Abstract

Paddy fields play a critical role as storage for the retention of surface water in hydrological processes, but their water balance is complicated by irrigation and drainage management. Studies have proposed flow routing methods for paddy fields by simplifying the hydrological and hydraulic complexity associated with drainage processes. However, the performance of paddy field routing schemes has not yet been sufficiently evaluated to assist in the selection of routing methods for a water balance analysis. This study evaluated three common drainage routing schemes developed for paddy fields, including the simple water balance (SWB), linear reservoir with threshold (LRT), and broad-crested weir (BCW) models, in terms of complexity and performance. This study also compared the accuracy of irrigation water requirement and sediment load estimates simulated using the three schemes. Results showed that the BCW model produced the best statistical accuracy when predicting daily flow, but the three routing methods performed similarly over a 10-day time scale. Results suggested that the simple structure of the SWB model was not accurate enough to reproduce high and low flow on a daily scale, which produced relatively higher irrigation water requirements and sediment loads compared with those of LRT and BCW. LRT provided performance statistics similar to those of BCW using fewer calibration parameters. The comparison confirmed a trade-off relationship between model complexity and performance, highlighting the importance of model selection for hydrological analysis.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, including model codes and input data.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03034463). This research was also supported by funds provided to the Rural Research Institute of Korea Rural Community Corporation by the Ministry of Agriculture, Food and Rural Affairs as part of the project “Development of improved farming methods for agricultural non-point source pollution reduction.”

References

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration—Guidelines for computing crop water requirements. Rome: The Food and Agriculture Organization of the United Nations.
Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “Large area hydrologic modeling and assessment. Part I: Model development.” J. Am. Water Resour. Assoc. 34 (1): 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
Bicknell, B. R., J. C. Imhoff, J. L. Kittle Jr., A. S. Donigian Jr., and R. C. Johanson. 1997. Hydrological simulation program-FORTRAN. User’s manual for release 11. Reston, VA: USGS.
Bos, M. G., and J. Nugteren. 1990. On irrigation efficiencies. Wageningen, Netherlands: International Institute for Land Reclamation and Improvement.
Bousquet, F., G. Trebuil, and B. Hardy. 2005. Companion modeling and multi-agent systems for integrated natural resource management in Asia. Los Banos, Phillippines: International Rice Research Institute.
Chang, Y.-C., C.-E. Kan, G.-F. Lin, C.-L. Chiu, and Y.-C. Lee. 2001. “Potential benefits of increased application of water to paddy fields in Taiwan.” Hydrol. Processes 15 (8): 1515–1524. https://doi.org/10.1002/hyp.224.
Chen, R.-S., and K.-H. Yang. 2011. “Terraced paddy field rainfall-runoff mechanism and simulation using a revised tank model.” Paddy Water Environ 9 (2): 237–247. https://doi.org/10.1007/s10333-010-0225-3.
Chen, S.-K., R.-S. Chen, and T.-Y. Yang. 2014. “Application of a tank model to assess the flood-control function of a terraced paddy field.” Hydrol. Sci. J. 59 (5): 1020–1031. https://doi.org/10.1080/02626667.2013.822642.
Chen, S.-K., Y.-R. Chen, and Y.-H. Peng. 2013. “Experimental study on soil erosion characteristics in flooded terraced paddy fields.” Paddy Water Environ. 11 (1): 433–444. https://doi.org/10.1007/s10333-012-0334-2.
Chien, C.-P., and W.-T. Fang. 2012. “Modeling irrigation return flow for the return flow reuse system in paddy fields.” Paddy Water Environ. 10 (3): 187–196. https://doi.org/10.1007/s10333-011-0307-x.
Choi, D., H. Park, Y. J. Kim, J.-W. Jung, W.-J. Choi, Y. G. Her, and K.-S. Yoon. 2019. “Curve numbers for rice paddies with different water management practices in Korea.” J. Irrig. Drain. Eng. 145 (5): 06019003 https://doi.org/10.1061/(ASCE)IR.1943-4774.0001382.
Choi, D.-H., J.-W. Jung, K.-S. Yoon, W.-J. Baek, and W.-J. Choi. 2016. “Farmers’ water management practice and effective rainfall and runoff ratio of paddy fields.” Irrig. Drain. 65 (1): 66–71. https://doi.org/10.1002/ird.1962.
Choi, J.-Y., B. A. Engel, and H. W. Chung. 2002. “Daily streamflow modelling and assessment based on the curve-number technique.” Hydrol. Processes 16 (16): 3131–3150. https://doi.org/10.1002/hyp.1092.
