Technical Papers
Apr 7, 2022

Clay–Biomass Composites for Water Purification

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26, Issue 3

Abstract

Adsorption is one of the most commonly used water/wastewater treatment processes. Clays and biomasses have been studied widely as adsorbents for different classes of contaminants. However, these materials possess some drawbacks that prevent their application on a large scale. To overcome their drawbacks, attempts have been made in recent years to synergistically combine these two classes of low-cost adsorbents to form a new class of materials called clay–biomass composites. This paper reviews the studies reported in the recent past on the use of these composites synthesized from clay and biomass, and subsequently modified, for removal of different classes of pollutants. Synthesis of composites by different methods, and the characterization of resulting composites are presented. Further, detailed discussion on the use of these composites for removal of different classes of pollutants such as heavy metals, dyes, nutrients, dyes, organic micropollutants and microbial pathogens is included. Various factors affecting the adsorption process along with mechanisms of removal of different pollutants by these composites are presented. Reported studies on regeneration and reuse of spent adsorbents are also given. It is evident from the literature review that the clay–biomass composites show significant enhancement of adsorption capacity for different classes of pollutants. Directions for further research for utilizing these composites in industrial applications are discussed. Overall, the paper indicates the potential of these composites for use in removal of different classes of pollutants.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abu-Danso, E., S. Peräniemi, T. Leiviskä, T. Y. Kim, K. M. Tripathi, and A. Bhatnagar. 2020. “Synthesis of clay–cellulose biocomposite for the removal of toxic metal ions from aqueous medium.” J. Hazard. Mater. 381: 120871. https://doi.org/10.1016/j.jhazmat.2019.120871.
Acero, J. L., F. J. Benitez, F. J. Real, and E. Rodriguez. 2015. “Elimination of selected emerging contaminants by the combination of membrane filtration and chemical oxidation processes.” Water Air Soil Pollut. 226: 139. https://doi.org/10.1007/s11270-015-2404-8.
Adebayo, M. A., J. I. Adebomi, T. O. Abe, and F. I. Areo. 2020. “Removal of aqueous Congo red and malachite green using Ackee apple seed–bentonite composite.” Colloids Interface Sci. Commun. 38: 100311. https://doi.org/10.1016/j.colcom.2020.100311.
Afkhami, A., R. Moosavi, and T. Madrakian. 2010. “Preconcentration and spectrophotometric determination of low concentrations of malachite green and leuco-malachite green in water samples by high performance solid phase extraction using maghemite nanoparticles.” Talanta 82: 785–789. https://doi.org/10.1016/j.talanta.2010.05.054.
Akpomie, K. G., and F. A. Dawodu. 2015. “Montmorillonite–rice husk composite for heavy metal sequestration from binary aqua media: A novel adsorbent.” Trans. R. Soc. S. Afr. 70: 83–88. https://doi.org/10.1080/0035919X.2014.984259.
Ali, I., M. Asim, and T. A. Khan. 2012. “Low cost adsorbents for the removal of organic pollutants from wastewater.” J. Environ. Manage. 113: 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028.
Arif, M., G. Liu, B. Yousaf, R. Ahmed, S. Irshad, A. Ashraf, M. Zia-ur-Rehman, and M. S. Rashid. 2021. “Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review.” J. Cleaner Prod. 310: 127548. https://doi.org/10.1016/j.jclepro.2021.127548.
Aruna, N., Bagotia, A. K. Sharma, and S. Kumar. 2021. “A review on modified sugarcane bagasse biosorbent for removal of dyes.” Chemosphere 268: 129309. https://doi.org/10.1016/j.chemosphere.2020.129309.
Awad, A. M., S. M. R. Shaikh, R. Jalab, M. H. Gulied, M. S. Nasser, A. Benamor, and S. Adham. 2019. “Adsorption of organic pollutants by natural and modified clays: A comprehensive review.” Sep. Purif. Technol. 228: 115719. https://doi.org/10.1016/j.seppur.2019.115719.
Bai, S. H., and S. M. Ogbourne. 2016. “Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin.” Chemosphere 154: 204–214. https://doi.org/10.1016/j.chemosphere.2016.03.113.
