, and Q. Liu. 2015. “Concept and estimation of crop safety period of plastic film mulching.” Trans. Chin. Soc. Agric. Eng. 31 (9): 1–4. https://doi.org/10.11975/j.issn.1002-6819.2015.09.001.
Yan, C. R., E. K. Liu, F. Shu, Q. Liu, S. Liu, and W. Q. He. 2014. “Review of agricultural plastic mulching and its residual pollution and prevention measures in China.” J. Agric. Resour. Environ. 31 (2): 95. https://doi.org/10.13254/j.jare.2013.0223.
Yao, Z., X. Zheng, C. Liu, S. Lin, Q. Zuo, and K. Butterbach-Bahl. 2017. “Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films.” Sci. Rep. 7 (1): 39855. https://doi.org/10.1038/srep39855.
Zhang, D. M., B. L. Chi, X. F. Huang, E. K. Liu, and J. Zhang. 2008. “Analysis of adverse effects on maize yield decrease resulted from plastic film mulching in dryland.” Trans. Chin. Soc. Agric. Eng. 24 (4): 99–102. https://doi.org/10.3321/j.issn:1002-6819.2008.04.019.
Zou, X. Y., W. Q. Niu, J. J. Liu, Y. Li, B. H. Liang, L. L. Guo, and Y. H. Guan. 2017. “Effects of residual mulch film on the growth and fruit quality of tomato (Lycopersicon esculentum Mill.).” Water Air Soil Pollut. 228 (2): 71. https://doi.org/10.1007/s11270-017-3255-2.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 147Issue 9September 2021

History

Received: May 1, 2020
Accepted: Dec 11, 2020
Published online: Jun 28, 2021
Published in print: Sep 1, 2021
Discussion open until: Nov 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Yayang Feng [email protected]
Ph.D. Scholar, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural Univ., No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China; High-Efficiency Water-Saving Technical Equipment and Water and Soil Environmental Effects Inner Mongolia Autonomous Region Engineering Research Center, No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China. Email: [email protected]
Haibin Shi, M.ASCE [email protected]
Professor, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural Univ., No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China; High-Efficiency Water-Saving Technical Equipment and Water and Soil Environmental Effects Inner Mongolia Autonomous Region Engineering Research Center, No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China (corresponding author). Email: [email protected]
Xuesong Cao [email protected]
Research Scholar, Institute of Water Resources for Pastoral Area of China Institute of Water Resources and Hydropower Research, No. 128, Daxuedong Rd., Saihan District, Huhhot 010020, China. Email: [email protected]
Qingfeng Miao [email protected]
Lecturer, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural Univ., No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China; High-Efficiency Water-Saving Technical Equipment and Water and Soil Environmental Effects Inner Mongolia Autonomous Region Engineering Research Center, No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China. Email: [email protected]
Ph.D. Scholar, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural Univ., No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China; Ph.D. Student, High-Efficiency Water-Saving Technical Equipment and Water and Soil Environmental Effects Inner Mongolia Autonomous Region Engineering Research Center, No. 306 Zhaowuda Rd., Saihan District, Huhhot 010018, China. Email: [email protected]
Research Scholar, Inner Mongolia Institute of Hydraulic Research, No. 11, Genghis Khan East St., Xincheng District, Huhhot 010051, China. Email: [email protected]
Research Scholar, Inner Mongolia Institute of Hydraulic Research, No. 11, Genghis Khan East St., Xincheng District, Huhhot 010051, China. Email: [email protected]
Research Scholar, Eco-Benign Plastics Technology Co., Ltd., No. 9, Shuntai Square, High Tech Developmental Zone, Jinan, Shandong 250100, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Infiltration and Water Use Efficiency of Maize Fields with Drip Irrigation and Biodegradable Mulches in the West Liaohe Plain, China, Plants, 10.3390/plants12050975, 12, 5, (975), (2023).
  • Study on water and heat transport of different types of vegetations and fields in Pengbo alpine irrigation district of Qinghai Tibet Plateau, Journal of Hydrology, 10.1016/j.jhydrol.2023.129201, 618, (129201), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share