Abstract

Tomatoes are popular worldwide and represent a high water-dependent horticultural crop cultivated both in open fields and greenhouses. Several irrigation management strategies are currently practiced in greenhouse tomato production. Among them, deficit irrigation has been generally applied in areas where access to fresh water is difficult or expensive. The overall objective of this review is to synthesize studies related to deficit irrigation for greenhouse tomato cultivation and to explore its strengths, limitations, and potential and future outlook. The effects of deficit irrigation on water productivity, yields, and crop quality parameters when planted in different soil types using different cultivars were reviewed. We infer that deficit irrigation can result in decreased tomato yields and improved water productivity and crop quality parameters at defined levels of irrigation deficiency. The effects of deficit irrigation on tomato yield, water productivity, and crop quality were found to be cultivar specific. Furthermore, the same cultivar, when subjected to different deficit irrigation techniques, demonstrates different yield and quality responses.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the Government of Australia for providing the Endeavour Postgraduate Scholarship (Ph.D.) for this research and Scope Global for administrating and managing the scholarship. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Agbna, G. H., S. Dongli, L. Zhipeng, N. A. Elshaikh, S. Guangcheng, and L. C. Timm. 2017. “Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato.” Sci. Hortic. 222 (Aug): 90–101. https://doi.org/10.1016/j.scienta.2017.05.004.
Alikhani-Koupaei, M., R. Fatahi, Z. Zamani, and S. Salimi. 2018. “Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder.” Agric. Water Manage. 209 (Oct): 219–227. https://doi.org/10.1016/j.agwat.2018.07.024.
Alrajhi, A., S. Beecham, N. S. Bolan, and A. Hassanli. 2015. “Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production.” Agric. Water Manage. 161 (Nov): 127–135. https://doi.org/10.1016/j.agwat.2015.07.013.
Alrajhi, A., S. Beecham, and A. Hassanli. 2017. “Effects of partial root-zone drying irrigation and water quality on soil physical and chemical properties.” Agric. Water Manage. 182 (Mar): 117–125. https://doi.org/10.1016/j.agwat.2016.12.011.
Aragues, R., E. Medina, I. Claveria, A. Martinez-Cob, and J. Faci. 2014. “Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters.” Agric. Water Manage. 134: 84–93.
Arienzo, M., E. Christen, W. Quayle, and A. Kumar. 2009. “A review of the fate of potassium in the soil-plant system after land application of wastewaters.” J. Hazard. Mater. 164 (2–3): 415–422. https://doi.org/10.1016/j.jhazmat.2008.08.095.
Ayers, R. S., and D. W. Westcot. 1994. “Water quality for agriculture.” Accessed May 29, 2019. http://www.fao.org/3/t0234e/t0234e00.htm.
Banjaw, D. T., H. G. Megersa, and D. T. Lemma. 2017. “Effect of water quality and deficit irrigation on tomatoes yield and quality: A review.” Adv. Crop Sci. Tech. 5 (11): 295. https://doi.org/10.4172/2329-8863.1000295.
Beckles, D. M. 2012. “Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit.” Postharvest Biol. Technol. 63 (Jan): 129–140. https://doi.org/10.1016/j.postharvbio.2011.05.016.
Bogale, A., M. Nagle, S. Latif, M. Aguila, and J. Müller. 2016. “Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars.” Sci. Hortic. 213 (Dec): 115–124. https://doi.org/10.1016/j.scienta.2016.10.029.
Chai, Q., Y. Gan, C. Zhao, H.-L. Xu, R. M. Waskom, Y. Niu, and K. H. Siddique. 2016. “Regulated deficit irrigation for crop production under drought stress: A review.” Agron. Sustainable Dev. 36 (1): 3. https://doi.org/10.1007/s13593-015-0338-6.
Chen, J., S. Kang, T. Du, P. Guo, R. Qiu, R. Chen, and F. Gu. 2014. “Modelling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition.” Agric. Water Manage. 146 (Dec): 131–148. https://doi.org/10.1016/j.agwat.2014.07.026.
