State-of-the-Art Reviews
Aug 28, 2020

State of the Art Review of Emerging and Biogeotechnical Methods for Liquefaction Mitigation in Sands

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 1

Abstract

Earthquake-induced liquefaction causes soil to exhibit fluidlike behavior due to a sudden increase in pore water pressure and a concurrent decrease in effective stress. The liquefaction can destroy or damage existing substructures and superstructures that results in considerable economic and human losses. Hence, there is a need for ground improvement in liquefiable soils for liquefaction hazard mitigation. Various conventional methods, such as soil replacement, densification, and grouting have been used for liquefaction mitigation historically. However, these methods are carbon-intensive, uneconomic, and environmentally unfriendly. Recently, some researchers have demonstrated new techniques that can significantly mitigate liquefaction and achieve cost-effectiveness, are ecologically friendly, and have less associated disturbances. The objective of this review is to provide an overview and the associated challenges of emerging techniques that increase the liquefaction resistance of sandy soils. Initially, the advantages and disadvantages of conventional methods are discussed to justify the requirement for advanced methods. The rapid evolution of novel materials and techniques, as well as multidisciplinary collaborations, has led to new and innovative advanced methods for effective mitigation of liquefaction. Among these methods, the biogeotechnological methods that have received great attention recently are discussed in detail. Many studies have reported the effects of biotreatment on soil properties and liquefaction resistance, factors affecting the biocementation process, and various challenges associated with the biocementation methods. Finally, additional research directions needed for biogeotechnical methods to be effective, sustainable, and resilient for liquefaction mitigation in actual field applications are presented.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the Ministry of Human Resource Development, the Government of India for funding the Doctoral Fellowship of the first author.

References

Achal, V., X. Pan, Q. Fu, and D. Zhang. 2012. “Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli.” J. Hazard. Mater. 201–202: 178–184. https://doi.org/10.1016/j.jhazmat.2011.11.067.
Adibkia, K., M. R. S. Shadbad, A. Nokhodchi, A. Javadzedeh, M. Barzegar-Jalali, J. Barar, G. Mohammadi, and Y. Omidi. 2007. “Piroxicam nanoparticles for ocular delivery: Physicochemical characterization and implementation in endotoxin-induced uveitis.” J. Drug Targeting 15 (6): 407–416. https://doi.org/10.1080/10611860701453125.
Aishwarya, T., and A. Juneja. 2018. “Sand bonded with calcite precipitation under cyclic simple shear.” In Geotechnical Earthquake Engineering and Soil Dynamics V: Liquefaction Triggering, Consequences, and Mitigation, Geotechnical Special Publication 290, edited by S. J. Brandenberg, and M. T. Manzari, 554–560. Reston, VA: ASCE.
Almajed, A., H. Khodadadi, and E. Kavazanjian. 2018. “Sisal fiber reinforcement of EICP-treated soil.” In IFCEE 2018: Innovations in Ground Improvement for Soils, Pavements, and Subgrades, Geotechnical Special Publication 296, edited by A. W. Stuedlein, A. Lemnitzer, and M. T. Suleiman, 29–36. Reston, VA: ASCE.
Almajed, A., H. K. Tirkolaei, E. Kavazanjian, and N. Hamdan. 2019. “Enzyme induced biocementated sand with high strength at low carbonate content.” Sci. Rep. 9 (1): 1135. https://doi.org/10.1038/s41598-018-38361-1.
Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Ambraseys, N., and S. Sarma. 1969. “Liquefaction of soils induced by earthquakes.” Bull. Seismol. Soc. Am. 59 (2): 651–664.
Ambraseys, N. N. 1973. “Dynamics and response of foundation materials in epicentral regions of strong earthquakes.” In Proc., 5th World Conf. on Earthquake Engineering, 126–147. London: University of London.
