State-of-the-Art Reviews
Oct 13, 2021

Dynamics of Clogging in Subsurface Flow Constructed Wetlands

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26, Issue 1

Abstract

Subsurface flow constructed wetlands (SSF CWs) are increasingly used globally for the removal of pollutants from wastewater. However, clogging of the filter bed is the main operational and maintenance risk of SSF CWs for the long-term stable treatment of wastewater. Recently, many studies have reported various strategies to combat clogging in wetland beds. To ensure the appropriate implementation of the developed strategies, a thorough understanding of the mechanism of clogging is required. Currently, there is no appropriate analytical review article that gives insight into wetland clogging and its mechanisms. Therefore, this article aims to review the major types of clogging, such as physical, chemical, and biological clogging, their mechanisms, field investigations, and clogging remedial measures. This article will provide insights into wetland clogging and will enable prospective researchers and engineers to use suitable measures against clogging for its effective alleviation.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors wish to thank the Department of Civil Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, India, for providing facilities to carry out the research work in the related area.

References

Aiello, R., V. Bagarello, S. Barbagallo, M. Iovino, A. Marzo, and A. Toscano. 2016. “Evaluation of clogging in full-scale subsurface flow constructed wetlands.” Ecol. Eng. 95: 505–513. https://doi.org/10.1016/j.ecoleng.2016.06.113.
Ali, I., Z. M. Khan, C. Peng, I. Naz, M. Sultan, M. Ali, M. H. Mahmood, and Y. Niaz. 2017. “Identification and elucidation of the designing and operational issues of trickling filter systems for wastewater treatment.” Pol. J. Environ. Stud. 26 (6): 2431–2444. https://doi.org/10.15244/pjoes/70627.
Al-Isawi, R., M. Scholz, Y. Wang, and A. Sani. 2015. “Clogging of vertical-flow constructed wetlands treating urban wastewater contaminated with a diesel spill.” Environ. Sci. Pollut. Res. 22 (17): 12779–12803. https://doi.org/10.1007/s11356-014-3732-8.
Almeida, A., F. Carvalho, M. J. Imagin ario, I. Castanheira, A. R. Prazeres, and C. Ribeiro. 2017. “Nitrate removal in vertical flow constructed wetland planted with Vetiveria zizanioides: Effect of hydraulic load.” Ecol. Eng. 99: 535–542. https://doi.org/10.1016/j.ecoleng.2016.11.069.
Atalla, A., C. Pelissari, M. de Oliveira, M. A. de Souza Pereira, P. S. Cavalheri, P. H. Sezerino, and F. J. C. M. Filho. 2021. “Influence of earthworm presence and hydraulic loading rate on the performance of vertical flow constructed wetlands.” Environ. Technol. 42 (17): 2700–2708. https://doi.org/10.1080/09593330.2019.1710572.
Baake, F. 1985. Biological clogging of pore spaces. [In German.] Rep. No. 22. Darmstadt, Germany: Schriftenreihe WAR.
Babatunde, A. O. 2010. Engineered wetlands: concept, design and development of an alum sludge based constructed wetland system. Saarbrucken, Germany: VDM Verlag Dr. Muller Publishing.
Boog, J., T. Kalbacher, J. Nivala, N. Forquet, M. van Afferden, and R. A. Müller. 2019. “Modeling the relationship of aeration, oxygen transfer and treatment performance in aerated horizontal flow treatment wetlands.” Water Res. 157: 321–334. https://doi.org/10.1016/j.watres.2019.03.062.
Bouwer, H. 2002. “Artificial recharge of groundwater: Hydrogeology and engineering.” Hydrogeol. J. 10: 121–142. https://doi.org/10.1007/s10040-001-0182-4.
Brovelli, A., F. Malaguerra, and D. A. Barry. 2009. “Bioclogging in porous media: Model development and sensitivity to initial conditions.” Environ. Modell. Software 24 (5): 611–626. https://doi.org/10.1016/j.envsoft.2008.10.001.
Carballeira, T., I. Ruiz, and M. Soto. 2017. “Aerobic and anaerobic biodegradability of accumulated solids in horizontal subsurface flow constructed wetlands.” Int. Biodeterior. Biodegrad. 119: 396–404. https://doi.org/10.1016/j.ibiod.2016.10.048.
Carrasco-Acosta, M., P. Garcia-Jimenez, J. A. Herrera-Melián, N. Peñate-Castellano, and A. Rivero-Rosales. 2019. “The effects of plants on pollutant removal, clogging, and bacterial community structure in palm mulch-based vertical flow constructed wetlands.” Sustainability 11: 632. https://doi.org/10.3390/su11030632.
Carvalho, P. N., J. L. Araujo, A. P. Mucha, M. C. P. Basto, and C. M. R. Almeida. 2013. “Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater.” Bioresour. Technol. 134: 412–416. https://doi.org/10.1016/j.biortech.2013.02.027.
Caselles-Osorio, A., A. Porta, M. Porras, and J. Garcia. 2007a. “Effect of high organic loading rates of particulate and dissolved organic matter on the efficiency of shallow experimental horizontal subsurface-flow constructed wetlands.” Water Air Soil Pollut. 183 (1): 367–375. https://doi.org/10.1007/s11270-007-9385-1.