Choi, S.-K., J. Jeong, and M.-K. Kim. 2017. “Simulating the effects of agricultural management on water quality dynamics in rice paddies for sustainable rice production—Model development and validation.” Water 9 (11): 869. https://doi.org/10.3390/w9110869.
Chow, V. T., D. R. Maidment, and L. W. Mays. 1988. Applied hydrology. New York: McGraw-Hill.
Chung, S.-O., H.-S. Kim, and J. S. Kim. 2003. “Model development for nutrient loading from paddy rice fields.” Agric. Water Manage. 62 (1): 1–17. https://doi.org/10.1016/S0378-3774(03)00078-7.
Duan, Q., S. Sorooshian, and V. K. Gupta. 1994. “Optimal use of the SCE-UA global optimization method for calibrating watershed models.” J. Hydrol. 158 (3–4): 265–284. https://doi.org/10.1016/0022-1694(94)90057-4.
Dunn, S. M., J. Freer, M. Weiler, M. J. Kirkby, J. Seibert, P. F. Quinn, G. Lischeid, D. Tetzlaff, and C. Soulsby. 2008. “Conceptualization in catchment modelling: Simply learning?” Hydrol. Processes: Int. J. 22 (13): 2389–2393. https://doi.org/10.1002/hyp.7070.
Engel, B., D. Storm, M. White, J. Arnold, and M. Arabi. 2007. “A hydrologic/water quality model application protocol.” J. Am. Water Resour. Assoc. 43 (5): 1223–1236. https://doi.org/10.1111/j.1752-1688.2007.00105.x.
Fujihara, Y., M. Oda, N. Horikawa, and C. Ogura. 2011. “Hydrologic analysis of rainfed rice areas using a simple semi-distributed water balance model.” Water Resour. Manage. 25 (9): 2061–2080. https://doi.org/10.1007/s11269-011-9796-z.
Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1999. “Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration.” J. Hydrol. Eng. 4 (2): 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135).
Her, Y., and C. Heatwole. 2016. “Two-dimensional continuous simulation of spatiotemporally varied hydrological processes using the time-area method.” Hydrol. Processes 30 (5): 751–770. https://doi.org/10.1002/hyp.10644.
Hong, E.-M., J.-Y. Choi, W.-H. Nam, M.-S. Kang, and J.-R. Jang. 2014. “Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation.” Agric. Water Manage. 146 (Dec): 11–23. https://doi.org/10.1016/j.agwat.2014.07.016.
Im, S., S. Park, and T. Jang. 2007. “Application of SCS curve number method for irrigated paddy field.” KSCE J. Civ. Eng. 11 (1): 51–56. https://doi.org/10.1007/BF02823372.
Im, S.-J., S.-U. Park, and H.-J. Kim. 2000. “Methodology for estimating agricultural water supply in the Han River basin.” J. Korea Water Resour. Assoc. 33 (6): 765–774.
Jang, T. I., H. K. Kim, S. J. Im, and S. W. Park. 2010. “Simulations of storm hydrographs in a mixed-landuse watershed using a modified TR-20 model.” Agric. Water Manage. 97 (2): 201–207. https://doi.org/10.1016/j.agwat.2009.09.004.
Jeon, J.-H., C. G. Yoon, A. S. Donigian, and K.-W. Jung. 2007. “Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions.” Agric. Water Manage. 90 (1–2): 75–86. https://doi.org/10.1016/j.agwat.2007.02.006.
Jung, J.-W., K.-S. Yoon, D.-H. Choi, S.-S. Lim, W.-J. Choi, S.-M. Choi, and B.-J. Lim. 2012. “Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes.” Agric. Water Manage. 110 (Jul): 78–83. https://doi.org/10.1016/j.agwat.2012.03.014.
Jung, K.-H., W.-T. Kim, S.-O. Hur, S.-K. Ha, P.-K. Jung, and Y.-S. Jung. 2004. “USLE/RUSLE factors for national scale soil loss estimation based on the digital detailed soil map.” Korean J. Soil Sci. Fert. 37 (4): 199–206.
Kang, M., and S. Park. 2014. “Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations.” Agric. Water Manage. 143 (Sep): 131–141. https://doi.org/10.1016/j.agwat.2014.07.003.
