Technical Papers
Jan 13, 2021

Exclusion of Pharmaceutical Compounds by UA Assisted EC Process

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

The toxicity of pharmaceutical pollutants affects aquatic life as well as the environment on all levels of the natural hierarchy. Therefore, to maintain the natural environment it is crucial to exclude pharmaceutical compounds, such as ofloxacin (OFX), sunset yellow (SY), and tartrazine (TRT) from aqueous systems. In this study, a green nanoadsorbent (CS@GOn) will be prepared by the electrostatic interaction of chitosan (CS) and graphene oxide (GO). Characterization using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier-transform Infrared (FTIR) spectroscopy analysis of CS@GOn will be performed and the cross-linking of CS with GO will be confirmed. Further, batch electrocoagulation (EC) and ultrasonication adsorption (UA) assisted processes will be performed individually and as hybrid systems for the removal of OFX, TRT, and SY from aqueous solutions. The optimum conditions will be evaluated by considering the minimum operating cost (OC). In EC processes, based on the economic >70% removal of OFX, TRT, and SY were achieved at optimum conditions of pH 7, 10 min, and OFX 200 mg/L. However, in UA processes, >83% OFX, TRT, and SY were removed under the same conditions. In hybrid EC and UA processes, >98% OFX, TRT, and SY were removed at the optimized conditions (pH 7, 10 min, and OFX 200 mg/L, dose 0.1 g/200 mL, and 25°C). CS@GOn was reused up to five times after the regeneration. Compared with EC and UA individual processes, hybrid EC and UA processes were more effective for the removal of OFX, TRT, and SY. A feasibility study of EC + UA process will be explored for the removal of chemical oxygen demand (COD) from actual sewage effluent and 95% removal was achieved for a 10 min reaction time of EC and UA. This study provides a promising hybrid EC and UA process with CS@GOn that has excellent biocompatibility, reusability potential, and could be used in a wide range of industrial effluents.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are thankful to the University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi, India, for providing the facilities to carry out the research work in the concerned area.

References

Ahmadzadeh, S., and M. Dolatabadi. 2018. “Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole.” Chemosphere 212: 533–539. https://doi.org/10.1016/j.chemosphere.2018.08.107.
Akpan, U. G., and B. H. Hameed. 2009. “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts : A review.” J. Hazard. Mater. 170 (2–3): 520–529. https://doi.org/10.1016/j.jhazmat.2009.05.039.
American Public Health Association (APHA). 1995. Standard methods for the examination of water and wastewater. American Public Health Association. Washington, DC: American Water Works Association.
Asaithambi, P., A. R. A. Aziz, and W. M. A. B. W. Daud. 2016. “Integrated ozone—electrocoagulation process for the removal of pollutant from industrial effluent: Optimization through response surface methodology.” Chem. Eng. Process. 105: 92–102. https://doi.org/10.1016/j.cep.2016.03.013.
Asgharian, F., M. R. Khosravi-Nikou, B. Anvaripour, and I. Danaee. 2017. “Electrocoagulation and ultrasonic removal of humic acid from wastewater.” Environ. Prog. Sustainable Energy 36 (3): 822–829. https://doi.org/10.1002/ep.12512.
Banerjee, P., S. R. Barman, A. Mukhopadhayay, and P. Das. 2017. “Ultrasound assisted mixed azo dye adsorption by chitosan–graphene oxide nanocomposite.” Chem. Eng. Res. Des. 117: 43–56. https://doi.org/10.1016/j.cherd.2016.10.009.
Banerjee, P., A. Mukhopadhyay, and P. Das. 2019. “Ultrasound enhanced azo dye adsorption by graphene oxide nanocomposite.” Madridge J. Nanotechnol. Nanosci. 3 (2): 106–111. https://doi.org/10.18689/mjnn-1000120.
Banerjee, P., S. Sau, P. Das, and A. Mukhopadhayay. 2015. “Optimization and modelling of synthetic azo dye wastewater treatment using Graphene oxide nanoplatelets: Characterization toxicity evaluation and optimization using Artificial Neural Network.” Ecotoxicol. Environ. Saf. 119: 47–57. https://doi.org/10.1016/j.ecoenv.2015.04.022.