Caselles-Osorio, A., J. Puigagut, E. Segú, N. Vaello, F. Granés, D. García, and J. García. 2007b. “Solids accumulation in six full-scale subsurface flow constructed wetlands.” Water Res. 41 (6): 1388–1398. https://doi.org/10.1016/j.watres.2006.12.019.
Chen, X., D. Xu, Y. Li, J. Gu, X. Li, Q. Pan, and Y. Guan. 2017. “Characteristics of litter decomposition of 3 kinds of aquatic plants and permeability coefficient of constructed wetland.” Wetland Sci. 15 (5): 740–746.
Christensen, J. B., D. L. Jensen, C. Gron, Z. Filip, and T. H. Christensen. 1998. “Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater.” Water Res. 32: 125–135. https://doi.org/10.1016/S0043-1354(97)00202-9.
Chu, T., Y. S. Yang, Y. Lu, X. Q. Du, and X. Y. Ye. 2019. “Clogging process by suspended solids during groundwater artificial recharge: Evidence from lab simulations and numerical modelling.” Hydrol. Processes 33 (25): 3226–3235. https://doi.org/10.1002/hyp.13553.
Claveau-Mallet, D., and Y. Comeau. 2020. “Chemical clogging and evolution of head losses in steel slag filters used for phosphorus removal.” Water 12 (6): 1517. https://doi.org/10.3390/w12061517.
Cooper, P. F. 2005. “The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates.” Water Sci. Technol. 51 (9): 81–90. https://doi.org/10.2166/wst.2005.0293.
Coppola, A., A. Santini, P. Botti, S. Vacca, V. Comegna, and G. Severino. 2004. “Methodological approach for evaluating the response of soil hydrological behavior to irrigation with treated municipal wastewater.” J. Hydrol. 292 (1–4): 114–134. https://doi.org/10.1016/j.jhydrol.2003.12.028.
Dahab, M. F., and R. Y. Surampalli. 2001. “Subsurface-flow constructed wetlands treatment in the plains: Five years of experience.” Water Sci. Technol. 44 (11–12): 375–380. https://doi.org/10.2166/wst.2001.0854.
De Paoli, A. C., and M. Von Sperling. 2013. “Evaluation of clogging in planted and unplanted horizontal subsurface flow constructed wetlands: Solids accumulation and hydraulic conductivity reduction.” Water Sci. Technol. 67 (6): 1345–1352. https://doi.org/10.2166/wst.2013.008.
Desmond, P., L. Böni, P. Fischer, E. Morgenroth, and N. Derlon. 2018. “Stratification in the physical structure and cohesion of membrane biofilms — implications for hydraulic resistance.” J. Membr. Sci. 564: 897–904. https://doi.org/10.1016/j.memsci.2018.07.088.
Ding, Y., T. Lv, S. Bai, Z. Li, H. Ding, S. You, and Q. Xie. 2018. “Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: Assessment of treatment performance, biofilm development, and solids accumulation.” Environ. Sci. Pollut. Res. 25 (2): 1883–1891. https://doi.org/10.1007/s11356-017-0636-4.
Du, M., D. Xu, X. Trinh, S. Liu, M. Wang, Y. Zhang, and Z. Wu. 2016. “EPS solubilization treatment by applying the biosurfactant rhamnolipid to reduce clogging in constructed wetlands.” Bioresour. Technol. 218: 833–841. https://doi.org/10.1016/j.biortech.2016.07.040.
Du, Y., B. Luo, W. Han, Y. Duan, C. Yu, M. Wang, Y. Ge, and J. Chang. 2020. “Increasing plant diversity offsets the influence of coarse sand on ecosystem services in microcosms of constructed wetlands.” Environ. Sci. Pollut. Res. 27: 34398–34411. https://doi.org/10.1007/s11356-020-09592-5.
Fioreze, M., and M. A. Mancuso. 2019. “MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: A tool for design criteria.” Ecol. Eng. 130: 45–52. https://doi.org/10.1016/j.ecoleng.2019.01.012.
Fisher, P. J. 1990. “Hydraulic characteristics of constructed wetlands at Richmond, New South Wales, Australia.” In Constructed wet-lands in water pollution control, edited by P. F. Cooper, and B. C. Findlater, 21–32. Oxford: Pergamon Press.
Flemming, H. C., and J. Wingende. 2010. “The biofilm matrix.” Nat. Rev. Microbiol. 8 (9): 623–633. https://doi.org/10.1038/nrmicro2415.
Fu, G., Z. Wu, S. Zhang, S. Cheng, and F. He. 2004. “Studies on clogging of the constructed wetland.” Environ. Sci. 25 (3): 144–149.
Fu, G., J. Zhang, W. Chen, and Z. Chen. 2013. “Medium clogging and the dynamics of organic matter accumulation in constructed wetlands.” Ecol. Eng. 60: 393–398. https://doi.org/10.1016/j.ecoleng.2013.09.012.