Amini, P. F., and R. Noorzad. 2018. “Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing.” Soil Dyn. Earthquake Eng. 104: 45–53. https://doi.org/10.1016/j.soildyn.2017.09.026.
Annabi, M., S. Houot, C. Francou, M. Poitrenaud, and Y. L. Bissonnais. 2007. “Soil aggregate stability improvement with urban composts of different maturities.” Soil Sci. Soc. Am. J. 71 (2): 413–423. https://doi.org/10.2136/sssaj2006.0161.
Ateş, A. 2016. “Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC).” Composites, Part B 96: 295–304. https://doi.org/10.1016/j.compositesb.2016.04.049.
Bahadori, H., and R. Farzalizadeh. 2018. “Dynamic properties of saturated sands mixed with tyre powders and tyre shreds.” Int. J. Civ. Eng. 16 (4): 395–408. https://doi.org/10.1007/s40999-016-0136-9.
Bahadori, H., and S. Manafi. 2015. “Effect of tyre chips on dynamic properties of saturated sands.” Int. J. Phys. Modell. Geotech. 15 (3): 116–128. https://doi.org/10.1680/jphmg.13.00014.
Baharuddin, I. N. Z., R. C. Omar, and Y. Devarajan. 2013. “Improvement of engineering properties of liquefied soil using Bio-VegeGrout.” IOP Conf. Series 16: 012104. https://doi.org/10.1088/1755-1315/16/1/012104.
Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. “Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii.” Enzyme Microb. Technol. 28 (4–5): 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3.
Bannister, S., and K. Gledhill. 2012. “Evolution of the 2010–2012 Canterbury earthquake sequence.” N. Z. J. Geol. Geophys. 55 (3): 295–304. https://doi.org/10.1080/00288306.2012.680475.
Bao, X., Z. Jin, H. Cui, X. Chen, and X. Xie. 2019. “Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods.” Soil Dyn. Earthquake Eng. 120: 273–291. https://doi.org/10.1016/j.soildyn.2019.01.020.
Barkouki, T. H., B. C. Martinez, B. M. Mortensen, T. S. Weathers, J. D. de Jong, T. R. Ginn, N. F. Spycher, R. W. Smith, and Y. Fujita. 2011. “Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments.” Transp. Porous Media 90 (1): 23–39. https://doi.org/10.1007/s11242-011-9804-z.
Barnes, R. T., M. E. Gallagher, C. A. Masiello, Z. Liu, and B. Dugan. 2014. “Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.” PLoS One 9 (9): e108340. https://doi.org/10.1371/journal.pone.0108340.
Bendimerad, F., L. Johnson, A. Coburn, R. Mohsen, and G. Morrow. 2000. Event report Kocaeli, Turkey earthquake. Newark, CA: Risk Management Solutions.
Benhelal, E., G. Zahedi, E. Shamsaei, and A. Bahadori. 2013. “Global strategies and potentials to curb CO2 emissions in cement industry.” J. Cleaner Prod. 51: 142–161. https://doi.org/10.1016/j.jclepro.2012.10.049.
Bing, L. I. 2014. “Geotechnical properties of biocement treated sand and clay.” Doctoral thesis, School of Civil and Environmental Engineering, Nanyang Technological Univ.
Blume, J. A. 1980. “The 1976 Tangshan, China earthquake.” In Proc., 2nd U.S. National Conf. on Earthquake Engineering Held at Stanford Univ., Earthquake Engineering Research Institute, 1–101. Berkeley, California: Earthquake Engineering Research Institute.
Bouazza, A., W. P. Gates, and P. G. Ranjith. 2009. “Hydraulic conductivity of biopolymer-treated silty sand.” Géotechnique 59 (1): 71–72. https://doi.org/10.1680/geot.2007.00137.
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Burbank, M. B., T. J. Weaver, T. L. Green, B. C. Williams, and R. L. Crawford. 2011. “Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils.” Geomicrobiol. J. 28 (4): 301–312. https://doi.org/10.1080/01490451.2010.499929.
