Technical Papers
Nov 25, 2020

Optimization of Arsenate Adsorption over Aluminum-Impregnated Tea Waste Biochar Using RSM–Central Composite Design and Adsorption Mechanism

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

Aluminum-impregnated tea waste activated carbon (Al-TC) synthesized for adsorption of arsenate at optimum conditions. The Al-TC produced through slow pyrolysis of tea waste followed by the impregnation of anhydrous aluminum. The operating conditions (initial metal concentration, pH, contact time, and adsorbent dose) were optimized using response surface methodology–central composite design statistical technique, with percentage arsenate removal as a targeted response. The response surface analyses and analysis of variance reveals an excellent fit of experimental data into the quadratic model, and the interactive effect of pH and initial concentration was highly significant on arsenate removal capacity. The obtained optimal conditions corresponding for good percentage arsenate removal were at 100 μg/L, pH 6.0, adsorbent dose 1.0 g, and contact time 1 h. The synthesized mesoporous adsorbent possesses a high surface area of 396 m2/g and an excellent uptake capacity of 99.6 μg/g. The probable mechanism for adsorption proposes that electrostatic forces and hydrogen bonding are responsible for adsorption of arsenic species (H2AsO4 and H3AsO4) at pH 2.0, the arsenic species, including HAsO4−2 and H2AsO4 are removed through adsorption and ion exchange at pH 6.0, and weak adsorption of AsO43− through ion exchange at pH 10.0. Coexisting PO43− and SiO32− ions negatively affect the arsenate adsorption whereas CO32−, SO42−, Ca2+, and Mg2+ ions do not have a significant impact on the adsorption process. The arsenate’s using Al-TC obeyed the Langmuir isotherm model and the kinetic data best fits into the pseudo-second order model. The adsorption process has proven to be spontaneous and endothermic. The produced Al-TC can be used very effectively for the treatment of arsenate containing aqueous media.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank Post Graduation Research Lab, IIT Kanpur for providing assistance with SEM, XRD, BET, FTIR, XPS analysis.

References

Abukhadra, M. R., M. A. El-Meligy, and A. M. El-Sherbeeny. 2020. “Evaluation and characterization of Egyptian ferruginous kaolinite as adsorbent and heterogeneous catalyst for effective removal of safranin-O cationic dye from water.” Arabian J. Geosci. 13 (4): 169. https://doi.org/10.1007/s12517-020-5182-6.
Adlnasab, L., N. Shekari, and A. Maghsodi. 2019. “Optimization of arsenic removal with Fe3O4@Al2O3@Zn-Fe LDH as a new magnetic nano adsorbent using Box-Behnken design.” J. Environ. Chem. Eng. 7 (2): 102974. https://doi.org/10.1016/j.jece.2019.102974.
Agrafioti, E., D. Kalderis, and E. Diamadopoulos. 2014. “Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge.” J. Environ. Manage. 133: 309–314. https://doi.org/10.1016/j.jenvman.2013.12.007.
Alam, M. A., W. A. Shaikh, M. O. Alam, T. Bhattacharya, S. Chakraborty, B. Show, and I. Saha. 2018. “Adsorption of As(III) and As(V) from aqueous solution by modified Cassia fistula (golden shower) biochar.” Appl. Water Sci. 8 (7): 198. https://doi.org/10.1007/s13201-018-0839-y.
Alchouron, J., C. Navarathna, H. D. Chludil, N. B. Dewage, F. Perez, C. U. Pittman Jr, A. S. Vega, and T. E. Mlsna. 2020. “Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation.” Sci. Total Environ. 706: 135943. https://doi.org/10.1016/j.scitotenv.2019.135943.
Alkurdi, S. S., R. A. Al-Juboori, J. Bundschuh, L. Bowtell, and S. McKnight. 2020. “Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal.” Environ. Pollut. 262: 114221. https://doi.org/10.1016/j.envpol.2020.114221.
Ansari, R., and M. Sadegh. 2007. “Application of activated carbon for removal of arsenic ions from aqueous solutions.” E-J. Chem. 4: 103–108. https://doi.org/10.1155/2007/829187.