Garcia-Artigas, R., M. Himi, A. Revil, A. Urruela, R. Lovera, A. Sendrós, A. Casas, and L. Rivero. 2020. “Time-domain induced polarization as a tool to image clogging in treatment wetlands.” Sci. Total Environ. 724: 138189. https://doi.org/10.1016/j.scitotenv.2020.138189.
Ghosehajra, M. 2001. “Soil filter clogging: physical, chemical, and biological mechanisms.” Ph.D. thesis, Dept. of Civil Engineering, Kansas State Univ.
Grace, M. A., M. G. Healy, and E. Clifford. 2016. “Performance and surface clogging in intermittently loaded and slow sand filters containing novel media.” J. Environ. Manage. 180: 102–110. https://doi.org/10.1016/j.jenvman.2016.05.018.
Herrera-Melian, J. A., A. Gonz alez-Bordon, M. A. Martín-Gonz alez, P. GarcíaJimenez, M. Carrasco, and J. Araña. 2014. “Palm tree mulch as substrate for primary treatment wetlands processing high strength urban wastewater.” J. Environ. Manage. 139: 22–31. https://doi.org/10.1016/j.jenvman.2013.11.051.
Hu, Z., Y. Chu, and Y. Ma. 2020. “Design of a combined constructed wetland system and its application on swine wastewater treatment.” J. Environ. Eng. 146 (1): 04019093. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001602.
Hua, G., Q. Chen, J. Kong, and M. Li. 2017. “Evapotranspiration versus oxygen intrusion: Which is the main force in alleviating bioclogging of vertical-flow constructed wetlands during a resting operation?” Environ. Sci. Pollut. Res. 24 (22): 18355–18362. https://doi.org/10.1007/s11356-017-9501-8.
Hua, G., Y. Zeng, Z. Zhao, K. Cheng, and G. Chen. 2014b. “Applying a resting operation to alleviate bioclogging in vertical flow constructed wetlands: An experimental lab evaluation.” J. Environ. Manage. 136: 47–53. https://doi.org/10.1016/j.jenvman.2014.01.030.
Hua, G. F., Z. W. Zhao, J. Kong, R. Guo, and Y. T. Zeng. 2014a. “Effects of plant roots on the hydraulic performance during the clogging process in mesocosm vertical flow constructed wetlands.” Environ. Sci. Pollut. Res. 21: 13017–13026. https://doi.org/10.1007/s11356-014-3249-1.
Hua, G. F., W. Zhu, J. Q. Shen, Y. H. Zhang, and Y. T. Zeng. 2013c. “The role of biofilm in clogging process in vertical flow constructed Wetland.” Appl. Eng. Agric. 29: 61–66. https://doi.org/10.13031/2013.42534.
Hua, G. F., W. Zhu, and Y. H. Zhang. 2013a. “Effects of solubilization treatment and intermittent operation on clogging in vertical flow constructed wetland.” In Proc., 3rd Int. Conf. on Intelligent System Design and Engineering Applications, 696–699. New York: IEEE.
Hua, G. F., W. Zhu, L. Li, Y. Q. Zhao, and J. Q. Shen. 2013b. “An integrated model of substrate clogging in vertical flow constructed wetlands.” J. Environ. Manage. 119: 67–75. https://doi.org/10.1016/j.jenvman.2013.01.023.
Hua, G. F., W. Zhu, L. F. Zhao, and J. Y. Huang. 2010a. “Clogging pattern in vertical-flow constructed wetlands: Insight from a laboratory study.” J. Hazard. Mater. 180 (1–3): 668–674. https://doi.org/10.1016/j.jhazmat.2010.04.088.
Hua, G. F., W. Zhu, L. Zhao, and Y. H. Zhang. 2010b. “Applying solubilization treatment to reverse clogging in laboratory-scale vertical flow constructed wetlands.” Water Sci. Technol. 61 (6): 1479–1487. https://doi.org/10.2166/wst.2010.038.
Hua, T., and R. J. Haynes. 2016. “Constructed wetlands: Fundamental processes and mechanisms for heavy metal removal from wastewater streams.” Int. J. Environ. Eng. 8 (2–3): 148–178. https://doi.org/10.1504/IJEE.2016.082306.
Ives, K. J. 1970. “Rapid filtration.” Water Res. 4 (3): 201–223. https://doi.org/10.1016/0043-1354(70)90068-0.
Kadlec, R. H., and R. L. Knight. 1996. Treatment wetlands. Boca Raton, FL: Lewis Publishers.
Kadlec, R. H., and S. Wallace. 2009. Treatment wetlands. 2nd ed., 59–62. Boca Raton, FL: CRC.
Keng, T. S., M. F. R. Samsudin, and S. Sufian. 2021. “Evaluation of wastewater treatment performance to a field-scale constructed wetland system at clogged condition: A case study of ammonia manufacturing plant.” Sci. Total Environ. 759: 143489. https://doi.org/10.1016/j.scitotenv.2020.143489.
Kim, D. S., and H. S. Fogler. 2000. “Biomass evolution in porous media and its effects on permeability under starvation conditions.” Biotechnol. Bioeng. 69: 47–56. https://doi.org/<47::AID-BIT6>3.0.CO;2-N.