Chen, J., S. Kang, T. Du, R. Qiu, P. Guo, and R. Chen. 2013. “Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages.” Agric. Water Manage. 129 (Nov): 152–162. https://doi.org/10.1016/j.agwat.2013.07.011.
Consoli, S., F. Stagno, D. Vanella, J. Boaga, G. Cassiani, and G. Roccuzzo. 2017. “Partial root-zone drying irrigation in orange orchards: Effects on water use and crop production characteristics.” Eur. J. Agron. 82 (Jan): 190–202. https://doi.org/10.1016/j.eja.2016.11.001.
Costa, J. M., and E. P. Heuvelink. 2016. “The global tomato industry.” In Tomato production, edited by E. P. Heuvelink. Cambridge, MA: Centre for Agriculture and Bioscience International Publishing.
Costa, J. M., M. F. Ortuño, and M. M. Chaves. 2007. “Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture.” J. Integr. Plant Biol. 49 (10): 1421–1434. https://doi.org/10.1111/j.1672-9072.2007.00556.x.
Coyago-Cruz, E., M. Corell, C. M. Stinco, D. Hernanz, A. Moriana, and A. J. Meléndez-Martínez. 2017. “Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.).” Food Res. Int. 96 (Jun): 72–83. https://doi.org/10.1016/j.foodres.2017.03.026.
Coyago-Cruz, E., A. J. Meléndez-Martínez, A. Moriana, I. F. Girón, M. J. Martín-Palomo, A. Galindo, D. López-Pérez, A. Torrecillas, E. Beltrán-Sinchiguano, and M. Corell. 2019. “Yield response to regulated deficit irrigation of greenhouse cherry tomatoes.” Agric. Water Manage. 213 (Mar): 212–221. https://doi.org/10.1016/j.agwat.2018.10.020.
Diaz, F. J., M. Tejedor, C. Jimenez, S. R. Grattan, M. Dorta, and J. M. Hernandez. 2013. “The imprint of desalinated seawater on recycled wastewater: Consequences for irrigation in Lanzarote Island, Spain.” Agric. Water Manage. 116 (Jan): 62–72. https://doi.org/10.1016/j.agwat.2012.10.011.
English, M. 1990. “Deficit irrigation. I: Analytical framework.” J. Irrig. Drain. Eng. 116 (3): 399–412. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:3(399).
English, M., and S. N. Raja. 1996. “Perspectives on deficit irrigation.” Agric. Water Manage. 32 (1): 1–14. https://doi.org/10.1016/S0378-3774(96)01255-3.
Falkenmark, M. 2009. “Water and the next generation–towards a more consistent approach.” In Water management in 2020 and beyond, 65–87. Berlin: Springer.
FAOSTAT (Food and Agricultural Organization Corporate Statistical Database). 2017. “Food and agriculture data.” Accessed April 1, 2019. http://www.fao.org/faostat/en/#data.
Favati, F., S. Lovelli, F. Galgano, V. Miccolis, T. Di Tommaso, and V. Candido. 2009. “Processing tomato quality as affected by irrigation scheduling.” Sci. Hortic. 122 (Nov): 562–571. https://doi.org/10.1016/j.scienta.2009.06.026.
Frija, A., A. Chebil, S. Speelman, J. Buysse, and G. Van Huylenbroeck. 2009. “Water use and technical efficiencies in horticultural greenhouses in Tunisia.” Agric. Water Manage. 96 (Nov): 1509–1516. https://doi.org/10.1016/j.agwat.2009.05.006.
Fujihara, Y., K. Tanaka, T. Watanabe, T. Nagano, and T. Kojiri. 2008. “Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations.” J. Hydrol. 353 (May): 33–48. https://doi.org/10.1016/j.jhydrol.2008.01.024.