Asere, T. G., S. Mincke, J. De Clercq, K. Verbeken, D. A. Tessema, F. Fufa, C. V. Stevens, and G. Du Laing. 2017. “Removal of arsenic(V) from aqueous solutions using chitosan–red scoria and chitosan–pumice blends.” Int. J. Environ. Res. Public Health 14 (8): 895. https://doi.org/10.3390/ijerph14080895.
Asfaram, A., M. Ghaedi, S. Agarwal, I. Tyagi, and V. K. Gupta. 2015. “Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: Optimization of parameters using response surface methodology with central composite design.” RSC Adv. 5 (24): 18438–18450. https://doi.org/10.1039/C4RA15637D.
Auta, M., and B. Hameed. 2011. “Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology.” Chem. Eng. J. 175: 233–243. https://doi.org/10.1016/j.cej.2011.09.100.
Bagali, S. S., B. S. Gowrishankar, and A. S. Roy. 2017. “Optimization, kinetics, and equilibrium studies on the removal of lead(II) from an aqueous solution using banana pseudostem as an adsorbent.” Engineering 3 (3): 409–415. https://doi.org/10.1016/J.ENG.2017.03.024.
Bagheri, R., M. Ghaedi, A. Asfaram, E. A. Dil, and H. Javadian. 2019. “RSM-CCD design of malachite green adsorption onto activated carbon with multimodal pore size distribution prepared from Amygdalus scoparia: Kinetic and isotherm studies.” Polyhedron 171: 464–472. https://doi.org/10.1016/j.poly.2019.07.037.
Barbaux, Y., M. Dekiouk, D. Le Maguer, L. Gengembre, D. Huchette, and J. Grimblot. 1992. “Bulk and surface analysis of a Fe-PO oxydehydrogenation catalyst.” Appl. Catal., A 90 (1): 51–60. https://doi.org/10.1016/0926-860X(92)80247-A.
Baskan, M. B., and A. Pala. 2011. “Removal of arsenic from drinking water using modified natural zeolite.” Desalination 281: 396–403. https://doi.org/10.1016/j.desal.2011.08.015.
Bhattacharya, A. K., S. N. Mandal, and S. K. Das. 2006. “Adsorption of Zn(II) from aqueous solution by using different adsorbents.” Chem. Eng. J. 123 (1–2): 43–51. https://doi.org/10.1016/j.cej.2006.06.012.
Boddu, V. M., K. Abburi, J. L. Talbott, E. D. Smith, and R. Haasch. 2008. “Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent.” Water Res. 42 (3): 633–642. https://doi.org/10.1016/j.watres.2007.08.014.
Bordoloi, N., R. Goswami, M. Kumar, and R. Kataki. 2017. “Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies.” Bioresour. Technol. 244: 1465–1469. https://doi.org/10.1016/j.biortech.2017.05.139.
Cai, H., G. Chen, C. Peng, L. Xu, X. Zhu, Z. Zhang, Y. Dong, G. Shang, F. Ke, and H. Gao. 2015. “Enhanced removal of fluoride by tea waste supported hydrous aluminium oxide nanoparticles: Anionic polyacrylamide mediated aluminium assembly and adsorption mechanism.” RSC Adv. 5 (37): 29266–29275. https://doi.org/10.1039/C5RA01560J.
Chang, Q., and W. Lin. 2009. “Development of GAC-Iron adsorbent for arsenic removal.” Proc. Water Environ. Fed. 2009 (16): 1552–1571.
Chen, S., Q. Yue, B. Gao, Q. Li, and X. Xu. 2011. “Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study.” Chem. Eng. J. 168 (2): 909–917. https://doi.org/10.1016/j.cej.2011.01.063.
Da’na, E., and A. Sayari. 2011. “Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: Equilibrium properties.” Chem. Eng. J. 166 (1): 445–453. https://doi.org/10.1016/j.cej.2010.11.016.
Darby, I., C.-Y. Xu, H. M. Wallace, S. Joseph, B. Pace, and S. H. Bai. 2016. “Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar.” Environ. Sci. Pollut. Res. 23 (11): 11267–11278. https://doi.org/10.1007/s11356-016-6336-7.