Carlson, C. A., and J. L. Ingraham. 1983. “Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans.” Appl. Environ. Microbiol. 45 (4): 1247–1253. https://doi.org/10.1128/AEM.45.4.1247-1253.1983.
Carvalho, A. J. F. 2011. “Starch as source of polymeric materials.” In Biopolymers: Biomedical and environmental applications, edited by S. Kalia, and L. Avérous, 81–98. Hoboken, NJ: Wiley.
Chang, I., and G. C. Cho. 2012. “Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer.” Constr. Build. Mater. 30: 30–35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
Chang, I., and G.-C. Cho. 2014. “Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil.” Geomech. Eng. 7 (6): 633–647. https://doi.org/10.12989/gae.2014.7.6.633.
Chang, I., J. Im, and G.-C. Cho. 2016. “Geotechnical engineering behaviors of gellan gum biopolymer treated sand.” Can. Geotech. J. 53 (10): 1658–1670. https://doi.org/10.1139/cgj-2015-0475.
Chang, I., A. K. Prasidhi, J. Im, and G. C. Cho. 2015. “Soil strengthening using thermo-gelation biopolymers.” Constr. Build. Mater. 77: 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
Cheng, L., and R. Cord-Ruwisch. 2014. “Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation.” Geomicrobiol. J. 31 (5): 396–406. https://doi.org/10.1080/01490451.2013.836579.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2014. “Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments.” Géotechnique 64 (12): 1010–1013. https://doi.org/10.1680/geot.14.T.025.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Choi, S. G., J. Chu, R. C. Brown, K. Wang, and Z. Wen. 2017. “Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass.” ACS Sustainable Chem. Eng. 5 (6): 5183–5190. https://doi.org/10.1021/acssuschemeng.7b00521.
Choi, S.-G., S. Wu, and J. Chu. 2016. “Biocementation for sand using an eggshell as calcium source.” J. Geotech. Geoenviron. Eng. 142 (10): 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
Chu, J., V. Ivanov, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Chung, R. 1996. January 17, 1995 Hyogoken-Nambu (Kobe) earthquake: Performance of structures, lifelines, and fire protection systems. NIST Special Publication 901. Gaithersburg, MD: NIST.
Conlee, C. T., P. M. Gallagher, R. W. Boulanger, and R. Kamai. 2012. “Centrifuge modeling for liquefaction mitigation using colloidal silica stabilizer.” J. Geotech. Geoenviron. Eng. 138 (11): 1334–1345. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000703.
Cuthbert, M. O., L. A. McMillan, S. Handley-Sidhu, M. S. Riley, D. J. Tobler, and V. R. Phoenix. 2013. “A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.” Environ. Sci. Technol. 47 (23): 13637–13643. https://doi.org/10.1021/es402601g.
Das, A., C. Jayashree, and B. V. S. Viswanadham. 2009. “Effect of randomly distributed geofibers on the piping behaviour of embankments constructed with fly ash as a fill material.” Geotext. Geomembr. 27 (5): 341–349. https://doi.org/10.1016/j.geotexmem.2009.02.004.
Dehghan, A., and A. Hamidi. 2016. “Triaxial shear behaviour of sand-gravel mixtures reinforced with cement and fibre.” Int. J. Geotech. Eng. 10 (5): 510–520. https://doi.org/10.1080/19386362.2016.1175217.
De Muynck, W., N. De Belie, and W. Verstraete. 2010. “Microbial carbonate precipitation in construction materials: A review.” Ecol. Eng. 36 (2): 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006.
De Muynck, W., K. Verbeken, N. De Belie, and W. Verstraete. 2013. “Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation.” Appl. Microbiol. Biotechnol. 97 (3): 1335–1347. https://doi.org/10.1007/s00253-012-3997-0.