Bani-Melhem, K., and E. Smith. 2012. “Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system.” Chem. Eng. J. 198–199: 201–210. https://doi.org/10.1016/j.cej.2012.05.065.
Baran, W., E. Adamek, M. Jajko, and A. Sobczak. 2018. “Removal of veterinary antibiotics from wastewater by electrocoagulation.” Chemosphere 194: 381–389. https://doi.org/10.1016/j.chemosphere.2017.11.165.
Baudequin, C., E. Couallier, M. Rakib, I. Deguerry, R. Severac, and M. Pabon. 2011. “Purification of firefighting water containing a fluorinated surfactant by reverse osmosis coupled to electrocoagulation-filtration.” Sep. Purif. Technol. 76 (3): 275–282. https://doi.org/10.1016/j.seppur.2010.10.016.
Bay, C. W. 2000. “E Lectrocoagulation and E Lectroflotation.” Manage. Environ. Q. 126: 3–8.
Boroski, M., A. C. Rodrigues, J. C. Garcia, L. C. Sampaio, J. Nozaki, and N. Hioka. 2009. “Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries.” J. Hazard. Mater. 162 (1): 448–454. https://doi.org/10.1016/j.jhazmat.2008.05.062.
Can, O. T., M. Kobya, E. Demirbas, and M. Bayramoglu. 2006. “Treatment of the textile wastewater by combined electrocoagulation.” Chemosphere 62 (2): 181–187. https://doi.org/10.1016/j.chemosphere.2005.05.022.
Chaabane, T., S. Zaidi, A. Darchen, and R. Maachi. 2013. “Treatment of pharmaceutical effluent by electrocoagulation coupled to nanofiltration.” Desalin. Water Treat. 51 (25–27): 4987–4997. https://doi.org/10.1080/19443994.2013.808784.
Changotra, R., J. P. Guin, S. A. Khader, L. Varshney, and A. Dhir. 2019. “Electron beam induced degradation of ofloxacin in aqueous solution: Kinetics, removal mechanism and cytotoxicity assessment.” Chem. Eng. J. 356: 973–984. https://doi.org/10.1016/j.cej.2018.08.156.
Chen, Y., L. Chen, H. Bai, and L. Li. 2013. “Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification.” J. Mater. Chem. A 1 (6): 1992–2001. https://doi.org/10.1039/C2TA00406B.
Chu, J. Y., Y. R. Li, N. Li, and W. H. Huang. 2012. “Treatment of car-washing wastewater by electrocoagulation-ultrasound technique for reuse.” Adv. Mater. Res. 433–440: 227–232. https://doi.org/10.4028/www.scientific.net/AMR.433-440.227.
Crespo-Alonso, M., V. M. Nurchi, R. Biesuz, G. Alberti, N. Spano, M. I. Pilo, and G. Sanna. 2013. “Biomass against emerging pollution in wastewater: Ability of cork for the removal of ofloxacin from aqueous solutions at different pH.” J. Environ. Chem. Eng. 1 (4): 1199–1204. https://doi.org/10.1016/j.jece.2013.09.010.
Damodhar, U., and M. Vikram Reddy. 2013. “Impact of pharmaceutical industry treated effluents on the water quality of river Uppanar, South east coast of India: A case study.” Appl. Water Sci. 3 (2): 501–514. https://doi.org/10.1007/s13201-013-0098-x.
Du, Q., J. Sun, Y. Li, X. Yang, X. Wang, Z. Wang, and L. Xia. 2014. “Highly enhanced adsorption of Congo red onto graphene oxide/chitosan fibers by wet-chemical etching of silica nanoparticles.” Chem. Eng. J. 245: 99–106. https://doi.org/10.1016/j.cej.2014.02.006.
Ensano, B. M. B., L. Borea, V. Naddeo, V. Belgiorno, M. D. G. de Luna, M. Balakrishnan, and F. C. Ballesteros. 2019. “Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds.” J. Hazard. Mater. 361: 367–373. https://doi.org/10.1016/j.jhazmat.2018.07.093.
Fan, L., C. Luo, X. Li, F. Lu, H. Qiu, and M. Sun. 2012a. “Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue.” J. Hazard. Mater. 215–216: 272–279. https://doi.org/10.1016/j.jhazmat.2012.02.068.