Dashamiri, S., M. Ghaedi, K. Dashtian, M. R. Rahimi, A. Goudarzi, and R. Jannesar. 2016. “Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.” Ultrason. Sonochem. 31: 546–557. https://doi.org/10.1016/j.ultsonch.2016.02.008.
Dil, E. A., M. Ghaedi, and A. Asfaram. 2019. “Application of hydrophobic deep eutectic solvent as the carrier for ferrofluid: A novel strategy for pre-concentration and determination of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization.” Talanta 202: 526–530. https://doi.org/10.1016/j.talanta.2019.05.027.
Ding, Z., Y. Wan, X. Hu, S. Wang, A. R. Zimmerman, and B. Gao. 2016. “Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: Importance of physicochemical properties.” J. Ind. Eng. Chem. 37: 261–267. https://doi.org/10.1016/j.jiec.2016.03.035.
Ding, Z., X. Xu, T. Phan, X. Hu, and G. Nie. 2018. “High adsorption performance for As(III) and As(V) onto novel aluminum-enriched biochar derived from abandoned Tetra Paks.” Chemosphere 208: 800–807. https://doi.org/10.1016/j.chemosphere.2018.06.050.
Eljamal, O., K. Sasaki, and T. Hirajima. 2011. “Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron.” Appl. Math. Modell. 35 (10): 5198–5207. https://doi.org/10.1016/j.apm.2011.04.040.
Fakhri, Y., A. Mohseni-Bandpei, G. O. Conti, M. Ferrante, A. Cristaldi, A. K. Jeihooni, M. K. Dehkordi, A. Alinejad, H. Rasoulzadeh, and S. M. Mohseni. 2018. “Systematic review and health risk assessment of arsenic and lead in the fished shrimps from the Persian gulf.” Food Chem. Toxicol. 113: 278–286. https://doi.org/10.1016/j.fct.2018.01.046.
Faalzadeh, M., and H. Faghihian. 2015. “Separation of arsenic from aqueous solutions by amino-functionalized γ-Fe2O3-β-zeolite.” Sep. Sci. Technol. 50 (7): 958–964.
Foroutan, R., R. Mohammadi, A. S. Adeleye, S. Farjadfard, Z. Esvandi, H. Arfaeinia, G. A. Sorial, B. Ramavandi, and S. Sahebi. 2019. “Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents.” Environ. Sci. Pollut. Res. 26 (29): 29748–29762. https://doi.org/10.1007/s11356-019-06070-5.
Golami, M., H. Mohammadi, and S. Mokhtari. 2009. “Application of reverse osmosis technology for arsenic removal from drinking water.” J. Adv. Med. Biomed. Res. 17 (68): 9–20.
Goldberg, S., and C. T. Johnston. 2001. “Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling.” J. Colloid Interface Sci. 234: 204–216. https://doi.org/10.1006/jcis.2000.7295.
He, X., J. Jiang, Z. Hong, X. Pan, Y. Dong, and R. Xu. 2020. “Effect of aluminum modification of rice straw–based biochar on arsenate adsorption.” J. Soils Sediments 20: 3073–3082. https://doi.org/10.1007/s11368-020-02595-2.
Hognon, C., C. Dupont, M. Grateau, and F. Delrue. 2014. “Comparison of steam gasification reactivity of algal and lignocellulosic biomass: Influence of inorganic elements.” Bioresour. Technol. 164: 347–353. https://doi.org/10.1016/j.biortech.2014.04.111.
Huo, J.-B., K. Gupta, C. Lu, H. C. B. Hansen, and M.-L. Fu. 2020. “Recyclable high-affinity arsenate sorbents based on porous Fe2O3/La2O2CO3 composites derived from Fe-La-C frameworks.” Colloids Surf., A 585: 124018. https://doi.org/10.1016/j.colsurfa.2019.124018.
Hu, X., Z. Ding, A. R. Zimmerman, S. Wang, and B. Gao. 2015. “Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis.” Water Res. 68: 206–216.
Jain, A., and M. Agarwal. 2017. “Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles.” J. Water Process Eng. 19: 51–59. https://doi.org/10.1016/j.jwpe.2017.07.001.