DeJong, J. T., et al. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Géotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., and E. Kavazanjian. 2019. “Bio-mediated and bio-inspired geotechnics.” In Geotechnical fundamentals for addressing New world challenges, edited by N. Lu, and J. K. Mitchell, 193–207. Berlin: Springer.
DeJong, J. T., B. C. Martinez, T. R. Ginn, C. Hunt, D. Major, and B. Tanyu. 2014. “Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications.” Geotech. Test. J. 37 (3): 20130089. https://doi.org/10.1520/GTJ20130089.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
DeJong, J. T., K. Soga, S. A. Banwart, W. R. Whalley, T. R. Ginn, D. C. Nelson, B. M. Mortensen, B. C. Martinez, and T. Barkouki. 2011. “Soil engineering in vivo: Harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.” J. R. Soc. Interface 8 (54): 1–15. https://doi.org/10.1098/rsif.2010.0270.
Dupraz, S., B. Ménez, P. Gouze, R. Leprovost, P. Bénézeth, O. S. Pokrovsky, and F. Guyot. 2009. “Experimental approach of CO2 biomineralization in deep saline aquifers.” Chem. Geol. 265 (1–2): 54–62. https://doi.org/10.1016/j.chemgeo.2008.12.012.
El Howayek, A., A. Bobet, C. T. Johnston, M. Santagata, and J. V. Sinfield. 2014. “Microstructure of sand-laponite-water systems using cryo-SEM.” In Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, Geotechnical Special Publication 234, edited by M. Abu-Farsakh, X. Yu, and L. R. Hoyos, 693–702. Reston, VA: ASCE.
El Mountassir, G., J. M. Minto, L. A. van Paassen, E. Salifu, and R. J. Lunn. 2018. “Applications of microbial processes in geotechnical engineering.” Adv. Appl. Microbiol. 104: 39–91. https://doi.org/10.1016/bs.aambs.2018.05.001.
Erşan, Y. Ç., N. de Belie, and N. Boon. 2015. “Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment.” Biochem. Eng. J. 101: 108–118. https://doi.org/10.1016/j.bej.2015.05.006.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Ferris, F. G., L. G. Stehmeier, A. Kantzas, and F. M. Mourits. 1996. “Bacteriogenic mineral plugging.” J. Can. Pet. Technol. 35 (8): 56–59. https://doi.org/10.2118/96-08-06.
Ferruzzi, G. G., N. Pan, and W. H. Casey. 2000. “Mechanical properties of gellan and polyacrylamide gels with implications for soil stabilization.” Soil Sci. 165 (10): 778–792. https://doi.org/10.1097/00010694-200010000-00003.
Finnerty, W. R., and M. E. Singer. 1983. “Microbial enhancement of oil recovery.” Nat. Biol. 1: 47–54.
Fredlund, D. G., and H. Rahardjo. 1993. Soil mechanics for unsaturated soils. Hoboken, NJ: Wiley.
Fritzges, M. B., J. T. DeJong, and K. Nüsslein. 2006. “Biologically induced improvement of loose sand.” In Proc., 8th US National Conf. on Earthquake Engineering 2006, 9723–9732. California: Earthquake Engineering Research Institute.
Fujita, Y., G. D. Redden, J. C. Ingram, M. M. Cortez, F. G. Ferris, and R. W. Smith. 2004. “Strontium incorporation into calcite generated by bacterial ureolysis.” Geochim. Cosmochim. Acta 68 (15): 3261–3270. https://doi.org/10.1016/j.gca.2003.12.018.
Gallagher, P. M., C. T. Conlee, and K. M. Rollins. 2007a. “Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk.” J. Geotech. Geoenviron. Eng. 133 (2): 186–196. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(186).
Gallagher, P. M., and Y. Lin. 2005. “Column testing to determine colloidal silica transport mechanisms.” In Innovations in Grouting and Soil Improvement, Geotechnical Special Publication 130, edited by V. R. Schaefer, D. A. Bruce, and M. J. Byle, 1–10. Reston, VA: ASCE.