Kang, M. G. 2014. “Modeling system for unsteady flow simulations in drainage channel networks of paddy field districts.” J. Korean Soc. Agri. Eng. 56 (2): 1–9. https://doi.org/10.5389/KSAE.2014.56.2.001.
Kang, M. S., J. H. Koo, J. A. Chun, Y. G. Her, S. W. Park, and K. Yoo. 2009. “Design of drainage culverts considering critical storm duration.” Biosyst. Eng. 104 (3): 425–434. https://doi.org/10.1016/j.biosystemseng.2009.07.004.
Kang, M. S., S. W. Park, J. J. Lee, and K. H. Yoo. 2006. “Applying SWAT for TMDL programs to a small watershed containing rice paddy fields.” Agric. Water Manage. 79 (1): 72–92. https://doi.org/10.1016/j.agwat.2005.02.015.
Khepar, S. D., A. K. Yadav, S. K. Sondhi, and M. Siag. 2000. “Water balance model for paddy fields under intermittent irrigation practices.” Irrig. Sci. 19 (4): 199–208. https://doi.org/10.1007/PL00006713.
Kim, H. K., T. I. Jang, S. J. Im, and S. W. Park. 2009. “Estimation of irrigation return flow from paddy fields considering the soil moisture.” Agric. Water Manage. 96 (5): 875–882. https://doi.org/10.1016/j.agwat.2008.11.009.
Kim, J. S., S. Y. Oh, and K. Y. Oh. 2006a. “Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season.” J. Hydrol. 327 (1–2): 128–139. https://doi.org/10.1016/j.jhydrol.2005.11.062.
Kim, J.-S., S.-Y. Oh, K.-Y. Oh, and J.-W. Cho. 2005. “Delivery management water requirement for irrigation ditches associated with large-sized paddy plots in Korea.” Paddy Water Environ. 3 (1): 57–62. https://doi.org/10.1007/s10333-005-0072-9.
Kim, S.-J., G.-A. Park, and H.-J. Kwon. 2007a. “Evaluation of paddy water storage dynamics during flood period in South Korea.” KSCE J. Civ. Eng. 11 (5): 269–276. https://doi.org/10.1007/BF02824091.
Kim, S. M., S. J. Im, S. W. Park, J. J. Lee, B. L. Benham, and T. I. Jang. 2008. “Assessment of wastewater reuse effects on nutrient loads from paddy field using field-scale water quality model.” Environ. Modell. Assess. 13 (2): 305–313. https://doi.org/10.1007/s10666-007-9093-7.
Kim, S. M., S. W. Park, J. J. Lee, B. L. Benham, and H. K. Kim. 2007b. “Modeling and assessing the impact of reclaimed wastewater irrigation on the nutrient loads from an agricultural watershed containing rice paddy fields.” J. Environ. Sci. Health, Part A 42 (3): 305–315. https://doi.org/10.1080/10934520601144543.
Kim, S.-M., S.-W. Park, and M.-S. Kang. 2003. “Estimation of sediment yield to Asan Bay using the USLE and GIS.” J. Korea Water Resour. Assoc. 36 (6): 1059–1068. https://doi.org/10.3741/JKWRA.2003.36.6.1059.
Kim, T.-C., U.-S. Gim, J. S. Kim, and D.-S. Kim. 2006b. “The multi-functionality of paddy farming in Korea.” Paddy Water Environ. 4 (4): 169–179. https://doi.org/10.1007/s10333-006-0046-6.
Klemeš, V. 1983. “Conceptualization and scale in hydrology.” J. Hydrol. 65 (1–3): 1–23. https://doi.org/10.1016/0022-1694(83)90208-1.
Knisel, W. G. 1980. CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems. Washington, DC: USDA.
Krause, P., D. P. Boyle, and F. Bäse. 2005. “Comparison of different efficiency criteria for hydrological model assessment.” Adv. Geosci. 5: 89–97. https://doi.org/10.5194/adgeo-5-89-2005.
Lee, D. G., J.-H. Song, J. H. Ryu, J. Lee, S.-K. Choi, and M. S. Kang. 2018. “Integrating the mechanisms of agricultural reservoir and paddy cultivation to the HSPF-MASA-CREAMS-PADDY system.” J. Korean Soc. Agri. Eng. 58 (6): 1–8. https://doi.org/10.5389/KSAE.2016.58.6.001.
Lee, S.-H., S.-H. Yoo, J.-Y. Choi, and B. A. Engel. 2016. “Effects of climate change on paddy water use efficiency with temporal change in the transplanting and growing season in South Korea.” Irrig. Sci. 34 (6): 443–463. https://doi.org/10.1007/s00271-016-0514-8.