Jin, H., S. Capareda, Z. Chang, J. Gao, Y. Xu, and J. Zhang. 2014. “Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation.” Bioresour. Technol. 169: 622–629. https://doi.org/10.1016/j.biortech.2014.06.103.
Kanel, S. R., B. Manning, L. Charlet, and H. Choi. 2005. “Removal of arsenic(III) from groundwater by nanoscale zero-valent iron.” Environ. Sci. Technol. 39 (5): 1291–1298. https://doi.org/10.1021/es048991u.
Khojasteh, D., M. Kazerooni, S. Salarian, and R. Kamali. 2016. “Droplet impact on superhydrophobic surfaces: A review of recent developments.” J. Ind. Eng. Chem. 42: 1–14. https://doi.org/10.1016/j.jiec.2016.07.027.
Kim, Y.-S., and J.-H. Kim. 2019. “Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute.” J. Chem. Thermodyn. 130: 104–113. https://doi.org/10.1016/j.jct.2018.10.005.
Kumar, R., C.-U. Kang, D. Mohan, M. A. Khan, J.-H. Lee, S. S. Lee, and B.-H. Jeon. 2020. “Waste sludge derived adsorbents for arsenate removal from water.” Chemosphere 239: 124832. https://doi.org/10.1016/j.chemosphere.2019.124832.
Kumaresan, M., and P. Riyazuddin. 2001. “Overview of speciation chemistry of arsenic.” Curr. Sci. 80: 837–846.
Lata, S., R. Prabhakar, A. Adak, and S. R. Samadder. 2019. “As(V) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis.” Environ. Sci. Pollut. Res. 26 (31): 32175–32188. https://doi.org/10.1007/s11356-019-06300-w.
Lefèvre, G. 2004. “In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides.” Adv. Colloid Interface Sci. 107 (2–3): 109–123. https://doi.org/10.1016/j.cis.2003.11.002.
Liu, Q., L. Wu, M. Gorring, and Y. Deng. 2019. “Aluminum-impregnated biochar for adsorption of arsenic(V) in urban stormwater runoff.” J. Environ. Eng. 145 (4): 04019008. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001503.
Low, B.-T., Y.-P. Ting, and S. Deng. 2008. “Surface modification of Penicillium chrysogenum mycelium for enhanced anionic dye removal.” Chem. Eng. J. 141 (1–3): 9–17. https://doi.org/10.1016/j.cej.2007.10.004.
Maghsodi, A., L. Adlnasab, M. Shabanian, and M. Javanbakht. 2018. “Optimization of effective parameters in the synthesis of nanopore anodic aluminum oxide membrane and arsenic removal by prepared magnetic iron oxide nanoparicles in anodic aluminum oxide membrane via ultrasonic-hydrothermal method.” Ultrason. Sonochem. 48: 441–452. https://doi.org/10.1016/j.ultsonch.2018.07.003.
Maher, A., M. Kitazume, M. Janbaz, R. Miskewitz, S. Douglas, and D. Yang. 2018. “Utilization of pneumatic flow tube mixing technique (PFTM) for processing and stabilization of contaminated soft sediments in the NY/NJ Harbor.” Mar. Georesour. Geotechnol. 36 (3): 271–279. https://doi.org/10.1080/1064119X.2016.1257668.
Maiti, A., J. K. Basu, and S. De. 2010. “Development of a treated laterite for arsenic adsorption: Effects of treatment parameters.” Ind. Eng. Chem. Res. 49 (10): 4873–4886. https://doi.org/10.1021/ie100612u.
Marín-Rangel, V. M., R. Cortés-Martínez, R. A. C. Villanueva, M. G. Garnica-Romo, and H. E. Martínez-Flores. 2012. “As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia swingle) residues.” J. Food Sci. 77 (1): T10–T14.
Masue, Y., R. H. Loeppert, and T. A. Kramer. 2007. “Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: Iron hydroxides”. Environ. Sci. Technol. 41 (3): 837–842.
Matienzo, L. 1991. “Surface reactions of poly(ether ether ketone) with He2+ ions.” Polymer 32 (16): 3057–3061. https://doi.org/10.1016/0032-3861(91)90209-2.
