Case Studies
Dec 9, 2020

Health Risk Assessment and Characterization of Polycyclic Aromatic Hydrocarbon from the Hydrosphere

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

The prime purpose of this study was to determine the polycyclic aromatic hydrocarbons (PAHs) from the water zone. A total of 15 PAHs were measured in 22 surface water samples and 22 sediment samples. The samples were collected from four water bodies and five soil samples, out of which four samples were collected from near the four water bodies' bank in Jamshedpur, and one was collected from near a highway. The total concentration of PAHs in water, sediment, and soil range from 25.2 to 310.4 ng/L, from 19 to 291.7 ng/g, and from 106.8 to 240.1 ng/g dry weight, respectively. The composition pattern of PAHs in the surface water, sediment, and soil samples of four water bodies were studied and the results show that the Kharkai and Subarnarekha rivers were more contaminated with PAHs when compared with a lake. In almost all samples the low molecular weight Naphthalene and high molecular weight Pyrene were dominant in concentration. The toxic equivalent quotient and mutagenic equivalent quotient values were dominated by the carcinogenic PAH Benzo(a)Pyrene and the calculated values of the incremental lifetime cancer risk were found under the guideline values. The Diagnostic ratios and Principal Component Analysis for source analysis suggested combustion and petrogenic as the main PAHs source inside the city. Jamshedpur being a fast-growing city and its huge amount of vehicular emissions may be the main origin of PAHs sources.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Financially, this work is supported by the SERB (Science and Engineering Research Board), India to provide the GC/MS facilities to analyze the PAHs samples. Mr. Shrikanta Shankar Sethi thanks the BRNS (Board of Research in Nuclear Science) for providing him with financial support during the study.

References

Adeniji, A. O., O. O. Okoh, and A. I. Okoh. 2019a. “Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa.” Environ. Geochem. Health 41 (3): 1303–1320. https://doi.org/10.1007/s10653-018-0213-x.
Adeniji, A. O., O. O. Okoh, and A. I. Okoh. 2019b. “Levels of polycyclic aromatic hydrocarbons in the water and sediment of buffalo river estuary, South Africa and their health risk assessment.” Arch. Environ. Contam. Toxicol. 76 (4): 657–669. https://doi.org/10.1007/s00244-019-00617-w.
AEG (Alliance Environmental Group). 2015. Method 3 risk characterization. File No: 5193-01-01. Azusa, CA: AEG.
Ambade, B., T. K. Sankar, A. Kumar, and S. S. Sethi. 2019. “Characterization of PAHs and n-alkanes in atmospheric aerosol of Jamshedpur city, India.” J. Hazard. Toxic Radioact. Waste 24 (2): 04020003. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000490.
Amin, A., S. Fazal, A. Mujtaba, and S. K. Singh. 2014. “Effects of land transformation on water quality of Dal Lake, Srinagar, India.” J. Indian Soc. Remote Sens. 42 (1): 119–128. https://doi.org/10.1007/s12524-013-0297-9.
ATSDR (Agency for Toxic Substances and Disease Registry). 2012. Public health assessment guidance manual (2005 update). Appendix G: Calculating exposure doses. Atlanta, GA: ATSDR.
Barranco, A., R. M. Alonso-Salces, E. Corta, L. A. Berrueta, B. Gallo, F. Vicente, and M. Sarobe. 2004. “Comparison of donor–acceptor and alumina columns for the clean-up of polycyclic aromatic hydrocarbons from edible oils.” Food Chem. 86 (3): 465–474. https://doi.org/10.1016/j.foodchem.2003.10.030.
Bates, T. S., P. P. Murphy, H. C. Curl, and R. A. Feely. 1987. “Hydrocarbon distributions and transport in an urban estuary.” Environ. Sci. Technol. 21 (2): 193–198. https://doi.org/10.1021/es00156a010.
Beltran, J. L., R. Ferrer, and J. Guiteras. 1998. “Multivariate calibration of polycyclic hydrocarbon mixtures from excitation-emission fluorescence spectra.” Anal. Chim. Acta 373 (2–3): 311–319. https://doi.org/10.1016/S0003-2670(98)00420-6.
Benson, N. U., A. E. Anake, W. U. Adedapo, O. H. Fred-Ahmadu, and K. P. Eke. 2017. “Polycyclic aromatic hydrocarbons in imported Sardinops sagax: Levels and health risk assessments through dietary exposure in Nigeria.” J. Food Compos. Anal. 57: 109–116. https://doi.org/10.1016/j.jfca.2016.12.024.
