Case Studies
Feb 10, 2015

Quantification of Soil Moisture Effects on Runoff Formation at the Hillslope Scale

Publication: Journal of Irrigation and Drainage Engineering
Volume 141, Issue 9

Abstract

Pre-rain-event soil moisture (preSM) plays a crucial role when evaluating runoff formation during heavy rainfall. Using sprinkling experiments and numerical modeling, this study investigates the impact of preSM on runoff formation at the small hillslope scale (100m2). Sprinkling experiments were conducted on three sites in the Austrian Alps and observed hydrological behavior was simulated by using the hillslope model HILLFLOW. For each site, runoff was modeled with different preSM scenarios, covering the whole soil moisture range between permanent wilting point and saturation. Depending on the dominant runoff processes, the results showed impacts of preSM on both the maximum runoff and the total runoff. A predominant threshold was observed near field capacity (35 and 32% by volume). In general, the results clearly showed that the consideration of preSM is a prerequisite to reproduce runoff formation and total runoff amounts accurately. Field capacity turned out to be a good indicator (threshold) for surface runoff estimates.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors wish to thank Gertraud Meißl (Institute of Geography, University of Innsbruck) for giving support with scientific expertise, Axel Bronstert for allocating the model HILLFLOW, and Stephan Jacobi for giving instruction (both Institute of Earth and Environmental Science, University of Potsdam). Climate data were supplied by the Department of the Tyrolean Regional Government—Hydrographic Service of Tyrol. The research was sponsored by the Tyrolean Science Fund (TWF).