Mohan, D., and C. U. Pittman Jr. 2007. “Arsenic removal from water/wastewater using adsorbents—a critical review.” J. Hazard. Mater. 142 (1-2): 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006.
Mohan, D., A. Sarswat, V. K. Singh, M. Alexandre-Franco, and C. U. Pittman Jr. 2011. “Development of magnetic activated carbon from almond shells for trinitrophenol removal from water.” Chem. Eng. J. 172 (2–3): 1111–1125. https://doi.org/10.1016/j.cej.2011.06.054.
Mohan, S. V., N. C. Rao, and J. Karthikeyan. 2002. “Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: A kinetic and mechanistic study.” J. Hazard. Mater. 90 (2): 189–204. https://doi.org/10.1016/S0304-3894(01)00348-X.
Murcia-Salvador, A., J. A. Pellicer, M. I. Rodríguez-López, V. M. Gómez-López, E. Núñez-Delicado, and J. A. Gabaldón. 2020. “Egg by-products as a tool to remove direct Blue 78 dye from wastewater: Kinetic, equilibrium modeling, thermodynamics and desorption properties.” Materials 13 (6): 1262. https://doi.org/10.3390/ma13061262.
Nagar, R., D. Sarkar, K. C. Makris, and R. Datta. 2010. “Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals.” Chemosphere 78 (8): 1028–1035. https://doi.org/10.1016/j.chemosphere.2009.11.034.
Ng, I.-S., X. Wu, X. Yang, Y. Xie, Y. Lu, and C. Chen. 2013. “Synergistic effect of trichoderma reesei cellulases on agricultural tea waste for adsorption of heavy metal Cr(VI).” Bioresour. Technol. 145: 297–301. https://doi.org/10.1016/j.biortech.2013.01.105.
Nguyen, T. T. Q., P. Loganathan, T. V. Nguyen, and S. Vigneswaran. 2020. “Removing arsenic from water with an original and modified natural manganese oxide ore: Batch kinetic and equilibrium adsorption studies.” Environ. Sci. Pollut. Res. 27 (5): 5490–5502. https://doi.org/10.1007/s11356-019-07284-3.
Niazi, N. K., I. Bibi, M. Shahid, Y. S. Ok, E. D. Burton, H. Wang, S. M. Shaheen, J. Rinklebe, and A. Lüttge. 2018a. “Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.” Environ. Pollut. 232: 31–41. https://doi.org/10.1016/j.envpol.2017.09.051.
Niazi, N. K., I. Bibi, M. Shahid, Y. S. Ok, S. M. Shaheen, J. Rinklebe, H. Wang, B. Murtaza, E. Islam, and M. F. Nawaz. 2018b. “Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques.” Sci. Total Environ. 621: 1642–1651. https://doi.org/10.1016/j.scitotenv.2017.10.063.
Nicomel, N. R., K. Leus, K. Folens, P. Van Der Voort, and G. Du Laing. 2016. “Technologies for arsenic removal from water: Current status and future perspectives.” Int. J. Environ. Res. Public Health 13 (1): 62. https://doi.org/10.3390/ijerph13010062.
Nollet, H., M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete. 2003. “Removal of PCBs from wastewater using fly ash.” Chemosphere 53 (6): 655–665. https://doi.org/10.1016/S0045-6535(03)00517-4.
Ociński, D., and P. Mazur. 2020. “Highly efficient arsenic sorbent based on residual from water deironing–Sorption mechanisms and column studies.” J. Hazard. Mater. 382: 121062.
Okoli, C. P., P. N. Diagboya, I. O. Anigbogu, B. I. Olu-Owolabi, and K. O. Adebowale. 2017. “Competitive biosorption of Pb(II) and Cd(II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis).” Environ. Earth Sci. 76 (1): 33. https://doi.org/10.1007/s12665-016-6368-9.
Pal, D., and S. K. Maiti. 2019. “Abatement of cadmium (Cd) contamination in sediment using tea waste biochar through meso-microcosm study.” J. Cleaner Prod. 212: 986–996. https://doi.org/10.1016/j.jclepro.2018.12.087.
Pan, J.-J., J. Jiang, W. Qian, and R.-k. Xu. 2015. “Arsenate adsorption from aqueous solution onto Fe(III)-modified crop straw biochars.” Environ. Eng. Sci. 32 (11): 922–929. https://doi.org/10.1089/ees.2014.0540.
Panneerselvam, P., N. Morad, and K. A. Tan. 2011. “Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution.” J. Hazard. Mater. 186 (1): 160–168. https://doi.org/10.1016/j.jhazmat.2010.10.102.
Patel, M., A. Kumari, and A. K. Parida. 2020. “Arsenic tolerance mechanisms in plants and potential role of arsenic hyperaccumulating plants for phytoremediation of arsenic-contaminated soil.” In Plant ecophysiology and adaptation under climate change: Mechanisms and perspectives II, edited by M. Hasanuzzaman, 137–162. Berlin: Springer.
Peng, Y., Y. Sun, R. Sun, Y. Zhou, D. C. Tsang, and Q. Chen. 2019. “Optimizing the synthesis of Fe/Al (Hydr)oxides-Biochars to maximize phosphate removal via response surface model.” J. Cleaner Prod. 237: 117770. https://doi.org/10.1016/j.jclepro.2019.117770.
Radu, T., J. L. Subacz, J. M. Phillippi, and M. O. Barnett. 2005. “Effects of dissolved carbonate on arsenic adsorption and mobility.” Environ. Sci. Technol. 39 (20): 7875–7882. https://doi.org/10.1021/es050481s.
Ranjan, A. 2019. “Spatial analysis of arsenic contamination of groundwater around the world and India.” Int. J. Innov. Stud. Soc. Human. 4 (10): 6–15.
Ravikovitch, P. I., and A. V. Neimark. 2006. “Density functional theory model of adsorption on amorphous and microporous silica materials.” Langmuir 22 (26): 11171–11179. https://doi.org/10.1021/la0616146.
Roy, P., N. Mondal, and K. Das. 2014. “Modeling of the adsorptive removal of arsenic: A statistical approach.” J. Environ. Chem. Eng. 2 (1): 585–597.
Said, K. A. M., N. Z. Ismail, R. L. Jama’in, N. A. M. Alipah, N. M. Sutan, G. G. Gadung, R. Baini, and N. S. A. Zauzi. 2018. “Application of Freundlich and Temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane.” Int. J. Eng. Technol. 7 (3.18): 91–93. https://doi.org/10.14419/ijet.v7i3.18.16683.
Salih, S. S., A. Mahdi, M. Kadhom, and T. K. Ghosh. 2019. “Competitive adsorption of As(III) and As(V) onto chitosan/diatomaceous earth adsorbent.” J. Environ. Chem. Eng. 7 (5): 103407. https://doi.org/10.1016/j.jece.2019.103407.
Samsuri, A. W., F. Sadegh-Zadeh, and B. J. Seh-Bardan. 2013. “Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk.” J. Environ. Chem. Eng. 1 (4): 981–988. https://doi.org/10.1016/j.jece.2013.08.009.
Sawood, G. M., and S. K. Gupta. 2020. “Kinetic equilibrium and thermodynamic analyses of As (V) removal from aqueous solution using iron-impregnated Azadirachta indica carbon.” Appl. Water Sci. 10: 1–18. https://doi.org/10.1007/s13201-020-01217-z.
Senthilkumar, R., D. M. Reddy Prasad, L. Govindarajan, K. Saravanakumar, and B. S. Naveen Prasad. 2020. “Synthesis of green marine algal-based biochar for remediation of arsenic(V) from contaminated waters in batch and column mode of operation.” Int. J. Phytorem. 22 (3): 279–286. https://doi.org/10.1080/15226514.2019.1658710.
Shaheen, S. M., N. K. Niazi, N. E. Hassan, I. Bibi, H. Wang, D. C. Tsang, Y. S. Ok, N. Bolan, and J. Rinklebe. 2019. “Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review.” Int. Mater. Rev. 64 (4): 216–247. https://doi.org/10.1080/09506608.2018.1473096.