Benkaddour, S., I. El Ouahabi, H. Hiyane, M. Essoufy, A. Driouich, E. Antri, S. Hajjaji, S. El, R. Slimani, and S. Lazar. 2020. “Removal of Basic Yellow 28 by biosorption onto watermelon seeds, part I: The principal factors influencing by Plackett-Burman screening design.” Surf. Interfaces 21: 100732. https://doi.org/10.1016/j.surfin.2020.100732.
Bhatnagar, A., and M. Sillanpää. 2011. “A review of emerging adsorbents for nitrate removal from water.” Chem. Eng. J. 168: 493–504. https://doi.org/10.1016/j.cej.2011.01.103.
Bhattacharyya, K. G., and S. S. Gupta. 2008. “Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review.” Adv. Colloid Interface Sci. 140: 114–131. https://doi.org/10.1016/j.cis.2007.12.008.
Bilal, M., I. Ihsanullah, M. Younas, and M. Ul Hassan Shah. 2022. “Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review.” Sep. Purif. Technol. 278: 119510. https://doi.org/10.1016/j.seppur.2021.119510.
Bolong, N., A. F. Ismail, M. R. Salim, and T. Matsuura. 2009. “A review of the effects of emerging contaminants in wastewater and options for their removal.” Desalination 239: 229–246. https://doi.org/10.1016/j.desal.2008.03.020.
Borthakur, P., M. Aryafard, Z. Zara, Ř David, B. Minofar, M. R. Das, and M. Vithanage. 2021. “Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay–biochar composites towards tetracycline adsorption: Implications on wastewater treatment.” J. Environ. Manage. 283: 111989. https://doi.org/10.1016/j.jenvman.2021.111989.
Brown, D. R., and C. N. Rhodes. 1997. “Brønsted and Lewis acid catalysis with ion-exchanged clays.” Catal. Lett. 45: 35–40. https://doi.org/10.1023/A:1019038806333.
Buates, J., and T. Imai. 2020. “Biochar functionalization with layered double hydroxides composites: Preparation, characterization, and application for effective phosphate removal.” J. Water Process Eng. 37: 101508. https://doi.org/10.1016/j.jwpe.2020.101508.
Chaari, I., B. Moussi, and F. Jamoussi. 2015. “Interactions of the dye, C.I. direct orange 34 with natural clay.” J. Alloys Compd. 647: 720–727. https://doi.org/10.1016/j.jallcom.2015.06.142.
Chen, L., X. L. Chen, C. H. Zhou, H. M. Yang, S. F. Ji, D. S. Tong, Z. K. Zhong, W. H. Yu, and M. Q. Chu. 2017. “Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate.” J. Cleaner Prod. 156: 648–659. https://doi.org/10.1016/j.jclepro.2017.04.050.
Chiron, S., A. Fernandez-Alba, A. Rodriguez, and E. Garcia-Calvo. 2000. “Pesticide chemical oxidation: State-of-the-art.” Water Res. 34: 366–377. https://doi.org/10.1016/S0043-1354(99)00173-6.
Daghrir, R., and P. Drogui. 2013. “Tetracycline antibiotics in the environment: A review.” Environ. Chem. Lett. 11: 209–227. https://doi.org/10.1007/s10311-013-0404-8.
De Gisi, S., G. Lofrano, M. Grassi, and M. Notarnicola. 2016. “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review.” Sustainable Mater.Technol. 9: 10–40. https://doi.org/10.1016/j.susmat.2016.06.002.
Dhangar, K., and M. Kumar. 2020. “Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review.” Sci. Total Environ. 738 (336): 140320. https://doi.org/10.1016/j.scitotenv.2020.140320.
Diagboya, P. N., and E. D. Dikio. 2018. “Scavenging of aqueous toxic organic and inorganic cations using novel facile magneto-carbon black-clay composite adsorbent.” J. Cleaner Prod. 180: 71–80. https://doi.org/10.1016/j.jclepro.2018.01.166.
Diagboya, P. N., B. I. Olu-Owolabi, F. M. Mtunzi, and K. O. Adebowale. 2020. “Clay-carbonaceous material composites: Towards a new class of functional adsorbents for water treatment.” Surf. Interfaces 19: 100506. https://doi.org/10.1016/j.surfin.2020.100506.
Drug Bank. 2000. Accessed September 29, 2021. https://go.drugbank.com/drugs/DB00602.
Dutt, M. A., M. A. Hanif, F. Nadeem, and H. N. Bhatti. 2020. “A review of advances in engineered composite materials popular for wastewater treatment.” J. Environ. Chem. Eng. 8: 104073. https://doi.org/10.1016/j.jece.2020.104073.