Legates, D. R., and G. J. McCabe. 1999. “Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation.” Water Resour. Res. 35 (1): 233–241. https://doi.org/10.1029/1998WR900018.
Leonard, R. A., W. G. Knisel, and D. A. Still. 1987. “GLEAMS: Groundwater loading effects of agricultural management systems.” Trans. ASAE 30 (5): 1403–1418. https://doi.org/10.13031/2013.30578.
Li, Y. H., and Y. L. Cui. 1996. “Real-time forecasting of irrigation water requirements of paddy fields.” Agric. Water Manage. 31 (3): 185–193. https://doi.org/10.1016/0378-3774(96)01252-8.
Lu, J., T. Ookawa, and T. Hirasawa. 2000. “The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice.” Plant Soil 223 (1): 209–218. https://doi.org/10.1023/A:1004898504550.
Maneta, M. P., C. Soulsby, S. Kuppel, and D. Tetzlaff. 2018. “Conceptualizing catchment storage dynamics and nonlinearities.” Hydrol. Processes 32 (21): 3299–3303. https://doi.org/10.1002/hyp.13262.
Mishra, A., and R. K. Mohanty. 2004. “Productivity enhancement through rice–fish farming using a two-stage rainwater conservation technique.” Agric. Water Manage. 67 (2): 119–131. https://doi.org/10.1016/j.agwat.2004.02.003.
Mishra, S. K., R. Sarkar, S. Dutta, and S. Panigrahy. 2008. “A physically based hydrological model for paddy agriculture dominated hilly watersheds in tropical region.” J. Hydrol. 357 (3–4): 389–404. https://doi.org/10.1016/j.jhydrol.2008.05.019.
Mohan, S., B. Simhadrirao, and N. Arumugam. 1996. “Comparative study of effective rainfall estimation methods for lowland rice.” Water Resour. Manage. 10 (1): 35–44. https://doi.org/10.1007/BF00698810.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Mouelhi, S., C. Michel, C. Perrin, and V. Andréassian. 2006. “Stepwise development of a two-parameter monthly water balance model.” J. Hydrol. 318 (1–4): 200–214. https://doi.org/10.1016/j.jhydrol.2005.06.014.
Nash, J. E. 1957. “The form of the instantaneous unit hydrograph.” Int. Assoc. Scientific Hydrol. 3 (Sep): 114–121.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models. Part I: A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2011. Soil and water assessment tool theoretical documentation version 2009. Technical Rep. Austin, TX: Texas Water Resources Institute.
Odhiambo, L. O., and V. V. N. Murty. 1996. “Modeling water balance components in relation to field layout in lowland paddy fields. I: Model development.” Agric. Water Manage. 30 (2): 185–199. https://doi.org/10.1016/0378-3774(95)01214-1.
Orth, R., M. Staudinger, S. I. Seneviratne, J. Seibert, and M. Zappa. 2015. “Does model performance improve with complexity? A case study with three hydrological models.” J. Hydrol. 523 (Apr): 147–159. https://doi.org/10.1016/j.jhydrol.2015.01.044.
Oudin, L., V. Andréassian, T. Mathevet, C. Perrin, and C. Michel. 2006. “Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations.” Water Resour. Res. 42 (7), https://doi.org/10.1029/2005WR004636.
Pushpalatha, R., C. Perrin, N. L. Moine, and V. Andréassian. 2012. “A review of efficiency criteria suitable for evaluating low-flow simulations.” J. Hydrol. 420–421 (Feb): 171–182. https://doi.org/10.1016/j.jhydrol.2011.11.055.
Sakaguchi, A., S. Eguchi, T. Kato, M. Kasuya, K. Ono, A. Miyata, and N. Tase. 2014. “Development and evaluation of a paddy module for improving hydrological simulation in SWAT.” Agric. Water Manage. 137 (May): 116–122. https://doi.org/10.1016/j.agwat.2014.01.009.
Santos, L., G. Thirel, and C. Perrin. 2018. “Continuous state-space representation of a bucket-type rainfall-runoff model: A case study with the GR4 model using state-space GR4 (version 1.0).” Geosci. Model Dev. 11 (4): 1591–1605. https://doi.org/10.5194/gmd-11-1591-2018.