García-Tejero, I., J. A. Jiménez-Bocanegra, G. Martínez, R. Romero, V. H. Durán-Zuazo, and J. L. Muriel-Fernández. 2010. “Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano].” Agric. Water Manage. 97 (May): 614–622. https://doi.org/10.1016/j.agwat.2009.12.005.
Ginestar, C., and J. Castel. 1996. “Responses of young clementine citrus trees to water stress during different phenological periods.” J. Hortic. Sci. 71 (4): 551–559. https://doi.org/10.1080/14620316.1996.11515435.
Haifa. 2018. “Nutritional recommendations for tomato in open-field, tunnels and greenhouses.” Accessed April 4, 2019. https://www.haifa-group.com/crop-guide/vegetables/tomato/crop-guide-tomato-plant-nutrition.
Hakim, A., Z. Qinyan, M. Khatoon, and S. Gullo. 2019. “Impact of partial root-zone drying on growth, yield and quality of tomatoes produced in greenhouse condition.” Adv. Hortic. Sci. 33 (1): 133–138.
Hao, L., A.-W. Duan, F.-S. Li, J.-S. Sun, Y.-C. Wang, and C.-T. Sun. 2013. “Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China Plain.” J. Integr. Agric. 12 (3): 520–531. https://doi.org/10.1016/S2095-3119(13)60253-1.
Harmanto, V. Salokhe, M. Babel, and H. Tantau. 2005. “Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment.” Agric. Water Manage. 71 (Feb): 225–242. https://doi.org/10.1016/j.agwat.2004.09.003.
Hassanli, A. M., M. Javan, and Y. Saadat. 2008. “Reuse of municipal effluent with drip irrigation and evaluation the effect on soil properties in a semi-arid area.” Environ. Monit. Assess. 144 (1–3): 151–158. https://doi.org/10.1007/s10661-007-9953-2.
Hassanli, A. M., and D. Pezzanity. 2013. “Crop irrigation scheduling in South Australia: A case study.” Water 92–97.
Jensen, C. R., A. Battilani, F. Plauborg, G. Psarras, K. Chartzoulakis, F. Janowiak, R. Stikic, Z. Jovanovic, G. Li, and X. Qi. 2010. “Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes.” Agric. Water Manage. 98 (Dec): 403–413. https://doi.org/10.1016/j.agwat.2010.10.018.
Johnstone, P. R., T. K. Hartz, M. LeStrange, J. J. Nunez, and E. M. Miyao. 2005. “Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production.” HortScience 40 (6): 1857–1861. https://doi.org/10.21273/HORTSCI.40.6.1857.
Jovanovic, Z., and R. Stikic. 2018. “Partial root-zone drying technique: From water saving to the improvement of a fruit quality.” Front. Sustainable Food Syst. 1: 1–9. https://doi.org/10.3389/fsufs.2017.00003.
Kaman, H., C. Kirda, M. Cetin, and S. Topcu. 2006. “Salt accumulation in the root-zone of tomato and cotton irrigated with partial root-drying technique.” Irrig. Drain. 55 (5): 533–544. https://doi.org/10.1002/ird.276.
Kang, Y., S. Khan, and X. Ma. 2009. “Climate change impacts on crop yield, crop water productivity and food security—A review.” Prog. Nat. Sci. 19 (Dec): 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001.
Khapte, P. S., P. Kumar, U. Burman, and P. Kumar. 2019. “Deficit irrigation in tomato: Agronomical and physio-biochemical implications.” Sci. Hortic. 248 (Apr): 256–264. https://doi.org/10.1016/j.scienta.2019.01.006.
Kirda, C., M. Cetin, Y. Dasgan, S. Topcu, H. Kaman, B. Ekici, M. Derici, and A. Ozguven. 2004. “Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation.” Agric. Water Manage. 69 (Oct): 191–201. https://doi.org/10.1016/j.agwat.2004.04.008.