Edberg, S. C., E. W. Rice, R. J. Karlin, and M. J. Allen. 2000. “Escherichia coli: The best biological drinking water indicator for public health protection.” J. Appl. Microbiol. 88: 106S–116S.
Ezzatahmadi, N., G. A. Ayoko, G. J. Millar, R. Speight, C. Yan, J. Li, S. Li, J. Zhu, and Y. Xi. 2017. “Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review.” Chem. Eng. J. 312: 336–350. https://doi.org/10.1016/j.cej.2016.11.154.
Foroutan, R., R. Mohammadi, A. S. Adeleye, S. Farjadfard, Z. Esvandi, H. Arfaeinia, G. A. Sorial, B. Ramavandi, and S. Sahebi. 2019. “Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents.” Environ. Sci. Pollut. Res. 26: 29748–29762. https://doi.org/10.1007/s11356-019-06070-5.
Franco, P. E., M. T. Veit, C. E. Borba, G. d. C. Gonçalves, M. R. Fagundes-Klen, R. Bergamasco, E. A. da Silva, and P. Y. R. Suzaki. 2013. “Nickel(II) and zinc(II) removal using Amberlite IR-120 resin: Ion exchange equilibrium and kinetics.” Chem. Eng. J. 221: 426–435. https://doi.org/10.1016/j.cej.2013.02.006.
Han, H., M. K. Rafiq, T. Zhou, R. Xu, O. Mašek, and X. Li. 2019. “A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants.” J. Hazard. Mater. 369: 780–796. https://doi.org/10.1016/j.jhazmat.2019.02.003.
Hansen, É., P. Monteiro de Aquim, and M. Gutterres. 2021. “Current technologies for post-tanning wastewater treatment: A review.” J. Environ. Manage. 294: 113003. https://doi.org/10.1016/j.jenvman.2021.113003.
Hassan, M. M., and C. M. Carr. 2021. “Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review.” Chemosphere 265: 129087. https://doi.org/10.1016/j.chemosphere.2020.129087.
Hegazi, H. A. 2013. “Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents.” HBRC J. 9 (3): 276–282.
Inyang, M., and E. Dickenson. 2015. “The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review.” Chemosphere 134: 232–240. https://doi.org/10.1016/j.chemosphere.2015.03.072.
Ismadji, S., D. S. Tong, F. E. Soetaredjo, A. Ayucitra, W. H. Yu, and C. H. Zhou. 2016. “Bentonite hydrochar composite for removal of ammonium from Koi fish tank.” Appl. Clay Sci. 119: 146–154. https://doi.org/10.1016/j.clay.2015.08.022.
Jaspal, D., and A. Malviya. 2020. “Composites for wastewater purification: A review.” Chemosphere 246: 125788. https://doi.org/10.1016/j.chemosphere.2019.125788.
Juhola, R., A. Heponiemi, S. Tuomikoski, T. Hu, H. Prokkola, H. Romar, and U. Lassi. 2019. “Biomass-based composite catalysts for catalytic wet peroxide oxidation of bisphenol A: Preparation and characterization studies.” J. Environ. Chem. Eng. 7: 103127. https://doi.org/10.1016/j.jece.2019.103127.
Kausar, A., R. Shahzad, S. Asim, S. BiBi, J. Iqbal, N. Muhammad, M. Sillanpaa, and I. U. Din. 2021. “Experimental and theoretical studies of Rhodamine B direct dye sorption onto clay–cellulose composite.” J. Mol. Liq. 328: 115165. https://doi.org/10.1016/j.molliq.2020.115165.
Khalifa, A. Z., Ö. Cizer, Y. Pontikes, A. Heath, P. Patureau, S. A. Bernal, and A. T. M. Marsh. 2020. “Advances in alkali-activation of clay minerals.” Cem. Concr. Res. 132: 106050. https://doi.org/10.1016/j.cemconres.2020.106050.
Kleyi, P. E., S. Sinha, A. Luther, K. Abia, E. Ubomba-Jaswa, J. Wesley-smith, and A. Maity. 2016. “Preparation and evaluation of quaternary imidazolium-modified montmorillonite for disinfection of drinking water.” Appl. Clay Sci. 127–128: 95–104. https://doi.org/10.1016/j.clay.2016.04.012.