Seo, C. S., S. W. Park, S. J. Im, K. S. Yoon, S. M. Kim, and M. S. Kang. 2002. “Development of CREAMS-PADDY model for simulating pollutants from irrigated paddies.” J. Korean Soc. Agri. Eng. 44 (3): 146–156.
Song, J. H., I. Song, J.-T. Kim, and M. S. Kang. 2015. “Characteristics of irrigation return flow in a reservoir irrigated district.” J. Korean Soc. Agri. Eng. 57 (1): 69–78. https://doi.org/10.5389/KSAE.2015.57.1.069.
Song, J.-H. 2017. Hydrologic analysis system with multi-objective optimization for agricultural watersheds. Seoul, Korea: Seoul National Univ.
Song, J.-H., Y. Her, S. M. Jun, S. Hwang, J. Park, and M.-S. Kang. 2019b. “Lessons from assessing uncertainty in agricultural water supply estimation for sustainable rice production.” Agronomy 9 (10): 662. https://doi.org/10.3390/agronomy9100662.
Song, J.-H., Y. Her, J. Park, and M.-S. Kang. 2019a. “Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and Tank model.” J. Hydrol. 574 (Jul): 574–587. https://doi.org/10.1016/j.jhydrol.2019.04.054.
Song, J.-H., Y. Her, J. Park, K.-D. Lee, and M.-S. Kang. 2017. “Simulink implementation of a hydrologic model: A Tank model case study.” Water 9 (9): 639. https://doi.org/10.3390/w9090639.
Song, J.-H., M. S. Kang, I. Song, and S. M. Jun. 2016a. “Water balance in irrigation reservoirs considering flood control and irrigation efficiency variation.” J. Irrig. Drain. Eng. 142 (4): 04016003 https://doi.org/10.1061/(ASCE)IR.1943-4774.0000989.
Song, J.-H., M.-S. Kang, I. Song, S.-H. Hwang, J. Park, and J.-H. Ahn. 2013. “Surface drainage simulation model for irrigation districts composed of paddy and protected cultivation.” J. Korean Soc. Agric. Eng. 55 (3): 63–73. https://doi.org/10.5389/KSAE.2013.55.3.063.
Song, J.-H., J. H. Ryu, J. Park, S. M. Jun, I. Song, J. Jang, S. M. Kim, and M. S. Kang. 2016b. “Paddy field modelling system for water quality management.” Irrig. Drain. 65 (Dec): 131–142. https://doi.org/10.1002/ird.2034.
Tan, X., D. Shao, and W. Gu. 2018. “Improving water reuse in paddy field districts with cascaded on-farm ponds using hydrologic model simulations.” Water Resour. Manage. 32 (5): 1849–1865. https://doi.org/10.1007/s11269-018-1907-7.
Tsubo, M., S. Fukai, T. P. Tuong, and M. Ouk. 2007. “A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence.” Ecol. Modell. 204 (3–4): 503–515. https://doi.org/10.1016/j.ecolmodel.2007.02.001.
Tsuchiya, R., T. Kato, J. Jeong, and J. G. Arnold. 2018. “Development of SWAT-paddy for simulating lowland paddy fields.” Sustainability 10 (9): 3246. https://doi.org/10.3390/su10093246.
Vansteenkiste, T., M. Tavakoli, N. Van Steenbergen, F. De Smedt, O. Batelaan, F. Pereira, and P. Willems. 2014. “Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation.” J. Hydrol. 511 (Apr): 335–349. https://doi.org/10.1016/j.jhydrol.2014.01.050.
Viney, N. R., and M. Sivapalan. 2004. “A framework for scaling of hydrologic conceptualizations based on a disaggregation–aggregation approach.” Hydrol. Processes 18 (8): 1395–1408. https://doi.org/10.1002/hyp.1419.
Vu, S. H., H. Watanabe, and K. Takagi. 2005. “Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan.” Agric. Water Manage. 76 (3): 195–210. https://doi.org/10.1016/j.agwat.2005.01.012.
Wang, C., S. Wang, H. Chen, J. Wang, Y. Tao, J. Liu, C. Wang, S. Wang, H. Chen, J. Wang, Y. Tao, and J. Liu. 2018. “Evaluation of water-storage and water-saving potential for paddy fields in Gaoyou, China.” Water 10 (9): 1176. https://doi.org/10.3390/w10091176.
Willardson, L. S., D. Boels, and L. K. Smedema. 1997. “Reuse of drainage water from irrigated areas.” Irrigation and Drainage Systems 11 (3): 215–239. https://doi.org/10.1023/A:1005834807873.