References

Badoux, A., et al. (2006). “Investigations on the runoff generation at the profile and plot scales, Swiss Emmental.” Hydrol. Processes, 20(2), 377–394.
Bárdossy, A., Bronstert, A., and Merz, B. (1995). “1-, 2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach.” Adv. Water Resour., 18(4), 237–251.
Beckers, J., Pike, R., Werner, A. T., Smerdon, B., and Anderson, A. (2009). “Hydrologic models for forest management applications. Part 2: Incorporating the effects of climate change.” Streamline Watershed Manage. Bull., 13, 45–54.
Bronstert, A. (1999). “Capabilities and limitations of detailed hillslope hydrological modelling.” Hydrol. Processes, 13(1), 21–48.
Bronstert, A., and Bárdossy, A. (1999). “The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale.” Hydrol. Earth Syst. Sci., 3(4), 505–516.
Bronstert, A., and Plate, E. (1997). “Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments.” J. Hydrol., 198(1–4), 177–195.
Cardoso, F., Shelton, D., Sadeghi, A., Shirmohammadi, A., Pachepsky, Y., and Dulaney, W. (2012). “Effectiveness of vegetated filter strips in retention of Escherichia coli and Salmonella from swine manure slurry.” J. Environ. Manage., 110, 1–7.
Castillo, V. M., Gómez-Plaza, A., and Martínez-Mena, M. (2003). “The role of antecedent soil water content in the runoff response of semiarid catchments: A simulation approach.” J. Hydrol., 284(1–4), 114–130.
Ceballos, A., Cerdà, A., and Schnabel, S. (2002). “Runoff production and erosion processes on a Dehesa in western Spain.” Geograph. Rev., 92(3), 333–353.
Cerdà, A. (1995). “Soil moisture regime under simulated rainfall in a three years abandoned field in southeast Spain.” Phys. Chem. Earth, 20(3–4), 271–279.
Cerdà, A. (1996). “Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain.” Geoderma, 69(3–4), 217–232.
Cerdà, A. (1997). “Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone.” J. Hydrol., 198(1–4), 209–225.
Cerdà, A. (1998a). “Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland.” Hydrol. Processes, 12(7), 1031–1042.
Cerdà, A. (1998b). “Effect of climate on surface flow along a climatological gradient in Israel: A field rainfall simulation approach.” J. Arid Environ., 38(2), 145–159.
Cerdà, A. (1998c). “The influence of geomorphological position and vegetation cover on the erosional and hydrological processes on a Mediterranean hillslope.” Hydrol. Processes, 12(4), 661–671.
Cerdà, A., and Doerr, S. H. (2007). “Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils.” Hydrol. Processes, 21(17), 2325–2336.
Cerdà, A., and Lavée, H. (1999). “The effect of grazing on soil and water losses under arid and Mediterranean climates. Implications for desertification.” Pirineos: Revista de Ecología de Montaña, 153–154, 159–174.
Chifflard, P. (2006). “Der Einfluss des Reliefs, der Hangsedimente und der Bodenvorfeuchte auf die Abflussbildung im Mittelgebirge.” Ph.D. thesis, Ruhr Univ. Bochum, Bochum, Germany (in German).
DeBano, L. (2000). “Water repellency in soils: A historical overview.” J. Hydrol., 231–232, 4–32.
Dekker, L. W., and Ritsema, C. J. (1994). “How water moves in a water repellent sandy soil: 1. Potential and actual water repellency.” Water Resour. Res., 30(9), 2507–2517.
Dekker, L. W., and Ritsema, C. J. (1996). “Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils.” Catena, 28(1–2), 89–105.
Detty, J. M., and McGuire, K. J. (2010). “Threshold changes in storm runoff generation at a till-mantled headwater catchment.” Water Resour. Res., 46(7), 1–15.
Doerr, S. H., Shakesby, R. A., Dekker, L. W., and Ritsema, C. J. (2006). “Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate.” Eur. J. Soil Sci., 57(5), 741–754.
Doerr, S. H., and Thomas, A. D. (2000). “The role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal.” J. Hydrol., 231–232, 134–147.
Eckhardt, K., and Arnold, J. G. (2001). “Automatic calibration of a distributed catchment model.” J. Hydrol., 251(1–2), 103–109.
eHYD. (2014). 〈http://ehyd.gv.at/〉 (May 8, 2014).
Ertek, A., Şensoy, S., Gedik, İ., and Küçükyumuk, C. (2006). “Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions.” Agric. Water Manage., 81(1–2), 159–172.
Faeh, A. (1997). “Understanding the processes of discharge formation under extreme precipitation. A study based on the numerical simulation of hillslope experiments.” Ph.D. thesis, ETH Zürich, Zürich, Switzerland.
Faeh, A., Scherrer, S., and Felix, N. (1996). “Bodenwasserhaushalt und Hochwasserbildung-Resultate von Beregnungsversuchen.” Schutz des Lebensraumes vor Hochwasser, Muren und Lawinen. Tagungspublikation, Interpraevent, Klagenfurt, Austria, 113–124 (in German).
Feddes, R. A., Kowalik, P. J., and Zaradny, H. (1978). Simulation of field water use and crop yield, Centre for Agricultural Publication and Documentation, Wageningen, Netherlands.
Fitzjohn, C., Ternan, J. L., and Williams, A. G. (1998). “Soil moisture variability in a semi-arid gully catchment: Implications for runoff and erosion control.” Catena, 32(1), 55–70.
Flügel, W. (1995). “Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany.” Hydrol. Processes, 9(3–4), 423–436.