Gallagher, P. M., and Y. Lin. 2009. “Colloidal silica transport through liquefiable porous media.” J. Geotech. Geoenviron. Eng. 135 (11): 1702–1712. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000123.
Gallagher, P. M., and J. K. Mitchell. 2000. “Passive site remediation for mitigation of liquefaction risk.” Dissertation, Dept. of Civil and Environmental Engineering, Virginia Polytechnic Institute and State Univ.
Gallagher, P. M., A. Pamuk, and T. Abdoun. 2007b. “Stabilization of liquefiable soils using colloidal silica grout.” J. Mater. Civ. Eng. 19 (1): 33–40. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33).
Garg, A., S. Bordoloi, S. Mondal, J. J. Ni, and S. Sreedeep. 2020a. “Investigation of mechanical factor of soil reinforced with four types of fibers: An integrated experimental and extreme learning machine approach.” J. Nat. Fibers 17 (5): 650–664. https://doi.org/10.1080/15440478.2018.1521763.
Garg, A., H. Huang, V. Kushvaha, P. Madhushri, V. Kamchoom, I. Wani, N. Koshy, and H. H. Zhu. 2020b. “Mechanism of biochar soil pore–gas–water interaction: Gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling.” Acta Geophys. 68 (1): 207–217. https://doi.org/10.1007/s11600-019-00387-y.
Gat, D., M. Tsesarsky, D. Shamir, and Z. Ronen. 2014. “Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria.” Biogeosciences 11 (10): 2561–2569. https://doi.org/10.5194/bg-11-2561-2014.
Gollapudi, U. K., C. L. Knutson, S. S. Bang, and M. R. Islam. 1995. “A new method for controlling leaching through permeable channels.” Chemosphere 30 (4): 695–705. https://doi.org/10.1016/0045-6535(94)00435-W.
Gomez, M. G., C. M. Anderson, J. T. DeJong, D. C. Nelson, and X. H. Lau. 2014a. “Stimulating in situ soil bacteria for bio-cementation of sands.” In Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, Geotechnical Special Publication 234, edited by M. Abu-Farsakh, X. Yu, and L. R. Hoyos, 1674–1682. Reston, VA: ASCE.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Gomez, M. G., J. T. DeJong, and C. M. Anderson. 2018a. “Effect of bio-cementation on geophysical and cone penetration measurements in sands.” Can. Geotech. J. 55 (11): 1632–1646. https://doi.org/10.1139/cgj-2017-0253.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, and D. C. Nelson. 2019. “Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms.” Sci. Rep. 9 (1): 11517. https://doi.org/10.1038/s41598-019-47973-0.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and M. Tsesarsky. 2018b. “Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths.” J. Geotech. Geoenviron. Eng. 144 (1): 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804.
Gomez, M. G., B. C. Martinez, J. T. DeJong, C. E. Hunt, L. A. deVlaming, D. W. Major, and S. M. Dworatzek. 2014b. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Grantz, A., G. Plafker, and R. Kachadoorian. 1964. Alaska’s Good Friday earthquake, March 27, 1964: A preliminary geologic evaluation. Reston, VA: USGS.
Haeri, S. M., R. Noorzad, and A. M. Oskoorouchi. 2000. “Effect of geotextile reinforcement on the mechanical behavior of sand.” Geotext. Geomembr. 18 (6): 385–402. https://doi.org/10.1016/S0266-1144(00)00005-4.
Hamdan, N., and E. Kavazanjian. 2016. “Enzyme-induced carbonate mineral precipitation for fugitive dust control.” Géotechnique 66 (7): 546–555. https://doi.org/10.1680/jgeot.15.P.168.
Hamderi, M., and P. M. Gallagher. 2015. “Pilot-scale modeling of colloidal silica delivery to liquefiable sands.” Soils Found. 55 (1): 143–153. https://doi.org/10.1016/j.sandf.2014.12.011.