Williams, J. R. 1975. “Sediment routing for agricultural watersheds.” J. Am. Water Resour. Assoc. 11 (5): 965–974. https://doi.org/10.1111/j.1752-1688.1975.tb01817.x.
Williams, J. R., and R. C. Izaurralde. 2006. The APEX model. Watershed models, edited by V. P. Singh and D. K. Frevert. Boca Raton, FL: Taylor & Francis.
Wu, R.-S., W.-R. Sue, C.-B. Chien, C.-H. Chen, J.-S. Chang, and K.-M. Lin. 2001. “A simulation model for investigating the effects of rice paddy fields on the runoff system.” Math. Comput. Modell. 33 (6–7): 649–658. https://doi.org/10.1016/S0895-7177(00)00269-7.
Xie, X., and Y. Cui. 2011. “Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice.” J. Hydrol. 396 (1–2): 61–71. https://doi.org/10.1016/j.jhydrol.2010.10.032.
Xu, B., D. Shao, S. Chen, H. Li, and L. Fang. 2017. “Response of water and nitrogen losses to water management practices and green manure application in lowland paddy fields.” J. Irrig. Drain. Eng. 143 (12): 05017007 https://doi.org/10.1061/(ASCE)IR.1943-4774.0001244.
Yoo, S.-H., J.-Y. Choi, S.-H. Lee, Y.-G. Oh, and D. K. Yun. 2013. “Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea.” Agric. Water Manage. 117 (Jan): 43–54. https://doi.org/10.1016/j.agwat.2012.10.023.
Yoon, C. G., J.-H. Ham, and J.-H. Jeon. 2003. “Mass balance analysis in Korean paddy rice culture.” Paddy Water Environ. 1 (2): 99–106. https://doi.org/10.1007/s10333-003-0018-z.
Yoon, K.-S., J.-Y. Cho, J.-K. Choi, and J.-G. Son. 2007. “Water management and N, P losses from paddy fields in southern Korea.” J. Am. Water Resour. Assoc. 42 (5): 1205–1216. https://doi.org/10.1111/j.1752-1688.2006.tb05295.x.
Yoshinaga, I., A. Miura, T. Hitomi, K. Hamada, and E. Shiratani. 2007. “Runoff nitrogen from a large sized paddy field during a crop period.” Agric. Water Manage. 87 (2): 217–222. https://doi.org/10.1016/j.agwat.2006.06.020.
Zema, D. A., R. L. Bingner, P. Denisi, G. Govers, F. Licciardello, and S. M. Zimbone. 2012. “Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a Belgian agricultural watershed.” Land Degrad. Dev. 23 (3): 205–215. https://doi.org/10.1002/ldr.1068.
Zulu, G., M. Toyota, and S. Misawa. 1996. “Characteristics of water reuse and its effects on paddy irrigation system water balance and the riceland ecosystem.” Agric. Water Manage. 31 (3): 269–283. https://doi.org/10.1016/0378-3774(95)01233-8.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 146Issue 9September 2020

History

Received: Oct 25, 2019
Accepted: Mar 11, 2020
Published online: Jul 3, 2020
Published in print: Sep 1, 2020
Discussion open until: Dec 3, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, Dept. of Agricultural and Biological Engineering/Tropical Research and Education Center, Univ. of Florida, Homestead, FL 33031. ORCID: https://orcid.org/0000-0002-0021-9227. Email: [email protected]
Assistant Professor, Dept. of Agricultural and Biological Engineering/Tropical Research and Education Center, Univ. of Florida, Homestead, FL 33031. ORCID: https://orcid.org/0000-0003-3700-5115. Email: [email protected]
Research Professor, Research Institute of Agriculture and Life Sciences, Seoul National Univ., Seoul 08826, Republic of Korea. ORCID: https://orcid.org/0000-0003-2152-077X. Email: [email protected]
Research Fellow, Prediction Research Dept., APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan 48058, Republic of Korea. ORCID: https://orcid.org/0000-0003-4150-2886. Email: [email protected]
Professor, Dept. of Rural and Bio-Systems Engineering, Chonnam National Univ. Gwangju 61186, Republic of Korea. ORCID: https://orcid.org/0000-0003-4996-2860. Email: [email protected]
Moon-Seong Kang [email protected]
Professor, Dept. of Rural Systems Engineering, Research Institute for Agriculture and Life Sciences, Institute of Green Bio Science and Technology, Seoul National Univ., Seoul 08826, Republic of Korea (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share