State-of-the-Art Reviews
Apr 9, 2021

Radioactive Hazards in Utilization of Industrial By-Products: Comprehensive Review

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 3

Abstract

The rapid increase in demand for natural resources owing to industrial growth and urbanization has paved the way for the utilization of industrial by-products (i.e., fly ash, bauxite residue, steel slag, copper slag, phosphogypsum) as (1) a replacement or (2) an additive for many prevalent construction materials. Moreover, studies have also reported valorization (e.g., extraction of minerals, rare earth metals) of industrial by-products for industrial and commercial applications. In this context, to enable potential and effective utilization of these by-products, with minimal impact on the ecosystem, a better understanding of their physical, chemical, mineralogical, and morphological characteristics is essential. Meanwhile, the presence of hazardous and toxic constituents in industrial by-products that have short- and long-term impacts on nature leads to challenges in their utilization and needs to be tackled. Of late, it has been realized that most studies to mitigate the potential threat of by-products are confined to (1) pH neutralization, (2) leachate management, (3) air pollution control, and (4) heavy metal removal, and little effort has been made to determine the presence and emission of radioactive elements (e.g., 238U, 232Th, 40K, 226Ra, 222Rn gas) in them. Under these circumstances, an extensive literature review of the characteristics and utilization of industrial by-products, with an emphasis on their radioactivity levels, is made in detail. A critical synthesis of the existing literature reveals that the radioactive measure, I-index, of phosphogypsum, red mud, slags, fly ash, and so on, exceeded by 1.5–7.5 times the permissible radiation limit [recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and the International Atomic Energy Agency (IAEA)]. Moreover, considering the hazardousness associated with exposure to such by-products, efforts are to be invested in developing handy tools or methodologies for their detection, and possible remedies for their mitigation, before their utilization for various applications.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdelouas, A. 2006. “Uranium mill tailings: Geochemistry, mineralogy, and environmental impact.” Elements 2 (6): 335–341. https://doi.org/10.2113/gselements.2.6.335.
Alam, S., B. K. Das, and S. K. Das. 2018. “Dispersion and sedimentation characteristics of red mud.” J. Hazard. Toxic Radioact. Waste 22 (4): 04018025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000420.
Al Attar, L., K. Shamali, B. A. Ghany, and S. Kanakri. 2012. “Case study: Heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles.” Environ. Technol. 33 (2): 143–152. https://doi.org/10.1080/09593330.2011.552531.
Al-Hwaiti, M., and O. Al-Khashman. 2015. “Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials.” Environ. Geochem. Health 37 (2): 287–304. https://doi.org/10.1007/s10653-014-9646-z.
Al-Jabri, K. S., A. H. Al-Saidy, and R. Taha. 2011. “Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete.” Constr. Build. Mater. 25 (2): 933–938. https://doi.org/10.1016/j.conbuildmat.2010.06.090.
Al-Kawari, M. S., and M. Hushari. 2019. “Doses and radiation risks estimation of adding steel slag to asphalt for road construction in Qatar.” Constr. Build. Mater. 228: 116741. https://doi.org/10.1016/j.conbuildmat.2019.116741.
Almahayni, T., and N. Vanhoudt. 2018. “Does leaching of naturally occurring radionuclides from roadway pavements stabilised with coal fly ash have negative impacts on groundwater quality and human health?” J. Hazard. Mater. 349: 128–134. https://doi.org/10.1016/j.jhazmat.2018.01.029.
Al-Masri, M. S., Y. Amin, S. Ibrahim, and F. Al-Bich. 2004. “Distribution of some trace metals in Syrian phosphogypsum.” Appl. Geochem. 19 (5): 747–753. https://doi.org/10.1016/j.apgeochem.2003.09.014.
Bakare, M. D., R. R. Pai, S. Patel, and J. T. Shahu. 2019. “Environmental sustainability by bulk utilization of fly ash and GBFS as road subbase materials.” J. Hazard. Toxic Radioact. Waste 23 (4): 04019011. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000450.