Kim, J. W., H. Choi, and Y. A. Pachepsky. 2010. “Biofilm morphology as related to the porous media clogging.” Water Res. 44 (4): 1193–1201. https://doi.org/10.1016/j.watres.2009.05.049.
Knowles, P., G. Dotro, J. Nivala, and J. García. 2011. “Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors.” Ecol. Eng. 37 (2): 99–112. https://doi.org/10.1016/j.ecoleng.2010.08.005.
Knowles, P. R., and P. A. Davies. 2009. “A method for the in-situ determination of the hydraulic conductivity of gravels as used in constructed wetlands for wastewater treatment.” Desalin. Water Treat. 5 (1–3): 257–266. https://doi.org/10.5004/dwt.2009.548.
Knowles, P. R., P. Griffin, and P. A. Davies. 2010. “Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland.” Water Res. 44: 320–330. https://doi.org/10.1016/j.watres.2009.09.028.
Kreikenbohm, R., and W. Stephan. 1985. “Application of a two-compartment model to the wall growth of Pelobacter acidigallici under continuous culture conditions.” Biotechnol. Bioeng. 27: 296–301. https://doi.org/10.1002/bit.260270313.
Langergraber, G., R. Haberl, J. Laber, and A. Pressl. 2003. “Evaluation of substrate clogging processes in vertical flow constructed wetlands.” Water Sci. Technol. 48 (5): 25–34. https://doi.org/10.2166/wst.2003.0272.
Langergraber, G., A. Pressl, K. Leroch, R. Rohrhofer, and R. Haberl. 2009. “Experiences with a top layer of gravel to enhance the performance of vertical flow constructed wetlands at cold temperatures.” Water Sci. Technol. 59 (6): 1111–1116. https://doi.org/10.2166/wst.2009.085.
Latune, R. L., O. Laporte-Daube, N. Fina, S. Peyrat, L. Pelus, and P. Molle. 2017. “Which plants are needed for a French vertical-flow constructed wetland under a tropical climate?” Water Sci. Technol. 75 (8): 1873–1881. https://doi.org/10.2166/wst.2017.064.
Lavrnić, S., V. Alagna, M. Iovino, S. Anconelli, D. Solimando, and A. Toscano. 2020. “Hydrological and hydraulic behaviour of a surface flow constructed wetland treating agricultural drainage water in northern Italy.” Sci. Total Environ. 702: 134795. https://doi.org/10.1016/j.scitotenv.2019.134795.
Lavrnić, S., S. Cristino, M. Zapater-Pereyra, J. Vymazal, D. Cupido, G. Lucchese, B. Mancini, and M. L. Mancini. 2019. “Effect of earthworms and plants on the efficiency of vertical flow systems treating university wastewater.” Environ. Sci. Pollut. Res. 26 (10): 10354–10362. https://doi.org/10.1007/s11356-019-04508-4.
Li, H. Z., S. Wang, J. F. Ye, Z. X. Xu, and W. Jin. 2011. “A practical method for the restoration of clogged rural vertical subsurface flow constructed wetlands for domestic wastewater treatment using earthworm.” Water Sci. Technol. 63 (2): 283–290. https://doi.org/10.2166/wst.2011.051.
Li, H., J. Ye, and Z. Xu. 2008. “Influence of alternate operation on clogging in a vertical flow constructed wetland.” Acta Sci. Circumstantiae 28 (8): 1555–1560.
Li, J., B. Jiang, F. Wang, Y. Tan, and J. Hong. 2012. “Design and treatment effect of constructed wetland wastewater disposal project in Yangzhen No.1 middle school of Beijing.” Wetland Sci. 10 (1): 102–108.
Licciardello, F., R. Aiello, V. Alagna, M. Iovino, D. Ventura, and G. L. Cirelli. 2019. “Assessment of clogging in constructed wetlands by saturated hydraulic conductivity measurements.” Water Sci. Technol. 79 (2): 314–322. https://doi.org/10.2166/wst.2019.045.
Liu, H., Z. Hu, L. Jiang, L. Zhuang, L. Hao, J. Zhang, and L. Nie. 2019. “Roles of carbon source-derived extracellular polymeric substances in solids accumulation and nutrient removal in horizontal subsurface flow constructed wetlands.” Chem. Eng. J. 362: 702–711. https://doi.org/10.1016/j.cej.2019.01.067.
Liu, H. Q., Z. Hu, S. Y. Song, J. Zhang, L. C. Nie, H. Y. Hu, F. M. Li, and Z. Y. Liu. 2018b. “Quantitative detection of clogging in horizontal subsurface flow constructed wetland using the resistivity method.” Water 10: 1334–1341. https://doi.org/10.3390/w10101334.
Liu, H., Z. Hu, J. Zhang, M. Ji, M. Zhuang, L. Nie, and Z. Liu. 2018a. “Effects of solids accumulation and plant root on water flow characteristics in horizontal subsurface flow constructed wetland.” Ecol. Eng. 120: 480–486.
Madigan, M. T., J. M. Martinko, and T. D. Brock. 2006. Brock biology of microogranisms. 11th ed. Upper Saddle River, NJ: Pearson Prentice Hall.