Lazaratou, C. V., D. V. Vayenas, and D. Papoulis. 2020. “The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review.” Appl. Clay Sci. 185: 105377. https://doi.org/10.1016/j.clay.2019.105377.
Li, G. L., C. H. Zhou, S. Fiore, and W. H. Yu. 2019a. “Interactions between microorganisms and clay minerals: New insights and broader applications.” Appl. Clay Sci. 177: 91–113. https://doi.org/10.1016/j.clay.2019.04.025.
Li, M., H. Liu, T. Chen, C. Dong, and Y. Sun. 2019b. “Synthesis of magnetic biochar composites for enhanced uranium (VI) adsorption.” Sci. Total Environ. 651: 1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259.
Li, Y., Z. Wang, X. Xie, J. Zhu, R. Li, and T. Qin. 2017. “Removal of Norfloxacin from aqueous solution by clay–biochar composite prepared from potato stem and natural attapulgite.” Colloids Surf., A 514: 126–136. https://doi.org/10.1016/j.colsurfa.2016.11.064.
Liang, C. Z., S. P. Sun, F. Y. Li, Y. K. Ong, and T. S. Chung. 2014. “Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration.” J. Membr. Sci. 469: 306–315. https://doi.org/10.1016/j.memsci.2014.06.057.
Liu, H., Y. Du, X. Wang, and L. Sun. 2004. “Chitosan kills bacteria through cell membrane damage.” Int. J. Food Microbiol. 95 (2): 147–155.
Loganathan, P., S. Vigneswaran, J. Kandasamy, and R. Naidu. 2013. “Defluoridation of drinking water using adsorption processes.” J. Hazard. Mater. 248–249 (1): 1–19. https://doi.org/10.1016/j.jhazmat.2012.12.043.
Millar, G. J., S. J. Couperthwaite, M. de Bruyn, and C. W. Leung. 2015. “Ion exchange treatment of saline solutions using Lanxess S108H strong acid cation resin.” Chem. Eng. J. 280: 525–535. https://doi.org/10.1016/j.cej.2015.06.008.
Millar, G. J., S. J. Couperthwaite, and S. Papworth. 2016. “Ion exchange of sodium chloride and sodium bicarbonate solutions using strong acid cation resins in relation to coal seam water treatment.” J. Water Process Eng. 11: 60–67. https://doi.org/10.1016/j.jwpe.2016.03.003.
Mohammadi, R., M. Hezarjaribi, D. L. Ramasamy, M. Sillanpää, and A. Pihlajamäki. 2021. “Application of a novel biochar adsorbent and membrane to the selective separation of phosphate from phosphate-rich wastewaters.” Chem. Eng. J. 407: 126494. https://doi.org/10.1016/j.cej.2020.126494.
Mohan, D., A. Sarswat, Y. S. Ok, and C. U. Pittman. 2014. “Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review.” Bioresour. Technol. 160: 191–202. https://doi.org/10.1016/j.biortech.2014.01.120.
Mueller, B. 2015. “Experimental interactions between clay minerals and bacteria : A review.” Pedosphere 25 (6): 799–810.
Mushtaq, M., H. N. Bhatti, M. Iqbal, and S. Noreen. 2016. “Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.” J. Environ. Manage. 176: 21–33. https://doi.org/10.1016/j.jenvman.2016.03.013.
Ngulube, T., J. R. Gumbo, V. Masindi, and A. Maity. 2017. “An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review.” J. Environ. Manage. 191: 35–57. https://doi.org/10.1016/j.jenvman.2016.12.031.
Nur, T., W. G. Shim, P. Loganathan, S. Vigneswaran, and J. Kandasamy. 2015. “Nitrate removal using Purolite A520E ion exchange resin: Batch and fixed-bed column adsorption modelling.” Int. J. Environ. Sci. Technol. 12: 1311–1320. https://doi.org/10.1007/s13762-014-0510-6.
Olu-Owolabi, B. I., A. H. Alabi, P. N. Diagboya, E. I. Unuabonah, and R. A. Düring. 2017. “Adsorptive removal of 2,4,6-trichlorophenol in aqueous solution using calcined kaolinite–biomass composites.” J. Environ. Manage. 192: 94–99. https://doi.org/10.1016/j.jenvman.2017.01.055.