Gao, X., Wu, P., Zhao, X., Wang, J., and Shi, Y. (2013). “Effects of land use on soil moisture variations in a semi-arid catchment: Implications for land and agricultural water management.” Land Degrad. Dev., 25(2), 163–172.
Ghadiri, H., and Payne, D. (1988). “The formation and characteristics of splash following raindrop impact on soil.” J. Soil Sci., 39(4), 563–575.
Hasegawa, S. (1997). “Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method.” Hydrol. Earth Syst. Sci., 1(2), 303–312.
James, A. L., and Roulet, N. T. (2009). “Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments.” J. Hydrol., 377(3–4), 351–366.
Jin, K., et al. (2008). “Effects of different soil management practices on total P and Olsen-P sediment loss: A field rainfall simulation study.” Catena, 78(1), 72–80.
Karl, J. (1980). “Methode und Möglichkeiten vergleichender Abflussmessungen mittels simulierter Starkregen.” Katastrophenvorbeugung durch verbesserte Naturraum-Analysen. Tagungspublikation, Interpraevent, Klagenfurt, Austria, 145–148 (in German).
Kienzler, P. M., and Naef, F. (2008). “Subsurface storm flow formation at different hillslopes and implications for the ‘old water paradox’.” Hydrol. Processes, 22(1), 104–116.
Kirkby, M., and Chorley, R. (1967). “Throughflow, overland flow and erosion.” Int. Assoc. Sci. Hydrol., 12(3), 5–21.
Kohl, B. (2011). “Das Niederschlags-/Abflussmodell ZEMOKOST. Entwicklung eines praktikablen Modells zur Ermittlung von Hochwasserabflüssen in Wildbacheinzugsgebieten unter Einbeziehung verbesserter Felddaten.” Ph.D. thesis, Univ. of Innsbruck, Innsbruck, Austria (in German).
Leh, M., Bajwa, S., and Chaubey, I. (2013). “Impact on erosion risk on land use change: An integrated remote sensing, geographic information system and modelling methodology.” Land Degrad. Dev., 24(5), 409–421.
Leitinger, G., Tasser, E., Newesely, C., Obojes, N., and Tappeiner, U. (2010). “Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use.” J. Hydrol., 385(1–4), 95–104.
Liu, Y., Pereira, L. S., and Fernando, R. M. (2006). “Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation.” Agric. Water Manage., 84(1–2), 27–40.
Liu, Z., Yao, Z., Huang, H., Wu, S., and Liu, G. (2014). “Land use and climate changes and their impacts on runoff in the Yarlung Zangbo river basin, China.” Land Degrad. Dev., 25(3), 203–215.
Markart, G., Klebinder, K., and Kohl, B. (2008). “Indicators for evaluation of surface runoff potential in critical land use areas.” Proc., Conf. MONITOR/08—Systems Behind a Safer Environment, Styria, Austria, 69–79.
Markart, G., and Kohl, B. (1995). “Starkregensimulation und bodenphysikalische Kennwerte als Grundlage der Abschätzung von Abfluß- und Infiltrationseigenschafen alpiner Boden-/Vegetationseinheiten—Ergebnisse der Beregnungsversuche im Mustereinzugsgebiet Löhnersbach bei Saalbach in Salzburg.” FBVA—Berichte Vol. 89, Forstliche Bundesversuchsanstalt Wien, Wien, Austria (in German).
Markart, G., Kohl, B., Sotier, B., Schauer, T., Bunza, G., and Roland, S. (2006). “Geländeanleitung zur Abschätzung des Oberflächenablussbeiwertes bei Starkregen—Grundzüge und erste Erfahrungen.” Methoden der hydrologischen regionalisierung, Vol. 197, Wiener Mitteilungen, Wien, Austria, 159–178 (in German).
Markart, G., Kohl, B., and Zanetti, P. (1996). “Beurteilung des Abflußverhaltens von Wildbacheinzugsgebieten anhand boden- und vegetationskundlicher Grundlagen—Ergebnisse der Untersuchungen im Rahmen des Pilotprojektes Schesastudie 1995/1996.” Endbericht, Forstliche Bundesversuchsanstalt, Innsbruck, Austria (in German).
Martina, M. L. V., Todini, E., and Libralon, A. (2006). “A Bayesian decision approach to rainfall thresholds based flood warning.” Hydrol. Earth Syst. Sci., 10(3), 413–426.
Mathys, N., Klotz, S., Esteves, M., Descroix, L., and Lapetite, J. (2005). “Runoff and erosion in the Black Marls of the French Alps: Observations and measurements at the plot scale.” CATENA, 63(2–3), 261–281.
Meißl, G., et al. (2012). “Sensitivität der Abflussprozesse kleiner alpiner Einzugsgebiete auf Klimaänderungen.” Wasser ohne Grenzen, Beiträge zum Tag der Hydrologie am 22./23. März 2012 an der Albert-Ludwigs-Universität Freiburg, Forum für Hydrologie und Wasserbewirtschaftung, Weiler, Freiburg, Germany, 121–126 (in German).
Merz, B., and Bárdossy, A. (1998). “Effects of spatial variability on the rainfall runoff process in a small loess catchment.” J. Hydrol., 212–213, 304–317.
Meyles, E., Williams, A., Ternan, J., Anderson, J. M., and Dowd, J. F. (2006). “The influence of grazing on vegetation, soil properties and stream discharge in a small Dartmoor catchment, southwest England, UK.” Earth Surf. Processes Landforms, 31(5), 622–631.
Meyles, E., Williams, A., Ternan, L., and Dowd, J. (2003). “Runoff generation in relation to soil moisture patterns in a small Dartmoor catchment, South West England.” Hydrol. Processes, 17(2), 251–264.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., and Veith, T. L. (2007). “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE, 50(3), 885–900.