Marzo, A., D. Ventura, G. L. Cirelli, R. Aiello, D. Vanella, R. Rapisarda, S. Barbagallo, and S. Consoli. 2018. “Hydraulic reliability of a horizontal wetland for wastewater treatment in Sicily.” Sci. Total Environ. 636: 94–106. https://doi.org/10.1016/j.scitotenv.2018.04.228.
Mateus, D. M. R., and H. J. O. Pinho. 2020. “Evaluation of solid waste stratified mixtures as constructed wetland fillers under different operation modes.” J. Cleaner Prod. 253: 119986. https://doi.org/10.1016/j.jclepro.2020.119986.
Matos, M. P., M. von Sperling, A. T. Matos, P. R. A. Aranha, M. A. Santos, F. D. B. Pessoa, and P. D. D. Viola. 2019. “Clogging in constructed wetlands: Indirect estimation of medium porosity by analysis of ground-penetrating radar images.” Sci. Total Environ. 676: 333–342. https://doi.org/10.1016/j.scitotenv.2019.04.168.
McDowell-Boyer, L. M., J. R. Hunt, and N. Sitar. 1986. “Particle transport through porous media.” Water Resour. Res. 22 (13): 1901–1921. https://doi.org/10.1029/WR022i013p01901.
Miranda, S. T., A. T. Matos, M. P. Matos, A. C. Borges, and G. C. F. Baptestin. 2017. “Characterization of clogging material from horizontal subsurface flow constructed wetland systems.” Eng. Agríc. 37 (3): 463–470. https://doi.org/10.1590/1809-4430-eng.agric.v37n3p463-470/2017.
Miranda, S. T., A. T. de Matos, M. P. de Matos, C. B. Saraiva, and D. L. Teixeira. 2019. “Influence of the substrate type and position of plant species on clogging and the hydrodynamics of constructed wetland systems.” J. Water Process Eng. 31: 100871. https://doi.org/10.1016/j.jwpe.2019.100871.
Murphy, C., D. Cooper, and E. Williams. 2009. “Reed bed refurbishment: a sustainable approach.” In Proc., 3rd Int. Symp. on Wetland Pollutant Dynamics and Control, 20–24. Barcelona, Spain: WETPOL.
Nancharaiah, Y. V., and M. Sarvajith. 2019. “Aerobic granular sludge process: A fast growing biological treatment for sustainable wastewater treatment.” Curr. Opin. Environ. Sci. Health 12: 57–65. https://doi.org/10.1016/j.coesh.2019.09.011.
Nguyen, L. 2000. “Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters.” Ecol. Eng. 16 (2): 199–221. https://doi.org/10.1016/S0925-8574(00)00044-6.
Nivala, J., P. Knowles, G. Dotro, J. García, and S. Wallace. 2012. “Clogging in subsurface-flow treatment wetlands: Measurement, modeling and management.” Water Res. 46 (6): 1625–1640. https://doi.org/10.1016/j.watres.2011.12.051.
Nivala, J. A., and D. P. L. Rousseau. 2009. “Reversing clogging in subsurface-flow constructed wetlands by hydrogen peroxide treatment: Two case studies.” Water Sci. Technol. 59 (10): 2037–2046. https://doi.org/10.2166/wst.2009.115.
Pan, J., and L. Yu. 2015. “Characteristics of subsurface wastewater infiltration systems fed with dissolved or particulate organic matter.” Int. J. Environ. Sci. Technol. 12 (2): 479–488. https://doi.org/10.1007/s13762-013-0408-8.
Pedescoll, A., A. Corzo, E. Alvarez, J. Garcia, and J. Puigagut. 2011. “The effect of primary treatment and flow regime on clogging development in horizontal subsurface flow constructed wetlands: An experimental evaluation.” Water Res. 45 (12): 3579–3589. https://doi.org/10.1016/j.watres.2011.03.049.
Pedescoll, A., E. Uggetti, E. Llorens, F. Granes, D. Garcia, and J. Garcia. 2009. “Practical method based on saturated hydraulic conductivity used to assess clogging in subsurface flow constructed wetlands.” Ecol. Eng. 35 (8): 1216–1224. https://doi.org/10.1016/j.ecoleng.2009.03.016.
Ping, T., X. Zeshun, M. Penghui, and Z. Yongchao. 2021. “Laboratory investigation on Bacillus subtilis addition to alleviate bio-clogging for constructed wetlands.” Environ. Res. 194: 110642. https://doi.org/10.1016/j.envres.2020.110642.
Pintelon, T. R. R., C. Picioreanu, M. C. M. Van Loosdrecht, and M. L. Johns. 2012. “The effect of biofilm permeability on bio-clogging of porous media.” Biotechnol. Bioeng. 109 (4): 1031–1042. https://doi.org/10.1002/bit.24381.
Platzer, C., and K. Mauch. 1997. “Soil clogging in vertical flow reed beds – mechanisms, parameters, consequences and solutions?” Water Sci. Technol. 35 (5): 175–181. https://doi.org/10.2166/wst.1997.0191.
Pucher, B., and G. Langergraber. 2019. “The state of the art of clogging in vertical flow wetlands.” Water 11: 2400. https://doi.org/10.3390/w11112400.