Barišić, I., I. N. Grubeša, and B. H. Kutuzović. 2017. “Multidisciplinary approach to the environmental impact of steel slag reused in road construction.” Road Mater. Pavement Des. 18 (4): 897–912. https://doi.org/10.1080/14680629.2016.1197143.
Beretka, J., and P. J. Mathew. 1985. “Natural radioactivity of Australian building materials, industrial wastes an d by-products.” Health Phys. 48 (1): 87–95. https://doi.org/10.1097/00004032-198501000-00007.
BIS (Bureau of Indian Standards). 2012. Drinking water specifications (2nd revision). IS 10500: 2012. New Delhi, India: Bureau of Indian Standards.
Blissett, R. S., and N. A. Rowson. 2012. “A review of the multi-component utilisation of coal fly ash.” Fuel 97: 1–23. https://doi.org/10.1016/j.fuel.2012.03.024.
Campos, M. P., L. J. P. Costa, M. B. Nisti, and B. P. Mazzilli. 2017. “Phosphogypsum recycling in the building materials industry: Assessment of the radon exhalation rate.” J. Environ. Radioact. 172: 232–236. https://doi.org/10.1016/j.jenvrad.2017.04.002.
CEA (Central Electricity Authority). 2018. Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country for the year 2017–18. New Delhi, India: CEA.
Chen, S. B., Y. G. Zhu, and Q. H. Hu. 2005. “Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China.” J. Environ. Radioact. 82 (2): 223–236. https://doi.org/10.1016/j.jenvrad.2005.01.009.
Cohen, B. L. 1986. “Risk analysis of buried wastes from electricity generation.” Am. J. Phys. 54 (1): 38–45. https://doi.org/10.1119/1.14768.
Contreras, M., R. Pérez-López, M. J. Gázquez, V. Morales-Flórez, A. Santos, L. Esquivias, and J. P. Bolívar. 2015. “Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration.” Waste Manage. 45: 412–419. https://doi.org/10.1016/j.wasman.2015.06.046.
Croymans, T., I. Vandael, M. Hult, G. Marissens, G. Lutter, H. Stroh, S. Schreurs, and W. Schroeyers. 2017. “Variation of natural radionuclides in non-ferrous fayalite slags during a one-month production period.” J. Environ. Radioact. 172: 63–73. https://doi.org/10.1016/j.jenvrad.2017.03.004.
Cuccia, V., A. H. de Oliveira, and Z. Rocha. 2011. “Radionuclides in Bayer process residues: Previous analysis for radiological protection.” In Int. Nuclear Atlantic Conf., 1–7. Rio de Janeiro, Brazil: Associação Brasileira de Energia Nuclear.
Ćwik, A., I. Casanova, K. Rausis, and K. Zarębska. 2019. “Utilization of high-calcium fly ashes through mineral carbonation: The cases for Greece, Poland and Spain.” J. CO2 Util. 32: 155–162. https://doi.org/10.1016/j.jcou.2019.03.020.
Das, B., and K. Mohanty. 2019. “A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud.” Renewable Energy 143: 1791–1811. https://doi.org/10.1016/j.renene.2019.05.114.
EC (European Commission). 1999. Radiation protection 112: Radiological protection principles concerning the natural radioactivity of building materials, 1–16. Brussels, Belgium: EC.
EC (European Commission). 2002. Radiation protection 122: Practical use of the concepts of clearance and exemption—Part II: Application of the concepts of exemption and clearance to natural radiation sources, 1–84. Brussels, Belgium: EC.
El-didamony, H., M. M. Ali, N. S. Awwad, M. F. Attallah, and M. M. Fawzy. 2013. “Radiological characterization and treatment of contaminated phosphogypsum waste.” Radiochemistry 55 (4): 454–459. https://doi.org/10.1134/S106636221304019X.