Berner, Jr., B. A., N. P. Bryner, S. A. Wise, G. H. Mulholland, R. C. Lao, and M. F. Fingas. 1990. “Polycyclic aromatic hydrocarbon emissions from the combustion of crude oil on water.” Environ. Sci. Technol. 24 (9): 1418–1427. https://doi.org/10.1021/es00079a018.
Błaszczyk, E., W. Rogula-Kozłowska, K. Klejnowski, I. Fulara, and D. Mielzynska-Svach. 2017. “Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens, Poland.” Air Qual. Atmos. Health 10 (3): 389–400. https://doi.org/10.1007/s11869-016-0457-5.
Boonyatumanond, R., G. Wattayakorn, A. Togo, and H. Takad. 2006. “Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand.” Mar. Pollut. Bull. 52 (8): 942–956. https://doi.org/10.1016/j.marpolbul.2005.12.015.
Bossert, I., W. M. Kachel, and R. Bartha. 1984. “Fate of hydrocarbons during oily sludge disposal in soil.” Appl. Environ. Microbiol. 47 (4): 763–767. https://doi.org/10.1128/AEM.47.4.763-767.1984.
Budzinski, H., I. Jones, J. Bellocq, C. Píerard, and P. Garrigues. 1997. “Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary.” Mar. Chem. 58 (1–2): 85–97. https://doi.org/10.1016/S0304-4203(97)00028-5.
CCME (Canadian Council of Ministers of the Environment). 2010. Canadian soil quality guidelines for carcinogenic and other polycyclic aromatic hydrocarbons (PAHs) (environmental and human health effects). Scientific Criteria Document (Revised), Publication No. 1445. Winnipeg, Canada: CCME.
Chakraborty, P., S. N. Khuman, S. Selvaraj, S. Sampath, N. L. Devi, J. J. Bang, and A. Katsoyiannis. 2016. “Polychlorinated biphenyls and organochlorine pesticides in River Brahmaputra from the outer Himalayan Range and River Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment.” Environ. Pollut. 219: 998–1006. https://doi.org/10.1016/j.envpol.2016.06.067.
Chen, B. L., X. D. Xuan, L. Z. Zhu, J. Wang, Y. Z. Gao, K. Yang, X. Y. Shen, and B. F. Lou. 2004. “Distribution of polycyclic aromatic hydrocarbon in surface waters, sediment and soils of Hangzhou City, China.” Water Res. 38 (16): 3558–3568. https://doi.org/10.1016/j.watres.2004.05.013.
Chen, Y., L. Zhu, and R. Zhou. 2007. “Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China.” J. Hazard. Mater. 141 (1): 148–155. https://doi.org/10.1016/j.jhazmat.2006.06.106.
Chiou, C. T., S. E. McGroddy, and D. E. Kile. 1998. “Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments.” Environ. Sci. Technol. 32 (2): 264–269. https://doi.org/10.1021/es970614c.
Chiou, C. T., L. J. Peters, and V. H. Freed. 1979. “A physical concept of soil-water equilibria for nonionic organic compounds.” Science 206 (4420): 831–832. https://doi.org/10.1126/science.206.4420.831.
Daka, E. R., and A. P. Ugbomeh. 2013. “Polycyclic aromatic hydrocarbons in sediment and tissues of the crab Callinectes pallidus from the azuabie creek of the upper bonny estuary in the Niger delta.” Res. J. Appl. Sci. Eng. Technol. 6 (14): 2594–2600. https://doi.org/10.19026/rjaset.6.3744.
DTSC (California Department of Toxic Substances Control). 2014. Human health risk assessment (HHRA) note. Hero HHRA Note No. 1. Chatsworth, CA: DTSC.
Fairbanks, B. C., G. A. O’Conner, and S. E. Smith. 1987. “Mineralization and volatilization of polychlorinated biphenyls in sludge-amended.” J. Environ. Qual. 16 (1): 18–25. https://doi.org/10.2134/jeq1987.00472425001600010004x.
Fakhradini, S. S., F. Moore, B. Keshavarzi, and A. Lahijanzadeh. 2019. “Polycyclic aromatic hydrocarbons (PAHs) in water and sediment of hoor Al-azim wetland, Iran: A focus on source apportionment, environmental risk assessment, and sediment-water partitioning.” Environ. Monit. Assess. 191 (4): 233–251. https://doi.org/10.1007/s10661-019-7360-0.
Feng, J., P. Hu, X. Li, S. Liu, and J. Sun. 2016. “Ecological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water from middle and lower reaches of the Yellow River.” Polycyclic Aromat. Compd. 36 (5): 656–670. https://doi.org/10.1080/10406638.2015.1042552.
Gerba, C. P. 2006. “Risk assessment.” Chap. 14 in Environmental and pollution science. 2nd ed., edited by I. L. Pepper, C. P. Gerba, and M. L. Brusseau, 212–232. Amsterdam, Netherlands: Academic Press.
Hong, W. J., et al. 2016. “Distribution, fate, inhalation exposure and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in some asian countries.” Environ. Sci. Technol. 50 (13): 7163–7174. https://doi.org/10.1021/acs.est.6b01090.
Hussain, K., S. Balachandran, and R. R. Hoque. 2015. “Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the river Brahmaputra in Guwahati, India.” Ecotoxicol. Environ. Saf. 122: 61–67. https://doi.org/10.1016/j.ecoenv.2015.07.008.
IARC (International Agency for Research on Cancer). 1987. Vols. 1–42 of IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Supplement 7, Overall evaluation of carcinogenity: an updating of IAPC monographs. Lyon, France: IARC.
IARC (International Agency for Research on Cancer). 2006. Polycyclic aromatic hydrocarbons. IARC Monogaraph 92. Lyon, France: IARC.
Jamhari, A. A., M. Sahani, M. T. Latif, K. M. Chan, H. S. Tan, M. F. Khan, and N. Mohd Tahir. 2014. “Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia.” Atmos. Environ. 86: 16–27. https://doi.org/10.1016/j.atmosenv.2013.12.019.
Jiang, Y. F., X. T. Wang, F. Wang, Y. Jia, M. H. Wu, G. Y. Sheng, and J. M. Fu. 2009. “Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China.” Chemosphere 75 (8): 1112–1118. https://doi.org/10.1016/j.chemosphere.2009.01.027.
Jiries, A., H. Hussain, and J. Lintelmann. 2000. “Determination of polycyclic caromatic hydrocarbons in wastewater, sediments, sludge and plants in Karak province.” Water Air Soil Pollut. 121 (1/4): 217–228. https://doi.org/10.1023/A:1005257207607.
Jones, K. C., and P. D. Voogt. 1999. “Persistent organic pollutants (POPs): State of the science.” Environ. Pollut. 100 (1–3): 209–221. https://doi.org/10.1016/S0269-7491(99)00098-6.
Kamunda, C., M. Mathuthu, and M. Madhuku. 2016. “Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa.” Int. J. Environ. Res. Public Health 13 (7): 663. https://doi.org/10.3390/ijerph13070663.
Karickhoff, S. W., D. Brown, and T. Scott. 1979. “Sorption of hydrophobic pollutants on natural sediments.” Water Res. 13 (3): 241–248. https://doi.org/10.1016/0043-1354(79)90201-X.
Khalili, N. R., P. A. Scheff, and T. M. Holsen. 1995. “PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions.” Atmos. Environ. 29 (4): 533–542. https://doi.org/10.1016/1352-2310(94)00275-P.
Khuman, S. N., P. Chakraborty, A. Cincinelli, D. Snow, and B. Kumar. 2018. “Polycyclic aromatic hydrocarbons in surface waters and riverine sediments of the Hooghly and Brahmaputra Rivers in the Eastern and Northeastern India.” Sci. Total Environ. 636: 751–760. https://doi.org/10.1016/j.scitotenv.2018.04.109.
Kumar, A., B. Ambade, T. K. Sankar, and S. S. Sethi. 2020a. “Characteristics, toxicity, source identification and seasonal variation of atmospheric polycyclic aromatic hydrocarbons over East India.” Environ. Sci. Pollut. Res. 27 (1): 678–690. https://doi.org/10.1007/s11356-019-06882-5.
Kumar, A., B. Ambade, T. K. Sankar, S. S. Sethi, and S. Kurwadkar. 2020b. “Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India.” Sustainable Cities Soc. 52: 101801. https://doi.org/10.1016/j.scs.2019.101801.
Kumar, V., N. C. Kothiyal, and Saruchi. 2016. “Analysis of polycyclic aromatic hydrocarbon, toxic equivalency factor and related carcinogenic potencies in roadside soil within a developing city of Northern India.” Polycyclic Aromat. Compd. 36 (4): 506–526. https://doi.org/10.1080/10406638.2015.1026999.
Large Yusty, M. A., and J. L. Cortizo Daviña. 2005. “Supercritical fluid extraction and high-performance liquid chromatography–fluorescence detection method for polycyclic aromatic hydrocarbons investigation in vegetable oil.” Food Control 16 (1): 59–64. https://doi.org/10.1016/j.foodcont.2003.11.008.
Lerda, D. 2011. Polycyclic aromatic hydrocarbons (PAHs) factsheet, 6–13. 4th ed. JRC Technical Notes 66955-2011. Ispra, Italy: Joint Research Center.
Lewitzka, F., and R. Niessner. 1995. “Application of time-resolved fluorescence spectroscopy on the analysis of PAH-coated aerosols.” Aerosol Sci. Technol. 23 (3): 454–464. https://doi.org/10.1080/02786829508965328.
Long, E. R., D. D. Macdonald, S. L. Smith, and F. D. Calder. 1995. “Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments.” Environ. Manage. 19 (1): 81–97. https://doi.org/10.1007/BF02472006.
Lowe, J. P., and B. D. Silverman. 1984. “Predicting carcinogenicity of polycyclic aromatic hydrocarbons.” Acc. Chem. Res. 17 (9): 332–338. https://doi.org/10.1021/ar00105a006.
Mackay, D., W. Y. Shiu, and K. C. Ma. 1992. Illustrated handbook of physical–chemical properties and environmental fate for organic chemical. Vol. 2 of Polycyclic aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans. Boca Raton, FL: Lewis Publishers.
Man, Y. B., Y. Kang, H. S. Wang, W. Lau, H. Li, X. L. Sun, J. P. Giesy, K. L. Chow, and M. Wong. 2013. “Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons.” J. Hazard. Mater. 261: 770–776. https://doi.org/10.1016/j.jhazmat.2012.11.067.
Marr, L. C., T. W. Kirchstetter, R. A. Harley, A. H. Miguel, S. V. Hering, and S. K. Hammond. 1999. “Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions.” Environ. Sci. Technol. 33 (18): 3091–3099. https://doi.org/10.1021/es981227l.
McVeety, B. D., and R. A. Hites. 1988. “Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: A mass balance approach.” Atmos. Environ. 22 (3): 511–536. https://doi.org/10.1016/0004-6981(88)90196-5.
Mitra, S., S. Corsolini, K. Pozo, O. Audy, S. K. Sarkar, and J. K. Biswas. 2019. “Characterization, source identification and risk associated with polyaromatic and chlorinated organic contaminants (PAHs, PCBs, PCBs and OCPs) in the surface sediments of Hooghly estuary, India.” Chemosphere 221: 154–165. https://doi.org/10.1016/j.chemosphere.2018.12.173.
Neff, J. M. 1979. Polycyclic aromatic hydrocarbons in the aquatic environment: Sources, fates and biological effects, full name. London: Applied Science Publishers.
Oanh, N. T. K., L. B. Reutergardh, N. T. Dung, M. H. Yu, W. X. Yao, and H. X. Co. 2000. “Polycyclic aromatic hydrocarbons in the airborne particulate matter at a location 40KM north of Bangkok, Thailand.” Atmos. Environ. 34 (26): 4557–4563. https://doi.org/10.1016/S1352-2310(00)00109-6.
Pereira, W. E., F. D. Hostettler, and J. B. Rapp. 1996. “Distributions and fate of chlorinated pesticides, biomarkers and polycyclic aromatic hydrocarbons in sediments along a contaminant gradient from a point-source in San Francisco Bay, California.” Mar. Environ. Res. 41 (3): 299–314. https://doi.org/10.1016/0141-1136(95)00021-6.
Sicre, M. A., J. C. Marty, A. Saliot, X. Aparicio, J. Grimalt, and J. Albaiges. 1987. “Aliphatic and aromatic hydrocarbons in the Mediterranean aerosol.” Int. J. Environ. Anal. Chem. 29 (1–2): 73–94. https://doi.org/10.1080/03067318708078412.
Simpson, C. D., A. A. Mosi, W. R. Cullen, and K. Reimer. 1996. “Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbour, Canada.” Sci. Total Environ. 181 (3): 265–278. https://doi.org/10.1016/0048-9697(95)05026-4.
Singh, H., R. Pandey, S. K. Singh, and D. N. Shukla. 2017a. “Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India.” Appl. Water Sci. 7 (7): 4133–4149. https://doi.org/10.1007/s13201-017-0572-y.
Singh, H., D. Singh, S. K. Singh, and D. N. Shukla. 2017b. “Assessment of river water quality and ecological diversity through multivariate statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India.” Int. J. River Basin Manage. 15 (3): 347–360. https://doi.org/10.1080/15715124.2017.1300159.
Singh, S. K., P. Singh, and S. K. Gautam. 2016. “Appraisal of urban lake water quality through numerical index, multivariate statistics and earth observation data sets.” Int. J. Environ. Sci. Technol. 13 (2): 445–456. https://doi.org/10.1007/s13762-015-0850-x.
Singh, S. K., P. K. Srivastava, D. Singh, D. Han, S. K. Gautam, and A. C. Pandey. 2015. “Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: A case study of Allahabad district, India.” Environ. Geochem. Health 37 (1): 157–180. https://doi.org/10.1007/s10653-014-9638-z.
Sun, Z., et al. 2017a. “Occurrence and geographic distribution of polycyclic aromatic hydrocarbons in agricultural soils in eastern China.” Environ. Sci. Pollut. Res. 24 (13): 12168–12175. https://doi.org/10.1007/s11356-017-8838-3.
Sun, P., B. Xie, Y. Song, H. Yang, and Y. Wang. 2017b. “Historical trends of polycyclic aromatic hydrocarbons in the reservoir sediment of the dianchi watershed, southwest China.” Bull. Environ. Contam. Toxicol. 99 (1): 117–124. https://doi.org/10.1007/s00128-017-2095-5.
Takada, H., T. Onda, and N. Ogura. 1990. “Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography.” Environ. Sci. Technol. 24 (28): 1179–1186. https://doi.org/10.1021/es00078a005.
Tavakoly, S. S., R. Hashim, A. Salleh, M. Rezayi, A. Mehdinia, and O. Safari. 2014. “Polycyclic aromatic hydrocarbons in coastal sediment of Klang Strait, Malaysia: Distribution pattern, risk assessment and sources.” PLoS One 9 (4): e94907. https://doi.org/10.1371/journal.pone.0094907.
Tongo, I., L. Ezemonye, and K. Akpeh. 2017. “Distribution, characterization, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Ovia River, southern Nigeria.” Environ. Monit. Assess. 189 (6): 247. https://doi.org/10.1007/s10661-017-5931-5.
USEPA. 1989. Risk assessment guidance for superfund volume I, human health evaluation manual (part A): Interim final. EPA/540/1-89/002, PB90-155581. Washington, DC: USEPA.
USEPA. 2001. Integrated risk information system (IRIS): Benzo[a]pyrene (CAS No. 50-32-8). Washington, DC: USEPA.
USEPA. 2004. Risk assessment guidance for superfund volume I: Human health evaluation manual (part E, supplemental guidance for dermal risk assessment): Final. EPA/540/ R/99/005 OSWER 9285.7-02EP PB99-963312. Washington, DC: USEPA.
USEPA. 2009. RAGS: Part F, supplemental guidance for inhalation risk assessment. EPA/540/R/070/002. Washington, DC: USEPA.
USEPA. 2015. Regional screening table. Washington, DC: USEPA.
Vogt, N. B., F. Brakstad, K. Thrane, S. Nordenson, J. Krane, E. Aamot, K. Kolset, E. Esbensen, and K. Steines. 1987. “Polycyclic aromatic hydrocarbons in soil and air: Statistical analysis and classification by the SIMCA method.” Environ. Sci. Technol. 21 (1): 35–44. https://doi.org/10.1021/es00155a003.
Wang, B., G. Yu, Y. J. Yu, J. Huang, H. Y. Hu, and L. S. Wang. 2009. “Health risk assessment of organic pollutants in Jiangsu Reach of the Huaihe River, China.” Water Sci. Technol. 59 (5): 907–916. https://doi.org/10.2166/wst.2009.038.
Wang, L., C. Li, B. Jiao, Q. Li, H. Su, J. Wang, and F. Jin. 2018a. “Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments.” Sci. Total Environ. 616–617: 288–295. https://doi.org/10.1016/j.scitotenv.2017.10.336.
Wang, L., S. Zhang, L. Wang, W. Zhang, X. Shi, X. Lu, X. Li, and X. Li. 2018b. “Concentration and risk evaluation of polycyclic aromatic hydrocarbons in urban soil in the typical semi-arid city of Xi’an in Northwest China.” Int. J. Environ. Res. Public Health 15 (4): 607. https://doi.org/10.3390/ijerph15040607.
WDNR (Wisconsin Department of Natural Resources). 2003. Consensus-based sediment quality guidelines: Recommendations for use & application. RR-088. Madison, WI: WDNR.
Wei, H., Z. Le, L. Shuxian, W. Dan, L. Xiaojun, J. Lan, and M. Xiping. 2015. “Health risk assessment of heavy metals and polycyclic aromatic hydrocarbons in soil at coke oven gas plants.” Environ. Eng. Manage. J. 14 (2): 487–496. https://doi.org/10.30638/eemj.2015.051.
WHO (World Health Organization). 1998. Polynuclear aromatic hydrocarbons. Guidelines for drinking-water quality. 2nd ed. Addendum to Vol. 2 health criteria and other supporting information, 123–152. Geneva: WHO.
Wise, S. A., B. A. Benner, G. D. Byrd, S. N. Chesler, R. E. Rebbert, and M. M. Schantz. 1988. “Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material.” Anal. Chem. 60 (9): 887–894. https://doi.org/10.1021/ac00160a012.
Woodhead, R. J., R. J. Law, and P. Matthiessen. 1999. “Polycyclic aromatic hydrocarbons in surface sediments around England and Wales, and their possible biological significance.” Mar. Pollut. Bull. 38 (9): 773–790. https://doi.org/10.1016/S0025-326X(99)00039-9.
Xiao, R., J. Bai, J. Wang, Q. Lu, Q. Zhao, B. Cui, and X. Liu. 2014. “Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates.” Chemosphere 110: 8–16. https://doi.org/10.1016/j.chemosphere.2014.03.001.
Yang, T. H., H. M. Cheng, H. H. Wang, M. Drews, S. Li, W. Huang, H. Zhou, C. M. Chen, and X. Diao. 2019. “Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, surrounding sediments and surface water at the Dazhou Island, China.” Chemosphere 218: 157–168. https://doi.org/10.1016/j.chemosphere.2018.11.063.
Yao, Y., C. L. Huang, J. Z. Wang, H. G. Ni, Z. Y. Yang, Z. Y. Huang, L. J. Bao, and E. Y. Zeng. 2017. “Significance of anthropogenic factors to freely dissolved polycyclic aromatic hydrocarbons in freshwater of China.” Environ. Sci. Technol. 51 (15): 8304–8312. https://doi.org/10.1021/acs.est.7b02008.
Yim, U. H., S. H. Hong, W. J. Shim, J. R. Oh, and M. Chang. 2005. “Spatio-temporal distribution and characteristics of PAHs in sediments from Masan Bay, Korea.” Mar. Pollut. Bull. 50 (3): 319–326. https://doi.org/10.1016/j.marpolbul.2004.11.003.
Yunker, M. B., L. R. Snoedon, R. W. Macdoland, J. N. Smith, M. G. Fowler, F. A. Malaughlin, A. I. Danyushevskaya, V. I. Petrova, and G. I. Ivanaov. 1996. “Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas.” Environ. Sci. Technol. 30 (4): 1310–1320. https://doi.org/10.1021/es950523k.
Zhang, Y., and S. Tao. 2009. “Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004.” Atmos. Environ. 43 (4): 812–819. https://doi.org/10.1016/j.atmosenv.2008.10.050.
Zhu, L., Y. Chen, and R. Zhou. 2008. “Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China.” J. Hazard. Mater. 150 (2): 308–316. https://doi.org/10.1016/j.jhazmat.2007.04.102.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: Aug 4, 2020
Accepted: Oct 9, 2020
Published online: Dec 9, 2020
Published in print: Apr 1, 2021
Discussion open until: May 9, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Balram Ambade [email protected]
Professor, Dept. of Chemistry, NIT, Jamshedpur, 831014 Jharkhand, India (corresponding author). Email: [email protected]
Shrikanta Shankar Sethi [email protected]
Junior Research Fellow (BRNS Project), Dept. of Chemistry, NIT, Jamshedpur, 831014 Jharkhand, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share