Qin, G., P. Zhang, X. Hou, S. Wu, and Y. Wang. 2020. “Risk assessment for oil leakage under the common threat of multiple natural hazards.” Environ. Sci. Pollut. Res. 27 (14): 16507–16520. https://doi.org/10.1007/s11356-020-08184-7.
Ren, Y., Q. Gong, T. C. Zhang, J. Kang, and D. Liu. 2015. “Wavy subsurface flow and vertical flow constructed wetlands: Effects of aeration and wastewater composition on wetland clogging.” J. Environ. Eng. 141 (9): 04015018. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000948.
Rittmann, B. E. 1982. “The effect of shear stress on biofilm loss rate.” Biotechnol. Bioeng. 24 (2): 501–506. https://doi.org/10.1002/bit.260240219.
Rittman, B., and P. L. McCarty. 1980. “Steady state biofilm analysis.” Biotechnol. Bioeng. 22: 2243.
Robinson, R. 2011. “Biofilm adherence and detachment pathway elucidated.” PLoS Biol. 9 (2): e1001012. https://doi.org/10.1371/journal.pbio.1001012.
Rolland, L., P. Molle, A. Lienard, F. Bouteldja, and A. Grasmick. 2009. “Influence of the physical and mechanical characteristics of sands on the hydraulic and biological behaviors of sand filters.” Desalination 248 (1–3): 998–1007. https://doi.org/10.1016/j.desal.2008.10.016.
Rowe, R. K., J. F. VanGulck, and S. C. Millward. 2002. “Biologically induced clogging of a granular medium permeated with synthetic leachate.” J. Environ. Eng. Sci. 1 (2): 135–156. https://doi.org/10.1139/s02-008.
Russo, N., A. Marzo, C. Randazzo, C. Caggia, A. Toscano, and G. L. Cirelli. 2019a. “Constructed wetlands combined with disinfection systems for removal of urban wastewater contaminants.” Sci. Total Environ. 656: 558–566. https://doi.org/10.1016/j.scitotenv.2018.11.417.
Russo, N., A. Pino, A. Toscano, G. L. Cirelli, C. Caggia, S. Arioli, and C. L. Randazzo. 2019b. “Occurrence, diversity, and persistence of antibiotic resistant enterococci in full-scale constructed wetlands treating urban wastewater in Sicily.” Bioresour. Technol. 274: 468–478. https://doi.org/10.1016/j.biortech.2018.12.017.
Samal, K., R. R. Dash, and P. Bhunia. 2018. “A comparative study of macrophytes influence on performance of hybrid vermifilter for dairy wastewater treatment.” J. Environ. Chem. Eng. 6 (4): 4714–4726. https://doi.org/10.1016/j.jece.2018.07.018.
Samso, R., and J. Garcia. 2014. “The cartridge theory: A description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results.” Sci. Total Environ. 473–474: 651–658. https://doi.org/10.1016/j.scitotenv.2013.12.070.
Siegrist, R. L., and C. Boyle. 1987. “Wastewater-induced soil clogging development.” J. Environ. Eng. 113: 550–566.
Singh, R., P. Bhunia, and R. R. Dash. 2018. “Understanding intricacies of clogging and its alleviation by introducing earthworms in soil biofilters.” Sci. Total Environ. 633: 145–156. https://doi.org/10.1016/j.scitotenv.2018.03.156.
Song, X., Y. Ding, Y. Wang, W. Wang, G. Wang, and B. Zhou. 2015. “Comparative study of nitrogen removal and bio-film clogging for three filter media packing strategies in vertical flow constructed wetlands.” Ecol. Eng. 74: 1–7. https://doi.org/10.1016/j.ecoleng.2014.08.008.
Stottmeister, U., A. Wießner, P. Kuschk, U. Kappelmeyer, M. Kästner, O. Bederski, R. A. Müller, and H. Moormann. 2003. “Effects of plants and microorganisms in constructed wetlands for wastewater treatment.” Biotechnol. Adv. 22 (1–2): 93–117. https://doi.org/10.1016/j.biotechadv.2003.08.010.
Sutherland, I. W. 2001. “Biofilm exopolysaccharides: A strong and sticky framework.” Microbiology 147 (1): 3–9. https://doi.org/10.1099/00221287-147-1-3.
Tang, P., B. Yu, Y. Zhou, Y. Zhang, and J. Li. 2017. “Clogging development and hydraulic performance of the horizontal subsurface flow stormwater constructed wetlands: A laboratory study.” Environ. Sci. Pollut. Res. 24 (10): 9210–9219. https://doi.org/10.1007/s11356-017-8458-y.
Tang, Y., X. Yao, Y. Chen, Y. Zhou, D. Z. Zhu, Y. Zhang, T. Zhang, and Y. Peng. 2020. “Experiment research on physical clogging mechanism in the porous media and its impact on permeability.” Granular Matter 22 (2): 1–14.
Tatoulis, T., C. S. Akratos, A. G. Tekerlekopoulou, D. V. Vayenas, and A. I. Stefanakis. 2017. “A novel horizontal subsurface flow constructed wetland: Reducing area requirements and clogging risk.” Chemosphere 186: 257–268. https://doi.org/10.1016/j.chemosphere.2017.07.151.