Hammes, F., A. Seka, S. De Knijf, and W. Verstraete. 2003. “A novel approach to calcium removal from calcium-rich industrial wastewater.” Water Res. 37 (3): 699–704. https://doi.org/10.1016/S0043-1354(02)00308-1.
Harada, T., A. Misaki, and H. Saito. 1968. “Curdlan: A bacterial gel-forming β-1, 3-glucan.” Arch. Biochem. Biophys. 124: 292–298. https://doi.org/10.1016/0003-9861(68)90330-5.
Hasriana, L. Samang, M. N. Djide, and T. Harianto. 2018. “A study on clay soil improvement with Bacillus subtilis bacteria as the road subbase layer.” Int. J. GEOMATE 15 (52): 114–120.
Hausmann, M. 1990. Engineering principles of ground modification: International addition. New York: McGraw-Hill.
Hazarika, H., M. Hyodo, and K. Yasuhara. 2010. “Investigation of tire chips–sand mixtures as preventive measure against liquefaction.” In Ground Improvement and Geosynthetics, Geotechnical Special Publication 207, edited by A. J. Puppala, J. Huang, J. Han, and L. R. Hoyos, 338–345. Reston, VA: ASCE.
He, J., and J. Chu. 2014. “Undrained responses of microbially desaturated sand under monotonic loading.” J. Geotech. Geoenviron. Eng. 140 (5): 04014003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001082.
He, J., J. Chu, and V. Ivanov. 2013a. “Mitigation of liquefaction of saturated sand using biogas.” Géotechnique 63 (4): 267–275. https://doi.org/10.1680/geot.SIP13.P.004.
He, J., J. Chu, and V. Ivanov. 2013b. “Remediation of liquefaction potential of sand using the biogas method.” In Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, Geotechnical Special Publication 231, edited by C. Meehan, D. Pradel, M. A. Pando, and J. F. Labuz, 879–887. Reston, VA: ASCE.
Hejazi, S. M., M. Sheikhzadeh, S. M. Abtahi, and A. Zadhoush. 2012. “A simple review of soil reinforcement by using natural and synthetic fibers.” Constr. Build. Mater. 30: 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
Helmi, F. M., H. R. Elmitwalli, S. M. Elnagdy, and A. F. El-hagrassy. 2016. “Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis.” Ecol. Eng. 90: 367–371. https://doi.org/10.1016/j.ecoleng.2016.01.044.
Hoang, T., J. Alleman, B. Cetin, and S. G. Choi. 2020. “Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme.” J. Mater. Civ. Eng. 32 (4): 04020030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083.
Hommel, J., E. Lauchnor, R. Gerlach, A. B. Cunningham, A. Ebigbo, R. Helmig, and H. Class. 2016. “Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media.” Transp. Porous Media 114 (2): 557–579. https://doi.org/10.1007/s11242-015-0617-3.
Huang, Y., and L. Wang. 2016a. “Experimental studies on nanomaterials for soil improvement: A review.” Environ. Earth Sci. 75 (6): 1–10. https://doi.org/10.1007/s12665-015-5118-8.
Huang, Y., and L. Wang. 2016b. “Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles.” Eng. Geol. 204: 23–32. https://doi.org/10.1016/j.enggeo.2016.01.015.
Huang, Y., and Z. Wen. 2015. “Recent developments of soil improvement methods for seismic liquefaction mitigation.” Nat. Hazards 76 (3): 1927–1938. https://doi.org/10.1007/s11069-014-1558-9.
Ibraim, E., A. Diambra, D. Muir Wood, and A. R. Russell. 2010. “Static liquefaction of fibre reinforced sand under monotonic loading.” Geotext. Geomembr. 28 (4): 374–385. https://doi.org/10.1016/j.geotexmem.2009.12.001.
Ibraim, E., A. Diambra, A. R. