Abstract

The study evaluates the accuracy of measured and estimated crop evapotranspiration fluxes (ETc) on Citrus in a semiarid Mediterranean climate (Sicily, Italy). Specifically, ETc rates derived from in situ techniques [eddy covariance (EC) and sap flow heat pulse velocity (HPV)] and modelling approaches [Food and Agricultural Organization of the United States (FAO) Irrigation and Drainage Paper No. 56 (FAO-56) single and dual crop coefficient (Kc)] were compared under deficit irrigation scenarios. Results of the comparison showed that the single and dual Kc approaches provided similar ETc estimates (292 and 324 mm), even if these approaches overestimated ETc measured by EC (ETEC) (17% and 30% respectively). HPV was able to show transpiration (T) reductions caused by deficit irrigation strategies when compared with T under full irrigation condition (ranging from 70% to 82%). Overall, the assessed methodologies were able to capture ETc trends, but the selection of the most appropriate one will depend on the specific crop and study site characteristics.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

We are grateful to Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA) of Acireale (CT) for their hospitality at the experimental site. This research was funded by “Contributo realizzato con fondi per la ricerca di Ateneo—Piano per la Ricerca 2016/18.”

References

Abrisqueta, J. M., L. M. Tapia, J. P. Munguía, W. Conejero, J. Vera, and M. C. Ruiz-Sánchez. 2013. “Basal crop coefficients for early-season peach trees.” Agric. Water Manage. 121 (Apr): 158–163. https://doi.org/10.1016/j.agwat.2013.02.001.
Agam, N., S. R. Evett, J. A. Tolk, W. P. Kustas, P. D. Colaizzi, J. G. Alfieri, L. G. McKee, K. S. Copeland, T. A. Howell, and J. L. Chávez. 2012. “Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area.” Adv. Water Resour. 50 (Dec): 20–30. https://doi.org/10.1016/j.advwatres.2012.07.010.
Aiello, R., V. Bagarello, S. Barbagallo, S. Consoli, S. Di Prima, G. Giordano, and M. Iovino. 2014. “An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil.” Geoderma 235 (Dec): 300–307. https://doi.org/10.1016/j.geoderma.2014.07.024.
Allen, R. G., et al. 2006. “A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method.” Agric. Water Manage. 81 (1–2): 1–22. https://doi.org/10.1016/j.agwat.2005.03.007.
Allen, R. G., L. S. Periera, D. Raes, and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop requirements, irrigation and drainage. Rome: Food and Agricultural Organization.
Allen, R. G., M. Tasumi, and R. Trezza. 2007. “Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model.” J. Irrig. Drain. Eng. 133 (4): 380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380).
Anderson, R. G., J. G. Alfieri, R. Tirado-Corbalá, J. Gartung, L. G. McKee, J. H. Prueger, D. Wang, E. James, J. E. Ayars, and W. P. Kustas. 2017. “Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning.” Agric. Water Manage. 179 (Jan): 92–102. https://doi.org/10.1016/j.agwat.2016.07.027.
Aubinet, M., et al. 1999. “Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology.” Adv. Ecol. Res. 30: 113–175. https://doi.org/10.1016/S0065-2504(08)60018-5.
Baldocchi, D. D., B. B. Hincks, and T. P. Meyers. 1988. “Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods.” Ecology 69 (5): 1331–1340. https://doi.org/10.2307/1941631.
Ballester, C., J. Castel, L. Testi, D. S. Intrigliolo, and J. R. Castel. 2013. “Can heat-pulse sap flow measurements be used as continuous water stress indicators of citrus trees?” Irrig. Sci. 31 (5): 1053–1063. https://doi.org/10.1007/s00271-012-0386-5.
Bastiaanssen, W. G. M., H. Pelgrum, J. Wang, Y. Ma, J. F. Moreno, G. J. Roerink, and T. van der Wal. 1998. “A remote sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation.” J. Hydrol. 212 (Dec): 213–229. https://doi.org/10.1016/S0022-1694(98)00254-6.
Burba, G., and D. Anderson. 2010. A brief practical guide to Eddy covariance flux measurements Version 1.01. Lincoln, NE: Li-COR Biosciences.
Burgess, S. S. O., M. A. Adams, N. C. Turner, C. R. Beverly, C. K. Ong, A. A. H. Khan, and T. M. Bleby. 2001. “An improved heat pulse method to measure low and reverse rates of sap flow in woody plants.” Tree Physiol. 21 (9): 589–598. https://doi.org/10.1093/treephys/21.9.589.
Cancela, J. J., M. Fandiño, B. J. Rey, and E. M. Martínez. 2015. “Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía).” Agric. Water Manage. 151 (Mar): 52–63. https://doi.org/10.1016/j.agwat.2014.10.020.
Capra, A., S. Consoli, A. Russo, and B. Scicolone. 2008. “Integrated agro-economic approach to deficit irrigation on lettuce crops in Sicily (Italy).” J. Irrig. Drain. Eng. 134 (4): 437–445. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:4(437).
Capra, A., S. Consoli, and B. Scicolone. 2013. “Long-term climatic variability in Calabria and effects on drought and agrometeorological parameters.” Water Res. Manage. 27 (2): 601–617. https://doi.org/10.1007/s11269-012-0204-0.
Casa, R., G. Russell, and B. Lo Cascio. 2000. “Estimation of evapotranspiration from a field of linseed in central Italy.” Agric. For. Meteorol. 104 (4): 289–301. https://doi.org/10.1016/S0168-1923(00)00172-6.
Consoli, S., G. L. Cirelli, and A. Toscano. 2006. “Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI.” In Vol. 6359 of Remote sensing for agriculture, ecosystems, and hydrology VIII, 63590V. Bellingham, WA: SPIE.
Consoli, S., O. Facini, M. Nardino, and F. Rossi. 2013a. “Carbon balance and energy fluxes of a Mediterranean crop.” Ital. J. Agrometeorol. 19 (3): 15–24. https://doi.org/10.4081/jae.2013.247.
Consoli, S., G. Inglese, and P. Inglese. 2013b. “Determination of evapotranspiration and annual biomass productivity of a cactus pear [Opuntia ficus-indica L. (Mill.)] orchard in a semiarid environment.” J. Irrig. Drain. Eng. 139 (8): 680–690. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000589.
Consoli, S., F. Licciardello, D. Vanella, L. Pasotti, G. Villani, and F. Tomei. 2016. “Testing the water balance model criteria using TDR measurements, micrometeorological data and satellite-based information.” Agric. Water Manage. 170 (May): 68–80. https://doi.org/10.1016/j.agwat.2015.11.003.
Consoli, S., and R. Papa. 2013. “Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions.” Irrig. Sci. 31 (5): 1159–1171. https://doi.org/10.1007/s00271-012-0395-4.
Consoli, S., F. Stagno, G. Roccuzzo, G. L. Cirelli, and F. Intrigliolo. 2014. “Sustainable management of limited water resources in a young orange orchard.” Agric. Water Manage. 132: 60–68. https://doi.org/10.1016/j.agwat.2013.10.006.
Consoli, S., F. Stagno, D. Vanella, J. Boaga, G. Cassiani, and G. Roccuzzo. 2017. “Partial root-zone drying irrigation in orange orchards: Effects on water use and crop production characteristics.” Eur. J. Agron. 82 (Part A): 190–202. https://doi.org/10.1016/j.eja.2016.11.001.
Consoli, S., and D. Vanella. 2014. “Mapping crop evapotranspiration by integrating vegetation indicesinto a soil water balance model.” Agric. Water Manage. 143 (Sep): 71–81. https://doi.org/10.1016/j.agwat.2014.06.012.
Crowa, W. T., W. P. Kustas, and J. H. Prueger. 2008. “Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model.” Remote Sens. Environ. 112 (4): 1268–1281. https://doi.org/10.1016/j.rse.2006.11.033.
D’Emilio, A., R. Aiello, S. Consoli, D. Vanella, and M. Iovino. 2018. “Artificial neural networks for predicting the water retention curve of sicilian agricultural soils.” Water 10 (10): 1431. https://doi.org/10.3390/w10101431.
Detto, M., N. Montaldo, J. D. Albertson, M. Mancini, and G. Katul. 2006. “Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy.” Water Resour. Res. 42 (8): 1–16. https://doi.org/10.1029/2005WR004693.
Dinga, R., S. Kanga, Y. Zhang, X. Haoa, L. Tonga, and T. Dua. 2013. “Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching.” Agric. Water Manage. 127 (Sep): 85–96. https://doi.org/10.1016/j.agwat.2013.05.018.
Eckman, R. M. 1994. “Influence of the sampling time on the kinematics of turbulent diffusion from a continuous source.” J. Fluid Mech. 270: 349–375. https://doi.org/10.1017/S0022112094004301.
Er-Raki, S., A. Chehbouni, J. Hoedjes, J. Ezzahar, B. Duchemin, and F. Jacob. 2009. “Citrus orchard evapotranspiration: Comparison between eddy covariance measurements and the FAO 56 approach estimates.” Plant Biosyst. 143 (1): 201–208. https://doi.org/10.1080/11263500802709897.
Espadafor, M., F. Orgaz, L. Testi, I. J. Lorite, V. González-Dugo, and E. Fereres. 2017. “Responses of transpiration and transpiration efficiency of almond trees to moderate water deficits.” Sci. Hortic. 225 (Nov): 6–14. https://doi.org/10.1016/j.scienta.2017.06.028.
FAO (Food and Agriculture Organization). 2003. “FAO Statistics.” Accessed March 15, 2019. http://apps.fao.org/default.htm.
Faurès, J. M., D. Bartley, M. Bazza, J. Burke, J. Hoogeveen, D. Soto, and P. Steduto. 2013. Climate smart agriculture sourcebook. Rome: Food and Agriculture Organization.
Ferreira, M. I., J. Silvestre, N. Conceicao, and A. C. Malheiro. 2012. “Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques.” Irrig. Sci. 30 (5): 433–447. https://doi.org/10.1007/s00271-012-0352-2.
Giannico, V., J. Chen, C. Shao, Z. Ouyang, R. John, and R. Lafortezza. 2018. “Contributions of landscape heterogeneity within the footprint of eddy-covariance towers to flux measurements.” Agric. For. Meteorol. 260–261 (Oct): 144–153. https://doi.org/10.1016/j.agrformet.2018.06.004.
Green, S. 1998. Measurements of sap flow by the heat-pulse method. An instruction manual for the HPV system. Palmerston North, New Zealand: Hort Research Institute.
Green, S., B. Clothier, and B. Jardine. 2003. “Theory and practical application of heat pulse to measure sap flow.” Agron. J. 95 (6): 1371–1379. https://doi.org/10.2134/agronj2003.1371.
Heilman, J. L., and J. M. Ham. 1990. “Measurement of mass flow rate of sap in Ligustrum japonicum.” Hort. Sci. 25 (4): 465–467. https://doi.org/10.21273/HORTSCI.25.4.465.
Hsieh, C.-I., G. Katul, and T.-W. Chi. 2000. “An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows.” Adv. Water Resour. 23 (7): 765–772. https://doi.org/10.1016/S0309-1708(99)00042-1.
Lee, X., W. Massman, and B. Law, eds. 2004. Vol. 29 of Handbook of micrometeorology: A guide for surface flux measurement and analysis. New York: Springer.
Lopez-Bernal, A., O. Garcia-Tejera, V. A. Vega, J. C. Hidalgo, L. Testi, F. Orgaz, and F. J. Villalobos. 2015. “Using sap flow measurements to estimate net assimilation in olive trees under different irrigation regimes.” Irrig. Sci. 33 (5): 357–366. https://doi.org/10.1007/s00271-015-0471-7.
López-López, M., M. Espadafor, L. Testi, I. J. Lorite, F. Orgaz, and E. Fereres. 2018. “Water use of irrigated almond trees when subjected to water deficits.” Agric. Water Manage. 195 (Jan): 84–93. https://doi.org/10.1016/j.agwat.2017.10.001.
Maestre-Valero, J. F., L. Testi, M. A. Jiménez-Bello, J. R. Castel, and D. S. Intrigliolo. 2017. “Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance.” Irrig. Sci. 35 (5): 397–408. https://doi.org/10.1007/s00271-017-0548-6.
Marañón-Jiménez, S., J. Van den Bulcke, A. Piayda, J. Van Acker, M. Cuntz, C. Rebmann, and K. Steppe. 2017. “X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.” Tree Physiol. 38 (2): 287–301. https://doi.org/10.1093/treephys/tpx103.
Motisi, A., F. Rossi, S. Consoli, R. Papa, M. Minacapilli, G. Rallo, C. Cammalleri, and G. D’Urso. 2012. “Eddy covariance and sap flow measurement of energy and mass exchanges of woody crops in a Mediterranean environment.” Acta Hortic. 951: 121–127. https://doi.org/10.17660/ActaHortic.2012.951.14.
Novick, K., S. Brantley, C. Ford Miniat, J. Walker, and J. M. Vose. 2014. “Inferring the contribution of advection to total ecosystem scalar fluxes over a tall forest in complex terrain.” Agric. For. Meteorol. 185 (Feb): 1–13. https://doi.org/10.1016/j.agrformet.2013.10.010.
O’Connell, M. G., and I. Goodwin. 2007. “Responses of ‘Pink Lady’ apple to deficit irrigation and partial rootzone drying: Physiology, growth, yield, and fruit quality.” Aust. J. Agric. 58 (11): 1068–1076. https://doi.org/10.1071/AR07033.
Odhiambo, L. O., and S. Irmak. 2012. “Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration.” Agric. Water Manage. 104 (Feb): 221–234. https://doi.org/10.1016/j.agwat.2011.12.021.
Oishi, A. C., R. Oren, and P. C. Stoy. 2008. “Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements.” Agric. For. Meteorol. 148 (11): 1719–1732. https://doi.org/10.1016/j.agrformet.2008.06.013.
Paço, T., M. Ferreira, R. Rosa, P. Paredes, G. Rodrigues, N. Conceição, C. Pacheco, and L. Pereira. 2012. “The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements.” Irrig. Sci. 30 (2): 115–126. https://doi.org/10.1007/s00271-011-0267-3.
Paço, T. A., M. I. Ferreira, and N. Conceicao. 2006. “Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach.” Agric. Water Manage. 85 (3): 305–313. https://doi.org/10.1016/j.agwat.2006.05.014.
Paço, T. A., I. Pôças, M. Cunha, J. C. Silvestre, F. L. Santos, P. Paredes, and L. S. Pereira. 2014. “Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations.” J. Hydrol. 519: 2067–2080. https://doi.org/10.1016/j.jhydrol.2014.09.075.
Perez-Priego, O., T. S. El-Madany, M. Migliavacca, A. S. Kowalski, M. Jung, A. Carrara, O. Kolle, M. Pilar Martin, J. Pacheco-Labrador, G. Moreno, and M. Reichstein. 2017. “Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem.” Agric. For. Meteorol. 236 (Apr): 87–99. https://doi.org/10.1016/j.agrformet.2017.01.009.
Phogat, V., J. Simunek, M. A. Skewes, J. W. Cox, and M. G. McCarthy. 2016. “Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation.” Agric. Water Manage. 178 (Dec): 189–200. https://doi.org/10.1016/j.agwat.2016.09.022.
Poblete-Echeverría, C. A., and S. O. Ortega-Farias. 2013. “Evaluation of single and dual crop coefficients over a drip-irrigated Merlot vineyard (Vitis vinifera L.) using combined measurements of sap flow sensors and an eddy covariance system.” Aust. j.grape wine r. 19 (2): 249–260. https://doi.org/10.1111/ajgw.12019.
Prueger, J. H., J. L. Hatfield, and T. B. Parkin. 2005. “Tower and aircraft Eddy covariance measurements of water vapor, energy, and carbon dioxide fluxes during SMACEX.” J. Hydrometeorol. 6 (6): 954–960. https://doi.org/10.1175/JHM457.1.
Rafi, Z., et al. 2019. “Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance, sap flow, lysimeter and FAO-based methods.” Agric. For. Meteorol. 265: 310–326. https://doi.org/10.1016/j.agrformet.2018.11.031.
Rallo, G., C. Agnese, M. Minicapilli, and G. Provenzano. 2012. “Assessing AQUACROP water stress function to evaluate the transpiration reductions of olive mature tree.” Ital. J. Agrometeorol. 1: 21–28.
Ramírez-Cuesta, J. M., R. G. Allen, P. J. Zarco-Tejadad, A. Kilic, C. Santos, and I. J. Lorite. 2019. “Impact of the spatial resolution on the energy balance components on anopen-canopy olive orchard.” Int. J. Appl. Earth Obs Geoinformation 74 (Feb): 88–102. https://doi.org/10.1016/j.jag.2018.09.001.
Ren, R., G. Liu, M. Wen, R. Horton, B. Li, and B. Si. 2017. “The effects of probe misalignment on sap flux density measurements and in situ probe spacing correction methods.” Agric. For. Meteorol. 232 (Jan): 176–185. https://doi.org/10.1016/j.agrformet.2016.08.009.
Roccuzzo, G., F. J. Villalobos, L. Testi, and E. Fereres. 2014. “Effects of water deficits on whole tree water use efficiency of orange.” Agric. Water Manage. 140 (Jul): 61–68. https://doi.org/10.1016/j.agwat.2014.03.019.
Rosa, R. D., T. B. Ramos, and L. S. Pereira. 2016. “The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model.” Agric. Water Manage. 177 (Nov): 77–94. https://doi.org/10.1016/j.agwat.2016.06.028.
Schmid, H. P. 1994. “Source areas for scalars and scalar fluxes.” Boundary Layer Meteorol. 67 (3): 293–318. https://doi.org/10.1007/BF00713146.
Si, J. H., Q. Feng, X. Y. Zhang, Z. Q. Chang, Y. H. Su, and H. Y. Xi. 2007. “Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season.” J. Integrat. Plant Biol. 49 (4): 425–436. https://doi.org/10.1111/j.1744-7909.2007.00388.x.
Snyder, R. L., U. K. T. Paw, P. Duce, D. Spano, M. I. Ferreira, T. A. Do Paço, and J. H. Connell. 2000. “Measuring tree and vine et with eddy covariance.” Acta Hortic. 537: 53–60. https://doi.org/10.17660/ActaHortic.2000.537.3.
Soegaard, H., and E. Boegh. 1995. “Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique.” J. Hydrol. 166 (3–4): 265–282. https://doi.org/10.1016/0022-1694(94)05094-E.
Swanson, R. H., and D. W. A. Whitfield. 1981. “A numerical analysis of heat pulse velocity theory and practice.” J. Exp. Bot. 32 (1): 221–239. https://doi.org/10.1093/jxb/32.1.221.
Testi, L., and F. J. Villalobos. 2009. “New approach for measuring low sap velocities in trees.” Agric. For. Meteorol. 149 (3–4): 730–734. https://doi.org/10.1016/j.agrformet.2008.10.015.
Thompson, A. L., D. L. Martin, J. M. Norman, J. A. Tolk, T. A. Howell, J. R. Gilley, and A. D. Schneider. 1997. “Testing of a water loss distribution model for moving sprinkler systems.” Trans. ASAE 40 (1): 81–88. https://doi.org/10.13031/2013.21251.
Tian, F., P. Yang, H. Hu, and C. Dai. 2016. “Partitioning of cotton field evapotranspiration under mulched drip irrigation based on a dual crop coefficient model.” Water 8 (3): 72. https://doi.org/10.3390/w8030072.
Vanella, D., and S. Consoli. 2018. “Eddy covariance fluxes versus satellite-based modelisation in a deficit irrigated orchard.” Ital. J. Agrometeorol. 2: 41–52. https://doi.org/10.19199/2018.2.2038-5625.041.
Vanella, D., J. M. Ramírez-Cuesta, D. S. Intrigliolo, and S. Consoli. 2019. “Combining electrical resistivity tomography and satellite images for improving evapotranspiration estimates of citrus orchards.” Remote Sens. 11 (4): 373. https://doi.org/10.3390/rs11040373.
Vieweg, G. H., and H. Ziegler. 1960. “Thermoelektrische registrerium der geschwindigkeit des transpirationsstromes.” Ber. Dtsch. Bot. Ges. 73: 221–226.
Zitouna-Chebbi, R., I. Mahjoub, I. Mekki, and N. Ben Mechlia. 2017. “Comparing evapotranspiration rates estimated from atmospheric flux, soil water balance and FAO56 method in a small orange orchard in Tunisia.” Acta Hortic. 1150: 23–30. https://doi.org/10.17660/ActaHortic.2017.1150.4.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 146Issue 7July 2020

History

Received: Mar 25, 2019
Accepted: Jan 30, 2020
Published online: May 7, 2020
Published in print: Jul 1, 2020
Discussion open until: Oct 7, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Daniela Saitta [email protected]
Ph.D. Scholar, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, Catania 95123, Italy. Email: [email protected]
Researcher, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, Catania 95123, Italy (corresponding author). ORCID: https://orcid.org/0000-0003-1175-6754. Email: [email protected]
Researcher, Dpto. Riego, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, Murcia 30100, Spain. ORCID: https://orcid.org/0000-0001-9459-9912. Email: [email protected]
Ph.D. Scholar, International Doctorate in Agricultural, Food and Environmental Science—Di3A—University of Catania, Catania 95124, Italy. ORCID: https://orcid.org/0000-0001-7495-2686. Email: [email protected]
Filippo Ferlito, Ph.D. [email protected]
Researcher, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Corso Savoia, 190, Acireale (CT) 95024, Italy. Email: [email protected]
Simona Consoli, Ph.D. [email protected]
Full Professor, Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via S. Sofia, 100, Catania 95123, Italy. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share