Teixeira, D. L., A. T. Matos, M. Pimentel de Matos, D. P. Vieira, E. D. Araujo, and L. A. Ferraz. 2018. “The influence of plant roots on the clogging process and the extractive capacity of nutrients/pollutants in horizontal subsurface flow constructed wetlands.” Ecol. Eng. 120: 54–60. https://doi.org/10.1016/j.ecoleng.2018.05.031.
Telgmann, U., H. Horn, and E. Morgenroth. 2004. “Influence of growth history on sloughing and erosion from biofilms.” Water Res. 38 (17): 3671–3684. https://doi.org/10.1016/j.watres.2004.05.020.
Turon, C., J. Comas, and M. Poch. 2009. “Constructed wetland clogging: A proposal for the integration and reuse of existing knowledge.” Ecol. Eng. 35 (12): 1710–1718. https://doi.org/10.1016/j.ecoleng.2009.06.012.
de la Varga, D., M. A. Diaz, I. Ruiz, and M. Soto. 2013. “Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment.” Ecol. Eng. 52: 262–269. https://doi.org/10.1016/j.ecoleng.2012.11.005.
Varma, M., A. K. Gupta, P. S. Ghosal, and A. Majumder. 2021. “A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature.” Sci. Total Environ. 755: 142540. https://doi.org/10.1016/j.scitotenv.2020.142540.
Vasconcellos, G. R., M. von Sperling, and R. S. Ocampos. 2019. “From start-up to heavy clogging: Performance evaluation of horizontal subsurface flow constructed wetlands during 10 years of operation.” Water Sci. Technol. 79 (7): 1231–1240. https://doi.org/10.2166/wst.2019.062.
Vymazal, J. 2005. “Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment.” Ecol. Eng. 25 (5): 478–490. https://doi.org/10.1016/j.ecoleng.2005.07.010.
Vymazal, J. 2011. “Plants used in constructed wetlands with horizontal subsurface flow: A review.” Hydrobiologia 674 (1): 133–156. https://doi.org/10.1007/s10750-011-0738-9.
Vymazal, J. 2018. “Is wastewater treatment in horizontal subsurface flow constructed wetlands a sustainable technology?.” In Proc., 16th IWA Specialist Conf. on Wetland Systems for Water Pollution Control. Valencia, Spain: IWA.
Wallace, S. D., and R. L. Knight. 2006. Small-scale constructed wetland treatment systems: Feasibility, design criteria, and O&M requirements. London: IWA.
Wang, G., Q. Jin, and X. Li. 2009. “Improving rural sewage treatment efficiency of vertical-flow constructed wetland by adding earthworms.” China Water Wastewater 25 (23): 10–14.
Wang, H., L. Sheng, and J. Xu. 2021. “Clogging mechanisms of constructed wetlands: A critical review.” J. Cleaner Prod. 126455.
Wang, J., X. Song, Y. Wang, J. Bai, H. Bai, D. Yan, Y. Cao, Y. Li, Z. Yu, and G. Dong. 2017. “Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell.” Bioresour. Technol. 245: 372–378. https://doi.org/10.1016/j.biortech.2017.08.191.
Wang, R., F. He, L. Xiao, J. Wu, D. Xu, and Z. Wu. 2011. “Treatment efficiency and permeability of vertical flow constructed wetland in different gradation substrates.” J. Agro-Environ. Sci. 29 (5): 969–975.
Wang, X., Q. Xu, L. Cui, and G. Li. 2014. “Effect of hydraulic loading of vertical flow constructed wetland clogging.” Agric. Sci. Technol. 15 (11): 2030–2034.
Wang, Z., B. Zhang, H. Xiang, T. Fan, Y. Du, and D. Li. 2015. “Clogging of vertical subsurface flow constructed wetland and its effects on purifying efficiency.” China Environ. Sci. 35 (8): 2494–2502.
Winter, K. J., and D. Goetz. 2003. “The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands.” Water Sci. Technol. 48 (5): 9–14. https://doi.org/10.2166/wst.2003.0268.
Wojciechowska, E., M. Gajewska, and H. Obarska-Pempkowiak. 2010. “Treatment of landfill leachate by constructed wetlands: Three case studies.” Pol. J. Environ. Stud. 19 (3): 643–650.
Wojciechowska, E., and S. Waara. 2011. “Distribution and removal efficiency of heavy metals in two constructed wetlands treating landfill leachate.” Water Sci. Technol. 64 (8): 1597–1606. https://doi.org/10.2166/wst.2011.680.
Xia, L., X. Zheng, H. Shao, J. Xin, Z. Sun, and L. Wang. 2016. “Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns.” J. Hydrol. 535: 293–300. https://doi.org/10.1016/j.jhydrol.2016.01.075.
Xu, Q., L. Cui, and L. Zhang. 2014. “Load working together on soil clogging on vertical flow constructed wetland.” Environ. Sci. Technol. 37 (6): 1–5.
Xu, Q., L. Cui, L. Zhang, Z. Li, and Y. Guangwei. 2013. “The effect of two factor combination of three kinds of loading on the soil clogging in vertical flow constructed wetland.” Front. Environ. Sci. 2 (4): 56–63.