Naef, F., Scherrer, S., and Faeh, A. (1994). “Wie reagiert ein Einzugsgebiet auf extreme Niederschläge? Alte und neue Ideen und Experimente.” Gedenkschrift Hans M. Keller. Schweizerische Gesellschaft für Hydrologie und Limnologie; Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Bern, Birmensdorf, Switzerland, 111–119 (in German).
Penna, D., Borga, M., Norbiato, D., and Dalla Fontana, G. (2009). “Hillslope scale soil moisture variability in a steep alpine terrain.” J. Hydrol., 364(3–4), 311–327.
Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G. (2011). “The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment.” Hydrol. Earth Syst. Sci., 15(3), 689–702.
Perrin, C., Michel, C., and Andréassian, V. (2001). “Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments.” J. Hydrol., 242(3–4), 275–301.
Roberts, G., and Crane, S. B. (1997). “Temporal variations in near surface soil moisture at two contrasting sites in the Wye catchment and their control on storm streamflow generation.” Hydrol. Earth Syst. Sci., 1(3), 453–461.
Scherrer, S., and Naef, F. (2003). “A decision scheme to indicate dominant hydrological flow processes on temperate grassland.” Hydrol. Processes, 17(2), 391–401.
Scherrer, S., Naef, F., Faeh, A., and Cordery, I. (2007). “Formation of runoff at the hillslope scale during intense precipitation.” Hydrol. Earth Syst. Sci., 11(2), 907–922.
Schmocker-Fackel, P. (2004). “A method to delineate runoff processes in a catchment and its implications for runoff simulations.” Ph.D. thesis, ETH Zürich, Zürich, Switzerland.
Tasser, E., and Tappeiner, U. (2005). “New model to predict rooting in diverse plant community compositions.” Ecol. Model., 185(2–4), 195–211.
van Genuchten, M. T. (1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J., 44(5), 892–898.
Veihe, A., Quinton, J., and Poesen, J. (2000). “Sensitivity analysis of EUROSEM using Monte Carlo simulation. II: The effect of rills and rock fragments.” Hydrol. Processes, 14(5), 927–939.
Veihmeyer, F. J., and Hendrickson, A. H. (1931). “The moisture equivalent as a measure of the field capacity of soils.” Soil Sci., 32(3), 181–194.
Vrugt, J. A., Ter Braak, C., Diks, C., Robinson, B. A., Hyman, J. M., and Higdon, D. (2009). “Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling.” Int. J. Nonlinear Sci. Numer. Simul., 10(3), 271–288.
Wagner, W., Lemoine, G., and Rott, H. (1999). “A method for estimating soil moisture from ERS scatterometer and soil data.” Remote Sens. Environ., 70(2), 191–207.
Wallach, R., Grigorin, G., and Rivlin, J. (2001). “A comprehensive mathematical model for transport of soil-dissolved chemicals by overland flow.” J. Hydrol., 247(1–2), 85–99.
Weiler, M. (2001). “Mechanisms controlling macropore flow during infiltration. Dye tracer experiments and simulations.” Ph.D. thesis, ETH Zürich, Zürich, Switzerland.
Weiler, M., and McDonnell, J. (2004). “Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology.” J. Hydrol., 285(1–4), 3–18.
Weiler, M., and Naef, F. (2003). “An experimental tracer study of the role of macropores in infiltration in grassland soils.” Hydrol. Processes, 17(2), 477–493.
Western, A., Grayson, R., and Green, T. (1999). “The Tarrawarra project: High resolution spatial measurement, modelling and analysis of soil moisture and hydrological response.” Hydrol. Processes, 13(5), 633–652.
Wieser, G., Hammerle, A., and Wohlfahrt, G. (2008). “The water balance of grassland ecosystems in the Austrian Alps.” Arctic Antarctic Alpine Res., 40(2), 439–445.
Williams, C. J., McNamara, J. P., and Chandler, D. (2009). “Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: The signature of snow and complex terrain.” Hydrol. Earth Syst. Sci., 13(7), 1325–1336.
Zhang, R., Santos, C. A. G., Moreira, M., Freire, P. K. M. M., and Corte-Real, J. (2013). “Automatic calibration of the SHETRAN hydrological modelling system using MSCE.” Water Resour. Manage., 27(11), 4053–4068.
Ziadat, F. M., and Taimeh, A. Y. (2013). “Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment.” Land Degrad. Dev., 24(6), 582–590.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 141Issue 9September 2015

History

Received: Aug 25, 2014
Accepted: Dec 29, 2014
Published online: Feb 10, 2015
Discussion open until: Jul 10, 2015
Published in print: Sep 1, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Romed Ruggenthaler [email protected]
Institute of Geography, Univ. of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria; and Institute of Ecology, Univ. of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria (corresponding author). E-mail: [email protected]
Friedrich Schöberl
Professor, Institute of Geography, Univ. of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria.
Gerhard Markart
Dept. of Natural Hazards, BFW, Rennweg 1, A-6020 Innsbruck, Innsbruck, Austria.
Klaus Klebinder
Dept. of Natural Hazards, BFW, Rennweg 1, A-6020 Innsbruck, Innsbruck, Austria.
Albin Hammerle
Institute of Ecology, Univ. of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
Georg Leitinger
Assistant Professor, Institute of Ecology, Univ. of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share