Kirda, C., S. Topcu, H. Kaman, A. Ulger, A. Yazici, M. Cetin, and M. Derici. 2005. “Grain yield response and N-fertilizer recovery of maize under deficit irrigation.” Field Crops Res. 93 (Sep): 132–141. https://doi.org/10.1016/j.fcr.2004.09.015.
Klunklin, W., and G. Savage. 2017. “Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions.” Foods 6 (8): 1–10.
Kubota, C., A. D. Gelder, and M. M. Peet. 2016. “Greenhouse tomato production.” In Tomato production, edited by E. P. Heuvelink. Cambridge, MA: Centre for Agriculture and Bioscience International Publishing.
Kumar, P. S., Y. Singh, D. D. Nangare, K. Bhagat, M. Kumar, P. B. Taware, A. Kumari, and P. S. Minhas. 2015. “Influence of growth stage specific water stress on the yield, physico-chemical quality and functional characteristics of tomato grown in shallow basaltic soils.” Sci. Hortic. 197 (Dec): 261–271. https://doi.org/10.1016/j.scienta.2015.09.054.
Kuşçu, H., A. Turhan, and A. O. Demir. 2014. “The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment.” Agric. Water Manage. 133 (Dec): 92–103. https://doi.org/10.1016/j.agwat.2013.11.008.
Laurenson, S., A. Kunhikrishnan, N. Bolan, R. Naidu, J. McKay, and G. Keremane. 2010. “Management of recycled water for sustainable production and environmental protection: A case study with Northern Adelaide Plains recycling scheme.” Int. J. Environ. Sci. Dev. 1 (2): 176–180. https://doi.org/10.7763/IJESD.2010.V1.32.
Leal, R. M. P., U. Herpin, A. F. D. Fonseca, L. P. Firme, C. R. Montes, and A. J. Melfi. 2009. “Sodicity and salinity in a Brazilian Oxisol cultivated with sugarcane irrigated with wastewater.” Agric. Water Manage. 96 (Feb): 307–316. https://doi.org/10.1016/j.agwat.2008.08.009.
Li, X., F. Liu, G. Li, Q. Lin, and C. R. Jensen. 2010. “Soil microbial response, water and nitrogen use by tomato under different irrigation regimes.” Agric. Water Manage. 98 (Dec): 414–418. https://doi.org/10.1016/j.agwat.2010.10.008.
Ling, K., T. Tian, S. Gurung, R. Salati, and A. C. Gilliard. 2019. “First report of tomato brown rugose fruit virus infecting greenhouse tomato in the US.” Plant Dis. 103 (6): 1439. https://doi.org/10.1094/PDIS-11-18-1959-PDN.
Liu, C., G. H. Rubaek, F. Liu, and M. N. Andersen. 2015. “Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato.” Agric. Water Manage. 159 (Sep): 66–76. https://doi.org/10.1016/j.agwat.2015.05.021.
Mahajan, G., and K. G. Singh. 2006. “Response of greenhouse tomato to irrigation and fertigation.” Agric. Water Manage. 84 (Jul): 202–206. https://doi.org/10.1016/j.agwat.2006.03.003.
Martínez, J., J. Reca, and D. Engineering. 2014. “Water use efficiency of surface drip irrigation versus an alternative subsurface drip irrigation method.” J. Irrig. Drain. Eng. 140 (10): 04014030. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000745.
Michael, A. M. 2003. Irrigation theory and practice, 546–548. New Delhi, India: Vikas Publishing House.
Misra, A. K. 2014. “Climate change and challenges of water and food security.” Int. J. Sustainable Built Environ. 3 (Jun): 153–165. https://doi.org/10.1016/j.ijsbe.2014.04.006.
Mitchell, J. P., C. Shennan, and S. R. Grattan. 1991. “Development changes in tomato fruit composition in response to water deficit and salinity.” Physiol. Plant. 83 (1): 177–185. https://doi.org/10.1111/j.1399-3054.1991.tb01299.x.