Yan, B., S. Xiao, C. Liao, Q. Deng, D. Li, and X. Liu. 2019. “Research progress of long-term nitrogen removal in subsurface flow constructed wetlands.” J. Environ. Eng. Technol. 9 (3): 239–244.
Yang, M., M. Lu, H. Bian, L. Sheng, and C. He. 2018a. “Effects of physical clogging on the performance of a lab-scale vertical subsurface flow constructed wetland system and simulation research.” Ecol. Indic. 92: 11–17. https://doi.org/10.1016/j.ecolind.2017.05.058.
Yang, Y., Y. Zhao, R. Liu, and D. Morgan. 2018b. “Global development of various emerged substrates utilized in constructed wetlands.” Bioresour. Technol. 261: 441–452. https://doi.org/10.1016/j.biortech.2018.03.085.
Ye, J., H. Li, C. Zhang, C. Ye, and W. Han. 2014. “Classification and extraction methods of the clog components of constructed wetland.” Ecol. Eng. 70: 327–331. https://doi.org/10.1016/j.ecoleng.2014.06.028.
Ye, J., Z. Xu, H. Chen, L. Wang, and G. Benoit. 2018. “Reduction of clog matter in constructed wetlands by metabolism of Eisenia foetida: Process and modeling.” Environ. Pollut. 238: 803–811. https://doi.org/10.1016/j.envpol.2018.03.062.
Yousif, O. S. Q., M. Karakouzian, N. O. A. Rahim, and K. A. Rashed. 2017. “Physical clogging of uniformly graded porous media under constant flow rates.” Transp. Porous Media 120 (3): 643–659. https://doi.org/10.1007/s11242-017-0946-5.
Zhang, S., B. Guo, W. Hu, Z. Zhang, and Y. Chen. 2016. “Influence of different operation modes on clogging process in subsurface vertical flow constructed wetland.” J. Xi’an Univ. Sci. Technol. 36 (4): 514–521.
Zhao, L., W. Zhu, and W. Tong. 2009. “Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands.” J. Environ. Sci. 21 (6): 750–757. https://doi.org/10.1016/S1001-0742(08)62336-0.
Zhao, W., L. Tao, and H. Liu. 2013. “Analysis on clogging mechanism of constructed wetlands and clogging prevention measures.” Environ. Sci. Manage. 38 (8): 8–16.
Zhao, Y. Q., G. Sun, and S. J. Allen. 2004. “Anti-sized reed bed system for animal wastewater treatment: A comparative study.” Water Resour. 38: 2907–2917.
Zhou, X., Z. Chen, Z. Li, and H. Wu. 2020. “Impacts of aeration and biochar addition on extracellular polymeric substances and microbial communities in constructed wetlands for low C/N wastewater treatment: Implications for clogging.” Chem. Eng. J. 396: 125349. https://doi.org/10.1016/j.cej.2020.125349.
Zhou, Y., S. Luo, B. Yu, T. Zhang, J. Li, and Y. Zhang. 2018. “A comparative analysis for the development and recovery processes of different types of clogging in lab-scale vertical flow constructed wetlands.” Environ. Sci. Pollut. Res. 25 (24): 24073–24083. https://doi.org/10.1007/s11356-018-2418-z.
Zhu, Y., P. Ye, S. Xu, Y. Zhou, Y. Zhang, Y. Zhang, and T. Zhang. 2020. “The influence mechanism of bioclogging on pollution removal efficiency of vertical flow constructed wetland.” Water Sci. Technol. 81 (9): 1870–1811. https://doi.org/10.2166/wst.2020.246.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 1January 2022

History

Received: Apr 20, 2021
Accepted: Aug 5, 2021
Published online: Oct 13, 2021
Published in print: Jan 1, 2022
Discussion open until: Mar 13, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

K. Hasim Suhaib [email protected]
Research Scholar, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha 752050, India. Email: [email protected]
Puspendu Bhunia [email protected]
Associate Professor, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha 752050, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Constructed Wetlands for the Elimination of Pharmaceutically Active Compounds; Fundamentals and Prospects, Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds, 10.1007/978-3-031-20806-5_7, (121-137), (2023).
  • Clogging index: A tool to quantify filter bed clogging in horizontal subsurface flow macrophyte‐assisted vermifilter, Water Environment Research, 10.1002/wer.10821, 95, 1, (2023).
  • Impact of Hydraulic Loading Rate on the Removal Performance and Filter-Bed Clogging of Horizontal-Subsurface-Flow Macrophyte-Assisted Vermifilter Treating Dairy Wastewater, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/(ASCE)HZ.2153-5515.0000698, 26, 3, (2022).
  • Effect of Plant Roots on Clogging and Treatment Performance of Horizontal Subsurface Flow Vermifilter for Synthetic Dairy Wastewater, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/(ASCE)HZ.2153-5515.0000696, 26, 3, (2022).
  • Vermifiltration: Strategies and techniques to enhance the organic and nutrient removal performance from wastewater, Water Environment Research, 10.1002/wer.10826, 94, 12, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share