Esmaeili, M., R. Nouri, and K. Yousefian. 2017. “Experimental comparison of the lateral resistance of tracks with steel slag ballast and limestone ballast materials.” Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit 231 (2): 175–184. https://doi.org/10.1177/0954409715623577.
Essabir, H., S. Nekhlaoui, M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. e. k. Qaiss. 2017. “Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: Structural, mechanical and thermal properties.” J. Polym. Environ. 25 (3): 658–666. https://doi.org/10.1007/s10924-016-0853-9.
Feng, T., and X. Lu. 2016. “Natural radioactivity, radon exhalation rate and radiation dose of fly ash used as building materials in Xiangyang, China.” Indoor Built Environ. 25 (4): 626–634. https://doi.org/10.1177/1420326X15573276.
Giergiczny, Z., and A. Krόl. 2008. “Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.” J. Hazard. Mater. 160 (2–3): 247–255. https://doi.org/10.1016/j.jhazmat.2008.03.007.
Gollakota, A. R. K., V. Volli, and C. M. Shu. 2019. “Progressive utilisation prospects of coal fly ash: A review.” Sci. Total Environ. 672: 951–989. https://doi.org/10.1016/j.scitotenv.2019.03.337.
Gomes, H. I., W. M. Mayes, M. Rogerson, D. I. Stewart, and I. T. Burked. 2016. “Alkaline residues and the environment: A review of impacts, management practices and opportunities.” J. Cleaner Prod. 112: 3571–3582. https://doi.org/10.1016/j.jclepro.2015.09.111.
Gorai, B., R. K. Jana, and Premchand. 2003. “Characteristics and utilisation of copper slag—A review.” Resourc. Conserv. Recycl. 39 (4): 299–313. https://doi.org/10.1016/S0921-3449(02)00171-4.
Goronovski, A., R. M. Rivera, T. Van Gerven, and A. H. Tkaczyk. 2021. “Radiological assessment of bauxite residue processing to enable zero-waste valorisation and regulatory compliance.” J. Cleaner Prod. 294: 125165. https://doi.org/10.1016/j.jclepro.2020.125165.
Gu, H., N. Wang, and S. Liu. 2012. “Radiological restrictions of using red mud as building material additive.” Waste Manage. Res. 30 (9): 961–965. https://doi.org/10.1177/0734242X12451308.
Guo, J., Y. Bao, and M. Wang. 2018. “Steel slag in China: Treatment, recycling, and management.” Waste Manage. 78: 318–330. https://doi.org/10.1016/j.wasman.2018.04.045.
Gupta, D. K., A. V. Voronina, V. S. Semenishchev, and S. Chatterjee. 2018. “Green sorbents for radioactive pollutants removal from natural water.” In Green adsorbents for pollutant removal, edited by G. Crini, and E. Lichtfouse, 377–396. Cham, Switzerland: Springer.
Hafez, H., R. Kurda, W. M. Ming, and B. Nagaratnam. 2020. “Comparative life cycle assessment between imported and recovered fly ash for blended cement concrete in the UK.” J. Cleaner Prod. 244: 118722. https://doi.org/10.1016/j.jclepro.2019.118722.
Han, Y. S., S. Ji, P. K. Lee, and C. Oh. 2017. “Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2.” J. Hazard. Mater. 326: 87–93. https://doi.org/10.1016/j.jhazmat.2016.12.020.
Haridasan, P. P., C. G. Maniyan, P. M. B. Pillai, and A. H. Khan. 2002. “Dissolution characteristics of 226Ra from phosphogypsum.” J. Environ. Radioact. 62 (3): 287–294. https://doi.org/10.1016/S0265-931X(02)00011-5.
Heidrich, C., H.-J. Feuerborn, and A. Weir. 2013. “Coal combustion products: A global perspective.” In World of Coal ash Conf., 22–25. https://www.gypsum.org/wp-content/uploads/2014/06/VGBPowerTech2013-12pp46-52HEIDRICHAutorenexemplar.pdf.