Fan, L., C. Luo, M. Sun, X. Li, F. Lu, and H. Qiu. 2012b. “Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue.” Bioresour. Technol. 114: 703–706. https://doi.org/10.1016/j.biortech.2012.02.067.
Farhadi, S., B. Aminzadeh, A. Torabian, V. Khatibikamal, and M. Alizadeh Fard. 2012. “Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.” J. Hazard. Mater. 219–220: 35–42. https://doi.org/10.1016/j.jhazmat.2012.03.013.
Gao, H., L. Zhang, Z. Lu, C. He, Q. Li, and G. Na. 2018. “Complex migration of antibiotic resistance in natural aquatic environments.” Environ. Pollut. 232: 1–9. https://doi.org/10.1016/j.envpol.2017.08.078.
Ghaedi, M. 2012. “Comparison of cadmium hydroxide nanowires and silver nanoparticles loaded on activated carbon as new adsorbents for efficient removal of Sunset yellow: Kinetics and equilibrium study.” Spectrochim. Acta, Part A 94: 346–351. https://doi.org/10.1016/j.saa.2012.02.097.
Goyne, K. W., J. Chorover, J. D. Kubicki, A. R. Zimmerman, and S. L. Brantley. 2005. “Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica.” J. Colloid Interface Sci. 283 (1): 160–170. https://doi.org/10.1016/j.jcis.2004.08.150.
Hassan, S. A., and F. J. Ali. 2014. “Assessment of the Ofloxacin (Novecin) Adsorption from aqueous solutions by Two Agricultural Wastes.” Int. J. Adv. Sci. Tech. Res. 2 (4): 950–965.
He, Z. Q., S. Song, J. P. Qiu, J. Yao, X. Y. Cao, Y. Q. Hu, and J. M. Chen. 2007. “Decolorization of C.I. Reactive Yellow 84 in aqueous solution by electrocoagulation enhanced with ozone: Influence of operating conditions.” Environ. Technol. 28 (11): 1257–1263. https://doi.org/10.1080/09593332808618884.
Hosseinzadeh, H., and S. Ramin. 2018. “Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites.” Int. J. Biol. Macromol. 113: 859–868. https://doi.org/10.1016/j.ijbiomac.2018.03.028.
Hu, C. Y., S. L. Lo, W. H. Kuan, and Y. D. Lee. 2005. “Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation.” Water Res. 39 (5): 895–901. https://doi.org/10.1016/j.watres.2004.11.034.
Huang, P., C. Ge, D. Feng, H. Yu, J. Luo, J. Li, P. J. Strong, A. K. Sarmah, N. S. Bolan, and H. Wang. 2018. “Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar.” Sci. Total Environ. 616–617: 1384–1391. https://doi.org/10.1016/j.scitotenv.2017.10.177.
Jiang, Y., J. L. Gong, G. M. Zeng, X. M. Ou, Y. N. Chang, C. H. Deng, J. Zhang, H. Y. Liu, and S. Y. Huang. 2016. “Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications.” Int. J. Biol. Macromol. 82: 702–710. https://doi.org/10.1016/j.ijbiomac.2015.11.021.
Jung, K. W., M. J. Hwang, M. J. Cha, and K. H. Ahn. 2015. “Application and optimization of electric field-assisted ultrasonication for disintegration of waste activated sludge using response surface methodology with a Box-Behnken design.” Ultrason. Sonochem. 22: 437–445. https://doi.org/10.1016/j.ultsonch.2014.06.012.
Kanakaraju, D., B. D. Glass, and M. Oelgemöller. 2018. “Advanced oxidation process-mediated removal of pharmaceuticals from water: A review.” J. Environ. Manage. 219: 189–207. https://doi.org/10.1016/j.jenvman.2018.04.103.
Kayalvizhi, R., and D. Sivakumar. 2017. “Isotherm studies on sono-electrocoagulation for removing Ni in aqueous solution.” Int. Res. J. Multidiscip. Sci. Technol. 2 (3): 122–128.
Khandegar, V., and A. K. Saroh. 2014. “Treatment of distillery spentwash by electrocoagulation.” J. Clean Energy Technol. 2 (3): 244–247. https://doi.org/10.7763/JOCET.2014.V2.133.
Khandegar, V., and A. K. Saroha. 2013a. “Electrocoagulation of distillery spentwash for complete organic reduction.” Int. J. ChemTech Res. 5 (2): 712–718.
Khandegar, V., and A. K. Saroha. 2013b. “Electrocoagulation for the treatment of textile industry effluent—A review.” J. Environ. Manage. 128: 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043.
Kim, T. H., C. Park, J. Yang, and S. Kim. 2004. “Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation.” J. Hazard. Mater. 112 (1–2): 95–103. https://doi.org/10.1016/j.jhazmat.2004.04.008.
Kümmerer, K. 2009. “Antibiotics in the aquatic environment—A review–Part I.” Chemosphere 75 (4): 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086.
Kyzas, G. Z., N. A. Travlou, and E. A. Deliyanni. 2014. “The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions.” Colloids Surf., B 113: 467–476. https://doi.org/10.1016/j.colsurfb.2013.07.055.
Leulescu, M., et al. 2018. “Tartrazine: Physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye.” J. Therm. Anal. Calorim. 134 (1): 209–231. https://doi.org/10.1007/s10973-018-7663-3.
Lin, S. H., C. T. Shyu, and M. E. I. C. Sun. 1998. “Saline wastewater treatment by electrochemical method.” Water Res. 32 (4): 1059–1066. https://doi.org/10.1016/S0043-1354(97)00327-8.
Linares-Hernández, I., C. Barrera-Díaz, G. Roa-Morales, B. Bilyeu, and F. Ureña-Núñez. 2007. “A combined electrocoagulation-sorption process applied to mixed industrial wastewater.” J. Hazard. Mater. 144 (1–2): 240–248. https://doi.org/10.1016/j.jhazmat.2006.10.015.
Liu, J., X. Wu, J. Liu, C. Zhang, Q. Hu, and X. Hou. 2019. “Ofloxacin degradation by Fe3O4-CeO2/AC Fenton-like system: Optimization, kinetics, and degradation pathways.” Mol. Catal. 465: 61–67. https://doi.org/10.1016/j.mcat.2018.12.020.
Mahvi, A. H., S. J. A. Ebrahimi, A. Mesdaghinia, H. Gharibi, and M. H. Sowlat. 2011. “Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent.” J. Hazard. Mater. 192 (3): 1267–1274. https://doi.org/10.1016/j.jhazmat.2011.06.041.
Martins, A. F., M. L. Wilde, T. G. Vasconcelos, and D. M. Henriques. 2006. “Nonylphenol polyethoxylate degradation by means of electrocoagulation and electrochemical Fenton.” Sep. Purif. Technol. 50 (2): 249–255. https://doi.org/10.1016/j.seppur.2005.11.032.
Merzouk, B., B. Gourich, A. Sekki, K. Madani, and M. Chibane. 2009. “Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique. A case study.” J. Hazard. Mater. 164 (1): 215–222. https://doi.org/10.1016/j.jhazmat.2008.07.144.
Merzouk, B., K. Madani, and A. Sekki. 2010. “Using electrocoagulation-electroflotation technology to treat synthetic solution and textile wastewater, two case studies.” Desalination 250 (2): 573–577. https://doi.org/10.1016/j.desal.2009.09.026.
Mkpenie, V. N., and O. U. Abakedi. 2015. “Electrocoagulation of Azo-2-naphthol dye using aluminium electrodes: Effect of solvent and kinetics of adsorption.” Curr. Res. Chem. 7 (2): 34–43. https://doi.org/10.3923/crc.2015.34.43.
Módenes, A. N., F. R. Espinoza-Quiñones, F. H. Borba, and D. R. Manenti. 2012. “Performance evaluation of an integrated photo-Fenton - Electrocoagulation process applied to pollutant removal from tannery effluent in batch system.” Chem. Eng. J. 197: 1–9. https://doi.org/10.1016/j.cej.2012.05.015.
Mohapatra, D. P., S. K. Brar, R. D. Tyagi, P. Picard, and R. Y. Surampalli. 2013. “A comparative study of ultrasonication, Fenton’s oxidation and ferro-sonication treatment for degradation of carbamazepine from wastewater and toxicity test by yeast estrogen screen (YES) assay.” Sci. Total Environ. 447: 280–285. https://doi.org/10.1016/j.scitotenv.2012.12.072.
Mohapatra, D. P., S. K. Brar, R. D. Tyagi, P. Picard, and R. Y. Surampalli. 2014. “Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.” Sci. Total Environ. 470–471: 58–75. https://doi.org/10.1016/j.scitotenv.2013.09.034.
Najafabadi, H., M. Irani, L. Rad, A. Haratameh, and I. Haririan. 2015. “Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent.” RSC Adv. 5 (21): 16532–16539. https://doi.org/10.1039/C5RA01500F.
Nariyan, E., A. Aghababaei, and M. Sillanpää. 2017. “Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic.” Sep. Purif. Technol. 188: 266–281. https://doi.org/10.1016/j.seppur.2017.07.031.
Nawel, A., D. Farid, M. Belkacem, L. Jean-pierre, and M. Khodir. 2015. “Improvement of electrocoagulation–electroflotation treatment of effluent by addition of Opuntia ficus indica pad juice.” Sep. Purif. Technol. 144: 168–176. https://doi.org/10.1016/j.seppur.2015.02.018.
Nurchi, V. M., M. Crespo-Alonso, M. I. Pilo, N. Spano, G. Sanna, and R. Toniolo. 2019. “Sorption of ofloxacin and chrysoidine by grape stalk. A representative case of biomass removal of emerging pollutants from wastewater.” Arabian J. Chem. 12 (7): 1141–1147. https://doi.org/10.1016/j.arabjc.2015.01.006.
Orescanin, V., R. Kollar, D. Ruk, and K. Nad. 2012. “Characterization and electrochemical treatment of landfill leachate.” J. Environ. Sci. Health, Part A 47 (3): 462–469. https://doi.org/10.1080/10934529.2012.646146.
Ouaissa, Y. A., M. Chabani, A. Amrane, and A. Bensmaili. 2014. “Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption.” J. Environ. Chem. Eng. 2 (1): 177–184. https://doi.org/10.1016/j.jece.2013.12.009.
Perng, Y. S., E. C. Wang, S. T. Yu, A. Y. Chang, and C. Y. Shih. 2007. “Pilot treatment of OCC-based paper mill wastewater using pulsed electrocoagulation.” Water Qual. Res. J. 42 (1): 63–71. https://doi.org/10.2166/wqrj.2007.009.
Rajabi, H. R., H. Arjmand, S. J. Hoseini, and H. Nasrabadi. 2015. “Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye.” J. Magn. Magn. Mater. 394: 7–13. https://doi.org/10.1016/j.jmmm.2015.06.024.
Raju, G. B., M. T. Karuppiah, S. S. Latha, S. Parvathy, and S. Prabhakar. 2008. “Treatment of wastewater from synthetic textile industry by electrocoagulation-electrooxidation.” Chem. Eng. J. 144 (1): 51–58. https://doi.org/10.1016/j.cej.2008.01.008.
Rana, R. S., P. Singh, V. Kandari, R. Singh, R. Dobhal, and S. Gupta. 2017. “A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective.” Appl. Water Sci. 7 (1): 1–12. https://doi.org/10.1007/s13201-014-0225-3.
Sabzevari, M., D. E. Cree, and L. D. Wilson. 2018. “Graphene oxide-chitosan composite material for treatment of a model dye effluent.” ACS Omega 3 (10): 13045–13054. https://doi.org/10.1021/acsomega.8b01871.
Saleem, M., A. A. Bukhari, and M. N. Akram. 2011. “Electrocoagulation for the treatment of wastewater for reuse in irrigation and plantation.” J. Basic Appl. Sci. 7 (1): 11–20.
Samuel, M. S., J. Bhattacharya, S. Raj, N. Santhanam, H. Singh, and N. D. Pradeep Singh. 2019. “Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite.” Int. J. Biol. Macromol. 121: 285–292. https://doi.org/10.1016/j.ijbiomac.2018.09.170.
Samuel, M. S., S. S. Shah, J. Bhattacharya, K. Subramaniam, and N. D. Pradeep Singh. 2018. “Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies.” Int. J. Biol. Macromol. 115: 1142–1150. https://doi.org/10.1016/j.ijbiomac.2018.04.185.
Satapathy, M. K., P. Banerjee, and P. Das. 2015. “Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent.” Appl. Nanosci. 5 (1): 1–9. https://doi.org/10.1007/s13204-013-0286-x.
Secula, M. S., B. Cagnon, T. F. de Oliveira, O. Chedeville, and H. Fauduet. 2012. “Removal of acid dye from aqueous solutions by electrocoagulation/GAC adsorption coupling: Kinetics and electrical operating costs.” J. Taiwan Inst. Chem. Eng. 43 (5): 767–775. https://doi.org/10.1016/j.jtice.2012.03.003.
Shen, F., X. Chen, P. Gao, and G. Chen. 2003. “Electrochemical removal of fluoride ions from industrial wastewater.” Chem. Eng. Sci. 58 (3–6): 987–993. https://doi.org/10.1016/S0009-2509(02)00639-5.
Singh, N., S. Riyajuddin, K. Ghosh, S. K. Mehta, and A. Dan. 2019. “Chitosan-graphene oxide hydrogels with embedded magnetic iron oxide nanoparticles for dye removal.” ACS Appl. Nano Mater. 2 (11): 7379–7392. https://doi.org/10.1021/acsanm.9b01909.
Sirés, I., and E. Brillas. 2012. “Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review.” Environ. Int. 40 (1): 212–229. https://doi.org/10.1016/j.envint.2011.07.012.
Smith, S. C., F. Ahmed, K. M. Gutierrez, and D. Frigi Rodrigues. 2014. “A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: Potential environmental applications.” Chem. Eng. J. 240: 147–154. https://doi.org/10.1016/j.cej.2013.11.030.
Song, S., Z. He, J. Qiu, L. Xu, and J. Chen. 2007. “Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters.” Sep. Purif. Technol. 55 (2): 238–245. https://doi.org/10.1016/j.seppur.2006.12.013.
Song, S., J. Yao, Z. He, J. Qiu, and J. Chen. 2008. “Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation.” J. Hazard. Mater. 152 (1): 204–210. https://doi.org/10.1016/j.jhazmat.2007.06.104.
Sponza, D. T., and P. Alicanoglu. 2018. “Reuse and recovery of raw hospital wastewater containing ofloxacin after photocatalytic treatment with nano graphene oxide magnetite.” Water Sci. Technol. 77 (2): 304–322. https://doi.org/10.2166/wst.2017.531.
Sridhar, R., V. Sivakumar, V. Prince Immanuel, and J. Prakash Maran. 2011. “Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.” J. Hazard. Mater. 186 (2–3): 1495–1502. https://doi.org/10.1016/j.jhazmat.2010.12.028.
Tavares, S., E. Pereira, F. Guilherme, E. Nogueira, J. A. Torres, M. C. Silva, K. Kuca, and T. C. Ramalho. 2020. “Δ-FeOOH as support for immobilization peroxidase: Optimization via a chemometric approach.” Molecules 25 (259): 1–12.
Travlou, N. A., G. Z. Kyzas, N. K. Lazaridis, and E. A. Deliyanni. 2013a. “Graphite oxide/chitosan composite for reactive dye removal.” Chem. Eng. J. 217: 256–265. https://doi.org/10.1016/j.cej.2012.12.008.
Travlou, N. A., G. Z. Kyzas, N. K. Lazaridis, and E. A. Deliyanni. 2013b. “Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent.” Langmuir 29 (5): 1657–1668. https://doi.org/10.1021/la304696y.
Uǧurlu, M., A. Gürses, Ç Doǧar, and M. Yalçin. 2008. “The removal of lignin and phenol from paper mill effluents by electrocoagulation.” J. Environ. Manage. 87 (3): 420–428. https://doi.org/10.1016/j.jenvman.2007.01.007.
Van Wieren, E. M., M. D. Seymour, and J. W. Peterson. 2012. “Environment interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: Adsorption and breakdown.” Sci. Total Environ. 441: 1–9. https://doi.org/10.1016/j.scitotenv.2012.09.067.
Verma, S. K., V. Khandegar, and A. K. Saroha. 2013. “Removal of chromium from electroplating industry effluent using electrocoagulation.” J. Hazard. Toxic Radioact. Waste 17 (2): 146–152. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170.
Vilian, A. T. E., and S. Chen. 2014. “Simple approach for the immobilization of horseradish peroxidase on poly-L-histidine modified reduced graphene oxide for amperometric determination of dopamine and H2O2.” RSC Adv. 4: 55867–55876. https://doi.org/10.1039/C4RA09011J.