Mounzer, O., F. Pedrero-Salcedo, P. A. Nortes, J.-M. Bayona, E. Nicolás-Nicolás, and J. J. Alarcón. 2013. “Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees.” Agric. Water Manage. 120 (Mar): 23–29. https://doi.org/10.1016/j.agwat.2012.10.014.
Nangare, D., Y. Singh, P. S. Kumar, and P. Minhas. 2016. “Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis.” Agric. Water Manage. 171 (Jun): 73–79. https://doi.org/10.1016/j.agwat.2016.03.016.
Nuruddin, M. M., C. A. Madramootoo, and G. T. Dodds. 2003. “Effects of water stress at different growth stages on greenhouse tomato yield and quality.” HortScience 38 (7): 1389–1393. https://doi.org/10.21273/HORTSCI.38.7.1389.
Obreza, T. A., D. J. Pitts, R. J. McGovern, and T. H. Spreen. 1996. “Deficit irrigation of micro-irrigated tomato affects yield, fruit quality and disease severity.” J. Prod. Agric. 9 (2): 270–275. https://doi.org/10.2134/jpa1996.0270.
Patanè, C., and S. Cosentino. 2010. “Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate.” Agric. Water Manage. 97 (Jan): 131–138. https://doi.org/10.1016/j.agwat.2009.08.021.
Patanè, C., S. Tringali, and O. Sortino. 2011. “Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions.” Sci. Hortic. 129 (Jul): 590–596. https://doi.org/10.1016/j.scienta.2011.04.030.
Peet, M. M., and G. Welles. 2005. Tomatoes. Edited by E. P. Heuvelink. Cambridge, MA: Centre for Agriculture and Bioscience International Publishing.
Pereira, H., and R. C. Marques. 2017. “An analytical review of irrigation efficiency measured using deterministic and stochastic models.” Agric. Water Manage. 184 (Apr): 28–35. https://doi.org/10.1016/j.agwat.2016.12.019.
Pulupol, L. U., M. H. Behboudian, and K. Fisher. 1996. “Growth, yield, and postharvest attributes of glasshouse tomatoes produced under deficit irrigation.” HortScience 31 (6): 926–929. https://doi.org/10.21273/HORTSCI.31.6.926.
Rao, A. V., and S. Agarwal. 2000. “Role of antioxidant lycopene in cancer and heart disease.” J. Am. Coll. Nutr. 19 (5): 563–569. https://doi.org/10.1080/07315724.2000.10718953.
Ripoll, J., L. Urban, B. Brunel, and N. Bertin. 2016. “Water deficit effects on tomato quality depend on fruit developmental stage and genotype.” J. Plant Physiol. 190 (Jan): 26–35. https://doi.org/10.1016/j.jplph.2015.10.006.
Ripoll, J., L. Urban, M. Staudt, F. Lopez-Lauri, L. P. Bidel, and N. Bertin. 2014. “Water shortage and quality of fleshy fruits making the most of the unavoidable.” J. Exp. Bot. 65 (15): 4097–4117. https://doi.org/10.1093/jxb/eru197.
Rodriguez-Ortega, W., V. Martinez, R. Rivero, J. Camara-Zapata, T. Mestre, and F. Garcia-Sanchez. 2017. “Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes.” Agric. Water Manage. 183 (Mar): 158–168. https://doi.org/10.1016/j.agwat.2016.07.014.
Savic, S., R. Stikic, V. Zaric, B. Vucelic-Radovic, Z. Jovanovic, M. Marjanovic, S. Djordjevic, and D. Petkovic. 2011. “Deficit irrigation technique for reducing water use of tomato under polytunnel conditions.” J. Central Eur. Agric. 12 (4): 597–607.
Schweiggert, R. M., J. U. Ziegler, E. M. R. Metwali, F. H. Mohamed, O. A. Almaghrabi, N. M. Kadasa, and R. Carle. 2017. “Carotenoids in mature green and ripe red fruits of tomato (Solanum lycopersicum L.) grown under different levels of irrigation.” Arch. Biol. Sci. 69 (2): 305–314. https://doi.org/10.2298/ABS160308102S.