Hentati, O., N. Abrantes, A. L. Caetano, S. Bouguerra, F. Gonçalves, J. Römbke, and R. Pereira. 2015. “Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants.” J. Hazard. Mater. 294: 80–89. https://doi.org/10.1016/j.jhazmat.2015.03.034.
Hu, N., D. Ding, G. Li, J. Zheng, L. Li, W. Zhao, and Y. Wang. 2014. “Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China.” J. Environ. Radioact. 129: 100–106. https://doi.org/10.1016/j.jenvrad.2013.12.012.
IAEA (International Atomic Energy Agency). 2019. Nuclear power reactors in the world. Reference Data Series No. 2, 2019 ed. Vienna, Austria: IAEA.
ICSG (International Copper Study Group). 2015. The world copper factbook 2015. Lisbon, Portugal: ICSG.
Khaitan, S., D. A. Dzombak, and G. V. Lowry. 2009. “Mechanisms of neutralization of bauxite residue by carbon dioxide.” J. Environ. Eng. 135 (6): 433–438. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000010.
Kong, X., M. Li, S. Xue, W. Hartley, C. Chen, C. Wu, X. Li, and Y. Li. 2017. “Acid transformation of bauxite residue: Conversion of its alkaline characteristics.” J. Hazard. Mater. 324: 382–390. https://doi.org/10.1016/j.jhazmat.2016.10.073.
Koshy, N., and D. N. Singh. 2016. “Textural alterations in coal fly ash due to alkali activation.” J. Mater. Civ. Eng. 28 (11): 04016126. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001644.
Kuntikana, G., and D. N. Singh. 2017. “Contemporary issues related to utilization of industrial byproducts.” Adv. Civ. Eng. Mater. 6 (1): 20160050. https://doi.org/10.1520/ACEM20160050.
Lauer, N. E., J. C. Hower, H. Hsu-kim, R. K. Taggart, and A. Vengosh. 2015. “Naturally occurring radioactive materials in coals and coal combustion residuals in the United States.” Environ. Sci. Technol. 49 (18): 11227–11233. https://doi.org/10.1021/acs.est.5b01978.
Leiva, C., C. Arenas, H. Cifuentes, L. F. Vilches, and J. D. Rios. 2017. “Radiological, leaching, and mechanical properties of cocombustion fly ash in cements.” J. Hazard. Toxic Radioact. Waste 21 (4): 04017011. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000362.
Li, G. Y., N. Hu, D. X. Ding, J. F. Zheng, Y. L. Liu, Y. D. Wang, and X. Q. Nie. 2011. “Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China.” Bull. Environ. Contam. Toxicol. 86 (6): 646–652. https://doi.org/10.1007/s00128-011-0291-2.
Lima, M. S. S., L. P. Thives, V. Haritonovs, and K. Bajars. 2017. “Red mud application in construction industry: Review of benefits and possibilities.” IOP Conf. Ser.: Mater. Sci. Eng. 251: 1–10. https://doi.org/10.1088/1757-899X/251/1/012033.
Mayes, W. M., P. L. Younger, and J. Aumônier. 2008. “Hydrogeochemistry of alkaline steel slag leachates in the UK.” Water Air Soil Pollut. 195 (1–4): 35–50. https://doi.org/10.1007/s11270-008-9725-9.
Mazzilli, B., V. Palmiro, C. Saueia, and M. B. Nisti. 2000. “Radiochemical characterization of Brazilian phosphogypsum.” J. Environ. Radioact. 49 (1): 113–122. https://doi.org/10.1016/S0265-931X(99)00097-1.
Mohan, S., and R. Gandhimathi. 2009. “Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent.” J. Hazard. Mater. 169 (1–3): 351–359. https://doi.org/10.1016/j.jhazmat.2009.03.104.
Mukiza, E., L. L. Zhang, X. Liu, and N. Zhang. 2019. “Utilization of red mud in road base and subgrade materials: A review.” Resourc. Conserv. Recycl. 141: 187–199. https://doi.org/10.1016/j.resconrec.2018.10.031.
NEA-OECD (Nuclear Energy Agency, Organisation for Economic Co-operation and Development). 1979. Exposure to radiation from the natural radioactivity in building materials. Paris: NEA.
Nuccetelli, C., Y. Pontikes, F. Leonardi, and R. Trevisi. 2015. “New perspectives and issues arising from the introduction of (NORM) residues in building materials: A critical assessment on the radiological behaviour.” Constr. Build. Mater. 82: 323–331. https://doi.org/10.1016/j.conbuildmat.2015.01.069.
Oluwasola, E. A., M. R. Hainin, and M. M. A. Aziz. 2015. “Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction.” Transp. Geotech. 2: 47–55. https://doi.org/10.1016/j.trgeo.2014.09.004.
Pan, S. Y., T. C. Chung, C. C. Ho, C. J. Hou, Y. H. Chen, and P. C. Chiang. 2017. “CO2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain.” Sci. Rep. 7 (1): 17227. https://doi.org/10.1038/s41598-017-17648-9.
Pattanaik, M. L., R. Choudhary, B. Kumar, and A. Kumar. 2019. “Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries.” Road Mater. Pavement Des. 22 (2): 268–292. https://doi.org/10.1080/14680629.2019.1620120.
Piatak, N. M., M. B. Parsons, and R. R. Seal. 2015. “Characteristics and environmental aspects of slag: A review.” Appl. Geochem. 57: 236–266. https://doi.org/10.1016/j.apgeochem.2014.04.009.
Pinnock, W. 1991. “Measurement of radioactivity in Jamaican building materials and γ dose equivalents in a prototype red mud house.” Health Phys. 61 (5): 647–651. https://doi.org/10.1097/00004032-199111000-00009.
Potysz, A., J. Kierczak, Y. Fuchs, M. Grybos, G. Guibaud, P. N. L. Lens, and E. D. van Hullebusch. 2016. “Characterization and pH-dependent leaching behaviour of historical and modern copper slags.” J. Geochem. Explor. 160: 1–15. https://doi.org/10.1016/j.gexplo.2015.09.017.
Potysz, A., E. D. van Hullebusch, J. Kierczak, M. Grybos, P. N. L. Lens, and G. Guibaud. 2015. “Copper metallurgical slags—Current knowledge and fate: A review.” Crit. Rev. Environ. Sci. Technol. 45 (22): 2424–2488. https://doi.org/10.1080/10643389.2015.1046769.
Rashad, A. M. 2017. “Phosphogypsum as a construction material.” J. Cleaner Prod. 166: 732–743. https://doi.org/10.1016/j.jclepro.2017.08.049.
Ribeiro, D. V., J. A. Labrincha, and M. R. Morelli. 2012. “Effect of the addition of red mud on the corrosion parameters of reinforced concrete.” Cem. Concr. Res. 42 (1): 124–133. https://doi.org/10.1016/j.cemconres.2011.09.002.
Ruyters, S., J. Mertens, E. Vassilieva, B. Dehandschutter, A. Poffijn, and E. Smolders. 2011. “The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil.” Environ. Sci. Technol. 45 (4): 1616–1622. https://doi.org/10.1021/es104000m.
Sahagia, M., A. Luca, A. Antohe, R. Ioan, M. Tanase, and E. G. Torano. 2014. “Comparison of analysis methods for the characterisation of the radioactive content of metallurgical slag used within the EURAMET-EMRP JRP IND04 MetroMetal.” Rom. Rep. Phys. 66 (3): 649–657.
Samal, S., A. K. Ray, and A. Bandopadhyay. 2013. “Proposal for resources, utilization and processes of red mud in India—A review.” Int. J. Min. Process. 118: 43–55. https://doi.org/10.1016/j.minpro.2012.11.001.
Samouhos, M., M. Taxiarchou, P. E. Tsakiridis, and K. Potiriadis. 2013. “Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.” J. Hazard. Mater. 254–255: 193–205. https://doi.org/10.1016/j.jhazmat.2013.03.059.
Sankaran Pillai, G., P. Shahul Hameed, and S. M. Mazhar Nazeeb Khan. 2016. “Radioactivity in building materials and assessment of risk of human exposure in the Tiruchirappalli District of Tamil Nadu, India.” J. Hazard. Toxic Radioact. Waste 20 (3): 04016004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000320.
Santos, A. J. G., B. P. Mazzilli, D. I. T. Fávaro, and P. S. C. Silva. 2006. “Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.” J. Environ. Radioact. 87 (1): 52–61. https://doi.org/10.1016/j.jenvrad.2005.10.008.
Sas, Z., R. Doherty, T. Kovacs, M. Soutsos, W. Sha, and W. Schroeyers. 2017. “Radiological evaluation of by-products used in construction and alternative applications; Part I. Preparation of a natural radioactivity database.” Constr. Build. Mater. 150: 227–237. https://doi.org/10.1016/j.conbuildmat.2017.05.167.
Sas, Z., J. Somlai, G. Szeiler, and T. Kavacs. 2015. “Usability of clay mixed red mud in Hungarian building material production industry.” J. Radioanal. Nucl. Chem. 306 (1): 271–275. https://doi.org/10.1007/s10967-015-3966-z.
Schroeyers, W., Z. Sas, G. Bator, R. Trevisi, C. Nuccetelli, F. Leonardi, S. Schreurs, and T. Kovacs. 2018. “The NORM4Building database, a tool for radiological assessment when using by-products in building materials.” Constr. Build. Mater. 159: 755–767. https://doi.org/10.1016/j.conbuildmat.2017.11.037.
Sharma, R., and R. A. Khan. 2017. “Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials.” J. Cleaner Prod. 151: 179–192. https://doi.org/10.1016/j.jclepro.2017.03.031.
Shi, C., C. Meyer, and A. Behnood. 2008. “Utilization of copper slag in cement and concrete.” Resourc. Conserv. Recycl. 52 (10): 1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008.
Somlai, J., V. Jobbágy, J. Kovács, S. Tarján, and T. Kovács. 2008. “Radiological aspects of the usability of red mud as building material additive.” J. Hazard. Mater. 150 (3): 541–545. https://doi.org/10.1016/j.jhazmat.2007.05.004.
Song, M. H., B. U. Chang, S. M. Koh, Y. J. Kim, D. J. Kim, and G. H. Kim. 2011. “Overall natural radioactivity of a phosphate fertilizer industry in Korea.” Radioprotection 46 (6): S113–S118. https://doi.org/10.1051/radiopro/20116835s.
Tayibi, H., M. Choura, F. A. López, F. J. Alguacil, and A. López-Delgado. 2009. “Environmental impact and management of phosphogypsum.” J. Environ. Manage. 90 (8): 2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007.
Temuujin, J., E. Surenjav, C. H. Ruescher, and J. Vahlbruch. 2019. “Processing and uses of fly ash addressing radioactivity (critical review).” Chemosphere 216: 866–882. https://doi.org/10.1016/j.chemosphere.2018.10.112.
Tran, C. P. 2016. “Red mud minimisation and management for the alumina industry by the carbonation method.” Ph.D. thesis, School of Chemical Engineering, Univ. of Adelaide.
Trevisi, R., S. Risica, M. D’Alessandro, D. Paradiso, and C. Nuccetelli. 2012. “Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance.” J. Environ. Radioact. 105: 11–20. https://doi.org/10.1016/j.jenvrad.2011.10.001.
Trifi, H., A. Najjari, W. Achouak, M. Barakat, K. Ghedira, F. Mrad, M. Saidi, and H. Sghaier. 2020. “Metataxonomics of Tunisian phosphogypsum based on five bioinformatics pipelines: Insights for bioremediation.” Genomics 112 (1): 981–989. https://doi.org/10.1016/j.ygeno.2019.06.014.
Tripathi, R. C., S. K. Jha, L. C. Ram, and B. V. Vijayan. 2014. “Effect of radionuclides present in lignite fly ash on soil and crop produce.” J. Hazard. Toxic Radioact. Waste 18 (4): 04014019. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000224.
Ujaczki, É., O. Klebercz, V. Feigl, M. Molnár, Á Magyar, N. Uzinger, and K. Gruiz. 2015. “Environmental toxicity assessment of the spilled Ajka red mud in soil microcosms for its potential utilisation as soil ameliorant.” Period. Polytech., Chem. Eng. 59 (4): 253–261. https://doi.org/10.3311/PPch.7839.
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2000. “UNSCEAR 2000” Health Phys. 79 (3): 314.
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2008. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Report to the general assembly, with scientific annexes. New York: UNSCEAR.
USGS. 2020. “Mineral commodity summaries.” Accessed 15 January 2021. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-iron-steel-slag.pdf.
Wending, L. A., M. T. Binet, Z. Yuan, F. Darren, D. J. Koppel, and M. S. Adams. 2013. “Geochemical and ecotoxicological assessment of iron- and steel making slags for potential use in environmental applications.” Environ. Toxicol. Chem. 32 (11): 2602–2610. https://doi.org/10.1002/etc.2342.
WHO (World Health Organization). 2004. International guidelines for drinking-water quality. 3rd ed. Geneva: WHO.
Yadav, S., and A. Mehra. 2017. “Dissolution of steel slags in aqueous media.” Environ. Sci. Pollut. Res. 24 (19): 16305–16315. https://doi.org/10.1007/s11356-017-9036-z.
Yang, J., W. Liu, L. Zhang, and B. Xiao. 2009. “Preparation of load-bearing building materials from autoclaved phosphogypsum.” Constr. Build. Mater. 23 (2): 687–693. https://doi.org/10.1016/j.conbuildmat.2008.02.011.
Yu, J., and K. Wang. 2011. “Study on characteristics of steel slag for CO2 capture.” Energy Fuels 25 (11): 5483–5492. https://doi.org/10.1021/ef2004255.
Zak, A., K. Isajenko, B. Piotrowska, M. Kuczbajska, A. Zabek, and T. Szczygielski. 2010. “Natural radioactivity of wastes.” Nukleonika 55 (3): 387–391.
Zeng, L., X. Bian, L. Zhao, Y. Wang, and Z. Hong. 2021. “Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China.” Geomech. Energy Environ. 25: 100195. https://doi.org/10.1016/j.gete.2020.100195.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 3July 2021

History

Received: Oct 20, 2020
Accepted: Feb 27, 2021
Published online: Apr 9, 2021
Published in print: Jul 1, 2021
Discussion open until: Sep 9, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Pitabash Sahoo [email protected]
Research Scholar, Dept. of Civil Engineering, National Institute of Technology Trichy, Tamil Nadu 620015, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology Trichy, Tamil Nadu 620015, India (corresponding author). ORCID: https://orcid.org/0000-0002-5364-2619. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Utilization of Industrial Waste Phosphogypsum as Geomaterial: A Review, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/JHTRBP.HZENG-1181, 27, 2, (2023).
  • Release of toxic gases in the process of cemented backfill with phosphorus waste全磷废料在矿山充填过程中有害气体的释放特性, Journal of Central South University, 10.1007/s11771-023-5236-5, 30, 1, (202-213), (2023).
  • Investigating the physical and chemical contribution of ground low-quality fly ash particles to cementitious composites, Advances in Cement Research, 10.1680/jadcr.21.00173, 34, 9, (379-387), (2022).
  • Assessment of water quality under real-world conditions: effects of steel slag backfills on ground and surface water, Environmental Science: Water Research & Technology, 10.1039/D2EW00649A, 8, 12, (3043-3053), (2022).
  • Reuse of phosphogypsum pretreated with water washing as aggregate for cemented backfill, Scientific Reports, 10.1038/s41598-022-20318-0, 12, 1, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share