Wang, C. T., W. L. Chou, and Y. M. Kuo. 2009. “Removal of COD from laundry wastewater by electrocoagulation/electroflotation.” J. Hazard. Mater. 164 (1): 81–86. https://doi.org/10.1016/j.jhazmat.2008.07.122.
Wang, F., B. Yang, H. Wang, Q. Song, F. Tan, and Y. Cao. 2016. “Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite.” J. Mol. Liq. 222: 188–194. https://doi.org/10.1016/j.molliq.2016.07.037.
Wei, X., B. Li, S. Zhao, L. Wang, H. Zhang, C. Li, and S. Wang. 2012. “Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system—A pilot-scale study.” Bioresour. Technol. 122: 189–195. https://doi.org/10.1016/j.biortech.2012.06.041.
WHO (World Health Organization). 2011. Pharmaceuticals in drinking water. Geneva: WHO.
Wuana, R. A., R. Sha’Ato, and S. Iorhen. 2015. “Aqueous phase removal of ofloxacin using adsorbents from Moringa oleifera pod husks.” Adv. Environ. Res. 4 (1): 49–68. https://doi.org/10.12989/aer.2015.4.1.049.
Yadav, A., and V. Khandegar. 2020. “Removal comparison and cost evaluation of 2,6-dichlorophenol.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020033. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000530.
Yadav, M., K. Y. Rhee, S. J. Park, and D. Hui. 2014. “Mechanical properties of Fe3O4/GO/chitosan composites.” Composites, Part B 66: 89–96. https://doi.org/10.1016/j.compositesb.2014.04.034.
Yahiaoui, O., H. Lounici, N. Abdi, N. Drouiche, N. Ghaffour, A. Pauss, and N. Mameri. 2011. “Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes.” Chem. Eng. Process. 50 (1): 37–41. https://doi.org/10.1016/j.cep.2010.11.003.
Ye, Z., H. S. Weinberg, and M. T. Meyer. 2007. “Occurrence of antibiotics in drinking water.” Anal. Bioanal.Chem. 387 (4): 1365–1377. https://doi.org/10.1007/s00216-006-0883-6.
Zhang, C., Z. Chen, W. Guo, C. Zhu, and Y. Zou. 2018. “Simple fabrication of Chitosan/Graphene nanoplates composite spheres for efficient adsorption of acid dyes from aqueous solution.” Int. J. Biol. Macromol. 112: 1048–1054. https://doi.org/10.1016/j.ijbiomac.2018.02.074.
Zhang, X. D., J. D. Hao, W. S. Li, H. J. Jin, J. Yang, Q. M. Huang, D. S. Lu, and H. K. Xu. 2009. “Synergistic effect in treatment of C.I. Acid Red 2 by electrocoagulation and electrooxidation.” J. Hazard. Mater. 170 (2–3): 883–887. https://doi.org/10.1016/j.jhazmat.2009.05.050.
Zhang, Y. Z., J. Li, W. J. Li, and Y. Li. 2015. “Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.” Water Sci. Technol. 72 (10): 1861–1868. https://doi.org/10.2166/wst.2015.412.
Zhao, X., B. Zhang, H. Liu, F. Chen, A. Li, and J. Qu. 2012. “Transformation characteristics of refractory pollutants in plugboard wastewater by an optimal electrocoagulation and electro-Fenton process.” Chemosphere 87 (6): 631–636. https://doi.org/10.1016/j.chemosphere.2012.01.054.
Zhao, X., B. Zhang, H. Liu, and J. Qu. 2011. “Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process.” Chemosphere 83 (5): 726–729. https://doi.org/10.1016/j.chemosphere.2011.01.055.
Zodi, S., O. Potier, F. Lapicque, and J. P. Leclerc. 2010. “Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes.” Desalination 261 (1–2): 186–190. https://doi.org/10.1016/j.desal.2010.04.024.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: Aug 19, 2020
Accepted: Nov 20, 2020
Published online: Jan 13, 2021
Published in print: Apr 1, 2021
Discussion open until: Jun 13, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Akansha Suri [email protected]
M.Tech. Student, Univ. School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India. Email: [email protected]
Vinita Khandegar [email protected]
Assistant Professor, Univ. School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share