Olu-Owolabi, B. I., A. H. Alabi, E. I. Unuabonah, P. N. Diagboya, L. Böhm, and R. A. Düring. 2016. “Calcined biomass-modified bentonite clay for removal of aqueous metal ions.” J. Environ. Chem. Eng. 4: 1376–1382. https://doi.org/10.1016/j.jece.2016.01.044.
Olu-Owolabi, B. I., P. N. Diagboya, F. M. Mtunzi, and R. A. Düring. 2021. “Utilizing eco-friendly kaolinite–biochar composite adsorbent for removal of ivermectin in aqueous media.” J. Environ. Manage. 279: 111619. https://doi.org/10.1016/j.jenvman.2020.111619.
Olu-Owolabi, B. I., P. N. Diagboya, E. I. Unuabonah, A. H. Alabi, R. A. Düring, and K. O. Adebowale. 2018. “Fractal-like concepts for evaluation of toxic metals adsorption efficiency of feldspar–biomass composites.” J. Cleaner Prod. 171: 884–891. https://doi.org/10.1016/j.jclepro.2017.10.079.
Omorogie, M. O., et al. 2018. “The sequestral capture of fluoride, nitrate and phosphate by metal-doped and surfactant-modified hybrid clay materials.” Chem. Pap. 72: 409–417. https://doi.org/10.1007/s11696-017-0290-9.
Pandey, S. 2017. “A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment.” J. Mol. Liq. 241: 1091–1113. https://doi.org/10.1016/j.molliq.2017.06.115.
Premarathna, K. S. D., A. U. Rajapaksha, N. Adassoriya, B. Sarkar, N. M. S. Sirimuthu, A. Cooray, Y. S. Ok, and M. Vithanage. 2019a. “Clay–biochar composites for sorptive removal of tetracycline antibiotic in aqueous media.” J. Environ. Manage. 238: 315–322. https://doi.org/10.1016/j.jenvman.2019.02.069.
Premarathna, K. S. D., A. U. Rajapaksha, B. Sarkar, E. E. Kwon, A. Bhatnagar, Y. S. Ok, and M. Vithanage. 2019b. “Biochar-based engineered composites for sorptive decontamination of water: A review.” Chem. Eng. J. 372: 536–550. https://doi.org/10.1016/j.cej.2019.04.097.
Qhubu, M. C., L. G. Mgidlana, L. M. Madikizela, and V. E. Pakade. 2021. “Preparation, characterization and application of activated clay biochar composite for removal of Cr(VI) in water: Isotherms, kinetics and thermodynamics.” Mater. Chem. Phys. 260: 124165. https://doi.org/10.1016/j.matchemphys.2020.124165.
Qin, C., H. Li, Q. Xiao, Y. Liu, J. Zhu, and Y. Du. 2006. “Water-solubility of chitosan and its antimicrobial activity.” Carbohydr. Polym. 63: 367–374.
Rafatullah, M., O. Sulaiman, R. Hashim, and A. Ahmad. 2010. “Adsorption of methylene blue on low-cost adsorbents: A review.” J. Hazard. Mater. 177 (1–3): 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047.
Rath, S., L. A. Pereira, S. M. D. Bosco, M. G. Maniero, A. H. Fostier, and J. R. Guimarães. 2016. “Fate of ivermectin in the terrestrial and aquatic environment: Mobility, degradation, and toxicity towards Daphnia similis.” Environ. Sci. Pollut. Res. 23: 5654–5666. https://doi.org/10.1007/s11356-015-5787-6.
Rathi, B. S., P. S. Kumar, and D. V. N. Vo. 2021. “Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment.” Sci. Total Environ. 797: 149134. https://doi.org/10.1016/j.scitotenv.2021.149134.
Samsami, S., M. Mohamadi, M. H. Sarrafzadeh, E. R. Rene, and M. Firoozbahr. 2020. “Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives.” Process Saf. Environ. Prot. 143: 138–163. https://doi.org/10.1016/j.psep.2020.05.034.
Secondes, M. F. N., V. Naddeo, V. Belgiorno, and F. Ballesteros. 2014. “Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation.” J. Hazard. Mater. 264: 342–349. https://doi.org/10.1016/j.jhazmat.2013.11.039.
Selim, A. Q., L. Sellaoui, and M. Mobarak. 2019. “Statistical physics modeling of phosphate adsorption onto chemically modified carbonaceous clay.” J. Mol. Liq. 279: 94–107. https://doi.org/10.1016/j.molliq.2019.01.100.