Shahid, M. K., S. Phearom, and Y.-G. Choi. 2019. “Adsorption of arsenic (V) on magnetite-enriched particles separated from the mill scale.” Environ. Earth Sci. 78 (3): 65. https://doi.org/10.1007/s12665-019-8066-x.
Sherlala, A., A. Raman, M. M. Bello, and A. Buthiyappan. 2019. “Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite.” J. Environ. Manage. 246: 547–556. https://doi.org/10.1016/j.jenvman.2019.05.117.
Sierra-Trejo, P. V., E. Guibal, and J. F. Louvier-Hernández. 2020. “Arsenic sorption on chitosan-based sorbents: Comparison of the effect of molybdate and tungstate loading on As(V) sorption properties.” J. Polym. Environ. 28 (3): 934–947. https://doi.org/10.1007/s10924-020-01654-6.
Singh, P., A. Sarswat, C. U. Pittman JR, T. Mlsna, and D. Mohan. 2020. “Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study.” ACS Omega 5 (6): 2575–2593. https://doi.org/10.1021/acsomega.9b02842.
Singh, T. S., and K. K. Pant. 2004. “Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina.” Sep. Purif. Technol. 36 (2): 139–147. https://doi.org/10.1016/S1383-5866(03)00209-0.
Su, J., T. Lyu, H. Yi, L. Bi, and G. Pan. 2020. “Superior arsenate adsorption and comprehensive investigation of adsorption mechanism on novel Mn-doped La2O2CO3 composites.” Chem. Eng. J. 391: 123623. https://doi.org/10.1016/j.cej.2019.123623.
Tan, P., Y. Zheng, and Y. Hu. 2020. “Efficient removal of arsenate from water by lanthanum immobilized electrospun chitosan nanofiber.” Colloids Surf., A 589: 124417. https://doi.org/10.1016/j.colsurfa.2020.124417.
Tariq, M., A. I. Durrani, U. Farooq, and M. Tariq. 2018. “Efficacy of spent black tea for the removal of nitrobenzene from aqueous media.” J. Environ. Manage. 223: 771–778. https://doi.org/10.1016/j.jenvman.2018.06.080.
Thanh, D. N., Z. Bastl, K. Černá, P. Ulbrich, and J. Lederer. 2016. “Amorphous nanosized Al–Ti–Mn trimetal hydrous oxides: Synthesis, characterization and enhanced performance in arsenic removal.” RSC Adv. 6 (103): 100732–100742. https://doi.org/10.1039/C6RA11347H.
Torrades, F., and J. García-Montaño. 2014. “Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions.” Dyes Pigm. 100: 184–189. https://doi.org/10.1016/j.dyepig.2013.09.004.
Tripathy, S. S., and A. M. Raichur. 2008. “Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water.” Chem. Eng. J. 138 (1–3): 179–186. https://doi.org/10.1016/j.cej.2007.06.028.
Tseng, C.-H. 2009. “A review on environmental factors regulating arsenic methylation in humans.” Toxicol. Appl. Pharmacol. 235 (3): 338–350. https://doi.org/10.1016/j.taap.2008.12.016.
Uthappa, U., G. Sriram, O. Arvind, S. Kumar, G. M. Neelgund, D. Losic, and M. D. Kurkuri. 2020. “Engineering MIL-100(Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton’s catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes.” Appl. Surf. Sci. 528: 146974. https://doi.org/10.1016/j.apsusc.2020.146974.
Wan, P., M. Yuan, X. Yu, Z. Zhang, and B. Deng. 2020. “Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UIO-66 metal organic frameworks.” Chem. Eng. J. 382: 122921. https://doi.org/10.1016/j.cej.2019.122921.
Wei, Y., S. Wei, C. Liu, T. Chen, Y. Tang, J. Ma, K. Yin, and S. Luo. 2019. “Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics.” Water Res. 167: 115107. https://doi.org/10.1016/j.watres.2019.115107.
Wu, X., Y. Zhang, X. Dou, B. Zhao, and M. Yang. 2013. “Fluoride adsorption on an Fe–Al–Ce trimetal hydrous oxide: Characterization of adsorption sites and adsorbed fluorine complex species.” Chem. Eng. J. 223: 364–370. https://doi.org/10.1016/j.cej.2013.03.027.
