Technical Papers
May 16, 2022

Biogeochemical versus Conventional Landfill Soil Covers: Analysis of Gas Flow Profiles, Microbial Communities, and Mineralogy

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26, Issue 3

Abstract

In this study, a novel biogeochemical cover system comprising biochar-amended soil and basic oxygen furnace (BOF) steel slag was explored as a sustainable alternative cover system to mitigate methane (CH4), carbon dioxide (CO2), and hydrogen sulfide (H2S) simultaneously from landfill gas (LFG). Long-term column studies of a simulated biogeochemical cover (BGCC) profile investigated CH4, CO2, and H2S removal potential. The performance of the BGCC system was compared with a conventional soil cover (SC) profile. The CH4 oxidation rates of biochar-amended soil were significantly higher, ranging from 185 to 407 µg CH4/g-day in comparison with the barrier soil in the SC system (6–7.5 µg CH4/g-day), based on the batch incubation of column-exhumed samples. In addition, the biochar-amended soil showed higher relative abundance of methanotrophic bacterial communities (20%–51%) in comparison with soil cover (10%–27%). In both columns, complete attenuation of H2S occurred near the inlet (75 cm bgs) and sulfur oxidizing bacteria (e.g., Thiobacillus) and methanotrophs were both detected. The sulfur content was elevated (0.68%) at the base of both columns and H2S may have imparted an inhibitory effect on CH4 oxidation rate in the SC system. The BOF slag showed a CO2 removal potential of 67 g CO2/kg BOF slag. Overall, the BGCC system outperformed the SC system, effectively mitigating CH4, CO2, and H2S simultaneously.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is a part of comprehensive project titled “Innovative Biochar-Slag-Soil Cover System for Zero Emissions at Landfills” funded by the National Science Foundation (CMMI# 1724773), which is gratefully acknowledged. Any opinions, findings, conclusions, and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The authors would like to thank Phoenix Services LLC for supplying BOF slag for this study. The authors are grateful to Genomic Research Core and Electron Microscopy Core, Research Resources Center, University of Illinois at Chicago for microbial analysis. Pittsburgh Mineral & Environmental Technology, Inc. (PMET Lab Services) conducted the QXRD and carbon/sulfur analysis of the samples.