Teh, C. Y., P. M. Budiman, K. P. Y. Shak, and T. Y. Wu. 2016. “Recent advancement of coagulation-flocculation and its application in wastewater treatment.” Ind. Eng. Chem. Res. 55: 4363–4389. https://doi.org/10.1021/acs.iecr.5b04703.
Tian, G., W. Wang, L. Zong, Y. Kang, and A. Wang. 2016. “A functionalized hybrid silicate adsorbent derived from naturally abundant low-grade palygorskite clay for highly efficient removal of hazardous antibiotics.” Chem. Eng. J. 293: 376–385. https://doi.org/10.1016/j.cej.2016.02.035.
Titchou, F. E., H. Zazou, H. Afanga, J. El Gaayda, R. A. Akbour, P. V. Nidheesh, and M. Hamdani. 2021. “Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes.” Chem. Eng. Process. 169: 108631. https://doi.org/10.1016/j.cep.2021.108631.
Trazzi, P. A., J. J. Leahy, M. H. B. Hayes, and W. Kwapinski. 2016. “Adsorption and desorption of phosphate on biochars.” J. Environ. Chem. Eng. 4: 37–46. https://doi.org/10.1016/j.jece.2015.11.005.
Uddin, M. K. 2017. “A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade.” Chem. Eng. J. 308: 438–462. https://doi.org/10.1016/j.cej.2016.09.029.
Unuabonah, E. I., A. O. Adedapo, C. O. Nnamdi, A. Adewuyi, M. O. Omorogie, K. O. Adebowale, B. I. Olu-Owolabi, A. E. Ofomaja, and A. Taubert. 2015. “Successful scale-up performance of a novel papaya-clay combo adsorbent: Up-flow adsorption of a basic dye.” Desalin. Water Treat. 56: 536–551. https://doi.org/10.1080/19443994.2014.944572.
Unuabonah, E. I., A. Adewuyi, M. O. Kolawole, M. O. Omorogie, O. C. Olatunde, S. O. Fayemi, C. Günter, C. P. Okoli, F. O. Agunbiade, and A. Taubert. 2017a. “Disinfection of water with new chitosan-modified hybrid clay composite adsorbent.” Heliyon 3: e00379. https://doi.org/10.1016/j.heliyon.2017.e00379.
Unuabonah, E. I., F. O. Agunbiade, M. O. Alfred, T. A. Adewumi, C. P. Okoli, M. O. Omorogie, M. O. Akanbi, A. E. Ofomaja, and A. Taubert. 2017b. “Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water.” J. Cleaner Prod. 164: 652–663. https://doi.org/10.1016/j.jclepro.2017.06.160.
Unuabonah, E. I., C. Günter, J. Weber, S. Lubahn, and A. Taubert. 2013. “Hybrid clay: A new highly efficient adsorbent for water treatment.” ACS Sustainable Chem. Eng. 1: 966–973. https://doi.org/10.1021/sc400051y.
Unuabonah, E. I., M. O. Kolawole, F. O. Agunbiade, M. O. Omorogie, D. T. Koko, C. G. Ugwuja, L. E. Ugege, N. E. Oyejide, C. Günter, and A. Taubert. 2017c. “Novel metal-doped bacteriostatic hybrid clay composites for point-of-use disinfection of water.” J. Environ. Chem. Eng. 5: 2128–2141. https://doi.org/10.1016/j.jece.2017.04.017.
Unuabonah, E. I., C. G. Ugwuja, M. O. Omorogie, A. Adewuyi, and N. A. Oladoja. 2018. “Clays for efficient disinfection of bacteria in water.” Appl. Clay Sci. 151: 211–223. https://doi.org/10.1016/j.clay.2017.10.005.
Varsha, M., P. Senthil Kumar, and B. Senthil Rathi. 2022. “A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents.” Chemosphere 287: 132270. https://doi.org/10.1016/j.chemosphere.2021.132270.
Viglašová, E., M. Galamboš, Z. Danková, L. Krivosudský, C. L. Lengauer, R. Hood-Nowotny, G. Soja, A. Rompel, M. Matík, and J. Briančin. 2018. “Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal.” Waste Manage. (Oxford) 79: 385–394. https://doi.org/10.1016/j.wasman.2018.08.005.
Wang, J., and C. Chen. 2009. “Biosorbents for heavy metals removal and their future.” Biotechnol. Adv. 27: 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002.