Xu, R.-k., N. P. Qafoku, E. Van Ranst, J.-y. Li, and J. Jiang. 2016. “Adsorption properties of subtropical and tropical variable charge soils: Implications from climate change and biochar amendment.” Adv. Agron. 135 (4): 1–58. https://doi.org/10.1016/bs.agron.2015.09.001.
Xue, Q., Y. Ran, Y. Tan, C. L. Peacock, and H. Du. 2019. “Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments.” Chemosphere 224: 103–110. https://doi.org/10.1016/j.chemosphere.2019.02.118.
Yan, J., Y. Xue, L. Long, Y. Zeng, and X. Hu. 2018. “Adsorptive removal of As(V) by crawfish shell biochar: Batch and column tests.” Environ. Sci. Pollut. Res. 25 (34): 34674–34683. https://doi.org/10.1007/s11356-018-3384-1.
Yang, X.-Y., and B. Al-Duri. 2001. “Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon.” Chem. Eng. J. 83 (1): 15–23. https://doi.org/10.1016/S1385-8947(00)00233-3.
Yang, X., S. R. Otto, and B. Al-Duri. 2003. “Concentration-dependent surface diffusivity model (CDSDM): Numerical development and application.” Chem. Eng. J. 94 (3): 199–209. https://doi.org/10.1016/S1385-8947(03)00051-2.
Yin, Z., Y. Ma, B. Tanis-Kanbur, and J. W. Chew. 2020. “Fouling behavior of colloidal particles in organic solvent ultrafiltration.” J. Membr. Sci. 599: 117836. https://doi.org/10.1016/j.memsci.2020.117836.
Youngran, J., F. Maohong, J. Van Leeuwen, and J. F. Belczyk. 2007. “Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides.” J. Environ. Sci. 19 (8): 910–919. https://doi.org/10.1016/S1001-0742(07)60151-X.
Yu, C., F. Wang, C. Zhang, S. Fu, and L. A. Lucia. 2016. “The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent.” React. Funct. Polym. 106: 137–142. https://doi.org/10.1016/j.reactfunctpolym.2016.07.016.
Yu, Y., L. Yu, and J. P. Chen. 2015. “Adsorption of fluoride by Fe–Mg–La triple-metal composite: Adsorbent preparation, illustration of performance and study of mechanisms.” Chem. Eng. J. 262: 839–846. https://doi.org/10.1016/j.cej.2014.09.006.
Yuan, J.-H., R.-K. Xu, and H. Zhang. 2011. “The forms of alkalis in the biochar produced from crop residues at different temperatures.” Bioresour. Technol. 102 (3): 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018.
Zeng, H., Y. Yu, F. Wang, J. Zhang, and D. Li. 2020. “Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan.” Colloids Surf., A 585: 124036. https://doi.org/10.1016/j.colsurfa.2019.124036.
Zhang, S., H. Niu, Y. Cai, X. Zhao, and Y. Shi. 2010. “Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4.” Chem. Eng. J. 158 (3): 599–607.
Zhang, F., X. Wang, J. Xionghui, and L. Ma. 2016. “Efficient arsenate removal by magnetite-modified water hyacinth biochar.” Environ. Pollut. 216: 575–583. https://doi.org/10.1016/j.envpol.2016.06.013.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: Jul 30, 2020
Accepted: Sep 22, 2020
Published online: Nov 25, 2020
Published in print: Apr 1, 2021
Discussion open until: Apr 25, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ghazi Mohd. Sawood [email protected]
Ph.D. Scholar, Dept. of Chemical Engineering, Harcourt Butler Technical Univ., Kanpur, UP 208002, India (corresponding author). Email: [email protected]
Ashutosh Mishra [email protected]
Assistant Professor, Dept. of Chemical Engineering, Dr.AITH, Awadhpuri, Kanpur, UP 208024, India. Email: [email protected]
S. K. Gupta [email protected]
Associate Professor, Dept. of Chemical Engineering, Harcourt Butler Technical Univ., Kanpur, UP 208002, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share