References

ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854-14. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM D5084-16a. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913/D6913M-17. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for saturated density, moisture-holding capacity, and porosity of saturated peat materials. ASTM D2980-17e1. West Conshohocken, PA: ASTM.
ASTM. 2019a. Standard test methods for pH of soils. ASTM D4972-19. West Conshohocken, PA: ASTM.
ASTM. 2019b. Standard test method for permeability of granular soils (constant head). ASTM D2434-19. West Conshohocken, PA: ASTM.
ASTM. 2019c. Standard test methods for pH of soils. ASTM D4972-19. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test methods for determining the water (moisture) content, ash content, and organic material of peat and other organic soils. ASTM D2974-20e1. West Conshohocken, PA: ASTM.
ASTM. 2021a. Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM D698-12. West Conshohocken, PA: ASTM.
ASTM. 2021b. Standard test method for rapid determination of carbonate content of soils. ASTM D4373-21. West Conshohocken, PA: ASTM.
Bolyen, E., et al. 2019. “Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.” Nat. Biotechnol. 37 (8): 852–857. https://doi.org/10.1038/s41587-019-0209-9.
Bogner, J. E., K. A. Spokas, and J. P. Chanton. 2011. “Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils.” J. Environ. Qual. 40 (3): 1010–1020. https://doi.org/10.2134/jeq2010.0407.
Cadenhead, P., and K. L. Sublette. 1990. “Oxidation of hydrogen sulfide by Thiobacilli.” Biotechnol. Bioeng. 35 (11): 1150–1154. https://doi.org/10.1002/bit.260351111.
Chetri, J. K., and K. R. Reddy. 2021. “Advancements in municipal solid waste landfill cover system: A review.” J. Indian Inst. Sci. 101: 557–588. https://doi.org/10.1007/s41745-021-00229-1.
Chetri, J. K., K. R. Reddy, and D. G. Grubb. 2019. “Innovative biogeochemical cover to mitigate landfill gas emissions: Investigation of controlling parameters based on batch and column experiments.” Environ. Processes 6 (4): 935–949. https://doi.org/10.1007/s40710-019-00390-x.
Chetri, J. K., K. R. Reddy, and D. G. Grubb. 2020. “Carbon-dioxide and hydrogen-sulfide removal from simulated landfill gas using steel slag.” J. Environ. Eng. 146 (12): 04020139. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001826.
Chetri, J. K., K. R. Reddy, and S. J. Green. 2022a. “Methane oxidation and microbial community dynamics in activated biochar-amended landfill soil cover.” J. Environ. Eng. 148 (4): 04022009. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001984.
Chetri, J. K., K. R. Reddy, and D. G. Grubb. 2022b. “Investigation of different biogeochemical cover configurations for mitigation of landfill gas emissions: Laboratory column experiments.” Acta Geotech. 1–18.
Dedysh, S. N., and P. F. Dunfield. 2011. “Facultative and obligate methanotrophs: How to identify and differentiate them.” Methods Enzymol. 495: 31–44. https://doi.org/10.1016/B978-0-12-386905-0.00003-6.
De Visscher, A., D. Thomas, P. Boeckx, and O. Van Cleemput. 1999. “Methane oxidation in simulated landfill cover soil environments.” Environ. Sci. Technol. 33 (11): 1854–1859. https://doi.org/10.1021/es9900961.
Ding, Y., J. Xiong, B. Zhou, J. Wei, A. Qian, H. Zhang, W. Zhu, and J. Zhu. 2019. “Odor removal by and microbial community in the enhanced landfill cover materials containing biochar-added sludge compost under different operating parameters.” Waste Manage. (Oxford) 87: 679–690. https://doi.org/10.1016/j.wasman.2019.03.009.
He, R., F.-F. Xia, Y. Bai, J. Wang, and D.-S. Shen. 2012. “Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover.” J. Hazard. Mater. 217–218: 67–75. https://doi.org/10.1016/j.jhazmat.2012.02.061.
Higashioka, Y., H. Kojima, M. Watanabe, and M. Fukui. 2013. “Desulfatitalea tepidiphila gen. nov., sp. nov., a sulfate-reducing bacterium isolated from tidal flat sediment.” Int. J. Syst. Evol. Microbiol. 63 (Pt_2): 761–765. https://doi.org/10.1099/ijs.0.043356-0.
Huijgen, W. J., and R. N. Comans. 2006. “Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms.” Environ. Sci. Technol. 40 (8): 2790–2796. https://doi.org/10.1021/es052534b.