Sun, Y., X. Cui, and F. Liu. 2015. “Effect of irrigation regimes and phosphorus rates on water and phosphorus use efficiencies in potato.” Sci. Hort. 190 (Jul): 64–69. https://doi.org/10.1016/j.scienta.2015.04.017.
Varzi, M. M., and N. Grigg. 2019. “Alternative water transfer methods: Review of Colorado experiences.” J. Irrig. Drain. Eng. 145 (7): 04019011. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001401.
Wang, C., F. Gu, J. Chen, H. Yang, J. Jiang, T. Du, and J. Zhang. 2015. “Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies.” Agric. Water Manage. 161 (Nov): 9–19. https://doi.org/10.1016/j.agwat.2015.07.010.
Wang, F., S. Kang, T. Du, F. Li, and R. Qiu. 2011. “Determination of comprehensive quality index for tomato and its response to different irrigation treatments.” Agric. Water Manage. 98 (May): 1228–1238. https://doi.org/10.1016/j.agwat.2011.03.004.
Wang, J., W. Niu, M. Zhang, and Y. Li. 2017. “Effect of alternate partial root-zone drip irrigation on soil bacterial communities and tomato yield.” Appl. Soil Ecol. 119 (Oct): 250–259. https://doi.org/10.1016/j.apsoil.2017.06.032.
Wei, Z., T. Du, X. Li, L. Fang, and F. Liu. 2018. “Interactive effects of CO2 concentration elevation and nitrogen fertilization on water and nitrogen use efficiency of tomato grown under reduced irrigation regimes.” Agric. Water Manage. 202 (Apr): 174–182. https://doi.org/10.1016/j.agwat.2018.02.027.
Yang, H., T. Du, R. Qiu, J. Chen, F. Wang, Y. Li, C. Wang, L. Gao, and S. Kang. 2017. “Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China.” Agric. Water Manage. 179 (Jan): 193–204. https://doi.org/10.1016/j.agwat.2016.05.029.
Zegbe, J. A., M. H. Behboudian, and B. E. Clothier. 2006. “Response of ‘Petopride’ processing tomato to partial root zone drying at different phenological stages.” Irrig. Sci. 24: 203–210. https://doi.org/10.1007/s00271-005-0018-4.
Zheng, J., G. Huang, D. Jia, J. Wang, M. Mota, L. S. Pereira, Q. Huang, X. Xu, and H. Liu. 2013. “Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China.” Agric. Water Manage. 129 (Nov): 181–193. https://doi.org/10.1016/j.agwat.2013.08.001.
Zotarelli, L., J. M. Scholberg, M. D. Dukes, R. Muñoz-Carpena, and J. Icerman. 2009. “Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling.” Agric. Water Manage. 96 (Jan): 23–34. https://doi.org/10.1016/j.agwat.2008.06.007.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 147Issue 2February 2021

History

Received: Jul 2, 2019
Accepted: Aug 28, 2020
Published online: Nov 18, 2020
Published in print: Feb 1, 2021
Discussion open until: Apr 18, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Scholar, Scarce Resources and Circular Economy, UniSA STEM, Univ. of South Australia, Adelaide, SA 5095, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-1277-9731. Email: [email protected]
Guna Hewa, Ph.D. [email protected]
Senior Lecturer, Scarce Resources and Circular Economy, UniSA STEM, Univ. of South Australia, Adelaide, SA 5095, Australia. Email: [email protected]
Ali Hassanli, Ph.D. [email protected]
Adjunct Professor, Scarce Resources and Circular Economy, UniSA STEM, Univ. of South Australia, Adelaide, SA 5095, Australia. Email: [email protected]
Research Fellow, Scarce Resources and Circular Economy, UniSA STEM, Univ. of South Australia, Adelaide, SA 5095, Australia. ORCID: https://orcid.org/0000-0002-6120-5363. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share