Wang, J., D. Yu, X. Zeng, J. Chen, M. Si, C. Wen, and M. Xu. 2015. “Effect of carbon dioxide on the high temperature transformation of siderite under low oxygen conditions.” Fuel 148: 73–78. https://doi.org/10.1016/j.fuel.2015.01.063.
Wu, P., Z. Wang, A. Bhatnagar, P. Jeyakumar, H. Wang, Y. Wang, and X. Li. 2021. “Microorganisms-carbonaceous materials immobilized complexes : Synthesis, adaptability and environmental applications.” J. Hazard. Mater. 416: 125915. https://doi.org/10.1016/j.jhazmat.2021.125915.
Xiao, W., X. Jiang, X. Liu, W. Zhou, Z. N. Garba, I. Lawan, L. Wang, and Z. Yuan. 2021. “Adsorption of organic dyes from wastewater by metal-doped porous carbon materials.” J. Cleaner Prod. 284: 124773. https://doi.org/10.1016/j.jclepro.2020.124773.
Xie, M., H. K. Shon, S. R. Gray, and M. Elimelech. 2016. “Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.” Water Res. 89: 210–221. https://doi.org/10.1016/j.watres.2015.11.045.
Xing, B., T. Chen, H. Liu, C. Qing, J. Xie, and Q. Xie. 2017. “Removal of phosphate from aqueous solution by activated siderite ore: Preparation, performance and mechanism.” J. Taiwan Inst. Chem. Eng. 80: 875–882. https://doi.org/10.1016/j.jtice.2017.07.016.
Yadav, A., N. Bagotia, A. K. Sharma, and S. Kumar. 2021a. “Advances in decontamination of wastewater using biomass-based composites: A critical review.” Sci. Total Environ. 784: 147108. https://doi.org/10.1016/j.scitotenv.2021.147108.
Yadav, S., A. Yadav, N. Bagotia, A. K. Sharma, and S. Kumar. 2021b. “Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater - A review.” J. Water Process Eng. 42: 102148. https://doi.org/10.1016/j.jwpe.2021.102148.
Yang, X., F. Li, M. Xia, F. Luo, and Y. Jiang. 2018. “Investigation on the micro-structure and adsorption capacity of cellulosic biomass carbon based montmorillonite composite.” Microporous Mesoporous Mater. 256: 18–24. https://doi.org/10.1016/j.micromeso.2017.07.052.
Yao, Y., B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou, A. E. Creamer, Y. Sun, and L. Yang. 2014. “Characterization and environmental applications of clay–biochar composites.” Chem. Eng. J. 242: 136–143. https://doi.org/10.1016/j.cej.2013.12.062.
Yin, Q., H. Ren, R. Wang, and Z. Zhao. 2018a. “Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content.” Sci. Total Environ. 631–632: 895–903. https://doi.org/10.1016/j.scitotenv.2018.03.091.
Yin, Q., R. Wang, and Z. Zhao. 2018b. “Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water.” J. Cleaner Prod. 176: 230–240. https://doi.org/10.1016/j.jclepro.2017.12.117.
Zaki, M. I., M. A. Hasan, F. A. Al-sagheer, and L. Pasupulety. 2001. “In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3,TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides.” Colloids Surf. 190: 261–272.
Zhang, J., M. Lu, J. Wan, Y. Sun, H. Lan, and X. Deng. 2018. “Effects of pH, dissolved humic acid and Cu2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw.” Biochem. Eng. J. 130: 104–112. https://doi.org/10.1016/j.bej.2017.11.018.
Zhou, Y., J. Lu, Y. Zhou, and Y. Liu. 2019. “Recent advances for dyes removal using novel adsorbents: A review.” Environ. Pollut. 252: 352–365. https://doi.org/10.1016/j.envpol.2019.05.072.
Zymankowska-Kumon, S., M. Holtzer, E. Olejnik, and A. Bobrowski. 2012. “Influence of the changes of the structure of foundry bentonites on their binding properties.” Medziagotyra 18: 57–61.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 3July 2022

History

Received: Oct 1, 2021
Accepted: Feb 5, 2022
Published online: Apr 7, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 7, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Shobha Rawat
Ph.D. Scholar, Dept. of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India.
Professor, Dept. of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India (corresponding author). ORCID: https://orcid.org/0000-0002-8466-7528. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share