Kalyuzhnaya, M. G., V. Khmelenina, B. Eshinimaev, D. Sorokin, H. Fuse, M. Lidstrom, and Y. Trotsenko. 2008. “Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium.” Int. J. Syst. Evol. Microbiol. 58 (3): 591–596. https://doi.org/10.1099/ijs.0.65317-0.
Kightley, D., D. B. Nedwell, and M. Cooper. 1995. “Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.” Appl. Environ. Microbiol. 61 (2): 592–601. https://doi.org/10.1128/aem.61.2.592-601.1995.
Knief, C. 2015. “Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker.” Front. Microbiol. 6: 1346. https://doi.org/10.3389/fmicb.2015.01346.
Lee, E.-H., K.-E. Moon, T.-G. Kim, S.-D. Lee, and K.-S. Cho. 2015. “Inhibitory effects of sulfur compounds on methane oxidation by a methane-oxidizing consortium.” J. Biosci. Bioeng. 120 (6): 670–676. https://doi.org/10.1016/j.jbiosc.2015.04.006.
Ma, Y.-L., B.-L. Yang, and J.-L. Zhao. 2006. “Removal of H2S by Thiobacillus denitrificans immobilized on different matrices.” Bioresour. Technol. 97 (16): 2041–2046. https://doi.org/10.1016/j.biortech.2005.09.023.
Mazzotti, M., J. C. Abanades, R. Allam, K. S. Lackner, F. Meunier, E. Rubin, J. C. Sanchez, K. Yogo, and R. Zevenhoven. 2005. “Mineral carbonation and industrial uses of carbon dioxide.” In IPCC special report on carbon dioxide capture and storage, edited by B. Eliasson and R. T. M. Sutamihardja, 319–338. Cambridge University Press.
Nadkarni, M. A., F. E. Martin, N. A. Jacques, and N. Hunter. 2002. “Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set.” Microbiology 148 (1): 257–266. https://doi.org/10.1099/00221287-148-1-257.
Oliveira, F. R., K. C. Surendra, D. P. Jaisi, H. Lu, G. Unal-Tosun, S. Sung, and S. K. Khanal. 2020. “Alleviating sulfide toxicity using biochar during anaerobic treatment of sulfate-laden wastewater.” Bioresour. Technol. 301: 122711. https://doi.org/10.1016/j.biortech.2019.122711.
Rachor, I., J. Gebert, A. Gröngröft, and E. M. Pfeiffer. 2011. “Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials.” Waste Manage. 31 (5): 833–842. http://doi.org/ 10.1016/j.wasman.2010.10.006.
Ramamoorthy, S., H. Sass, H. Langner, P. Schumann, R. M. Kroppenstedt, S. Spring, J. Overmann, and R. F. Rosenzweig. 2006. “Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments.” Int. J. Syst. Evol. Microbiol. 56 (12): 2729–2736. https://doi.org/10.1099/ijs.0.63610-0.
Reddy, K. R., J. K. Chetri, G. Kumar, and D. G. Grubb. 2019. “Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions.” Waste Manage. 85: 425–436. https://doi.org/10.1016/j.wasman.2019.01.013.
Reddy, K. R., E. N. Yargicoglu, and J. K. Chetri. 2021. “Effects of biochar on methane oxidation and properties of landfill cover soil: Long-term column incubation tests.” J. Environ. Eng. 147 (1): 04020144. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001829.
Roncato, C. D. L., and A. R. Cabral. 2012. “Evaluation of methane oxidation efficiency of two biocovers: Field and laboratory results.” J. Environ. Eng. 138 (2): 164–173. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000475.
Sadasivam, B. Y., and K. R. Reddy. 2014. “Landfill methane oxidation in soil and bio-based cover systems: A review.” Rev. Environ. Sci. Biotechnol. 13 (1): 79–107. https://doi.org/10.1007/s11157-013-9325-z.
Sadasivam, B. Y., and K. R. Reddy. 2015. “Adsorption and transport of methane in biochars derived from waste wood.” Waste Manage. (Oxford) 43: 218–229. https://doi.org/10.1016/j.wasman.2015.04.025.
Scheutz, C., and P. Kjeldsen. 2005. “Biodegradation of trace gases in simulated landfill soil.” J. Air Waste Manage. Assoc. 55 (7): 878–885. https://doi.org/10.1080/10473289.2005.10464693.
Scheutz, C., G. B. Pedersen, G. Costa, and P. Kjeldsen. 2009. “Biodegradation of methane and halocarbons in simulated landfill biocover systems containing compost materials.” J. Environ. Qual. 38 (4): 1363–1371. https://doi.org/10.2134/jeq2008.0170.
Shang, G., G. Shen, L. Liu, Q. Chen, and Z. Xu. 2013. “Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.” Bioresour. Technol. 133: 495–499. https://doi.org/10.1016/j.biortech.2013.01.114.
Sorokin, D. Y., B. E. Jones, and J. G. Kuenen. 2000. “An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment.” Extremophiles 4 (3): 145–155. https://doi.org/10.1007/s007920070029.
Subletta, K. L. 1987. “Aerobic oxidation of hydrogen sulfide by Thiobacillus denitrificans.” Biotechnol. Bioeng. 29 (6): 690–695. https://doi.org/10.1002/bit.260290605.
USEPA. 2021. Basic information about Landfill Gas. Landfill Methane Outreach Program (LMOP). Washington, DC: USEPA.
van Zomeren, A., S. R. Van der Laan, H. B. Kobesen, W. J. Huijgen, and R. N. Comans. 2011. “Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.” Waste Manage. 31 (11): 2236–2244. https://doi.org/10.1016/j.wasman.2011.05.022.
Widdel, F., and F. Back. 2006. “The genus Desulfotomaculum.” Prokaryotes 4: 787–794. https://doi.org/10.1007/0-387-30744-3_25.
Xia, F., X. Liu, Y. Kang, R. He, and Z. Wu. 2015. “Elimination of sulphur odours at landfills by bioconversion and the corona discharge plasma technique.” Environ. Technol. 36 (23): 2959–2966. https://doi.org/10.1080/09593330.2014.957244.
Xie, T., K. R. Reddy, C. Wang, E. Yargicoglu, and K. Spokas. 2015. “Characteristics and applications of biochar for environmental remediation: A review.” Crit. Rev. Env. Sci. Technol. 45 (9): 939–969. https://doi.org/10.1080/10643389.2014.924180.
Xu, Q., T. Townsend, and D. Reinhart. 2010. “Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials.” Waste Manage. (Oxford) 30 (4): 660–666. https://doi.org/10.1016/j.wasman.2009.10.022.
Yargicoglu, E. N., and K. R. Reddy. 2017a. “Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study.” J. Environ. Manage. 193: 19–31. https://doi.org/10.1016/j.jenvman.2017.01.068.
Yargicoglu, E. N., and K. R. Reddy. 2017b. “Microbial abundance and activity in biochar-amended landfill cover soils: Evidence from large-scale column and field experiments.” J. Environ. Eng. 143 (9): 04017058. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001254.
Yargicoglu, E. N., and K. R. Reddy. 2018. “Biochar-amended soil cover for microbial methane oxidation: Effect of biochar amendment ratio and cover profile.” J. Geotech. Geoenviron. Eng. 144 (3): 04017123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001845.
Yargicoglu, E. N., B. Y. Sadasivam, K. R. Reddy, and K. Spokas. 2015. “Physical and chemical characterization of waste wood derived biochars.” Waste Manage. (Oxford) 36: 256–268. https://doi.org/10.1016/j.wasman.2014.10.029.
Yilmaz, D., L. Lassabatere, R. Angulo-Jaramillo, D. Deneele, and M. Legret. 2010. “Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method.” Vadose Zone J. 9 (1): 107–116. https://doi.org/10.2136/vzj2009.0039.
Yilmaz, D., L. Lassabatere, D. Deneele, R. Angulo-Jaramillo, and M. Legret. 2013. “Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag.” Vadose Zone J. 12 (2): vzj2012.0121. https://doi.org/10.2136/vzj2012.0121.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 3July 2022

History

Received: Dec 8, 2021
Accepted: Mar 10, 2022
Published online: May 16, 2022
Published in print: Jul 1, 2022
Discussion open until: Oct 16, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Jyoti K. Chetri, S.M.ASCE [email protected]
Graduate Research Assistant, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois at Chicago, 842 West Taylor St., Chicago, IL 60607. Email: [email protected]
Professor, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois at Chicago, 842 West Taylor St., Chicago, IL 60607 (corresponding author). ORCID: https://orcid.org/0000-0002-6577-1151. Email: [email protected]
Dennis G. Grubb, M.ASCE [email protected]
President, Fugacity LLC, 324 Broadway Ave., West Cape May, NJ 08204. Email: [email protected]
Director, Genomics and Microbiome Core Facility, Rush Univ. Medical Center, 1750 W. Harrison, Jelke Building, Room 444, Chicago, IL 60612. ORCID: https://orcid.org/0000-0003-2781-359X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Landfill Odor (Hydrogen Sulfide) Control Using Novel Biogeochemical Cover System, Geo-Congress 2023, 10.1061/9780784484661.013, (127-133), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share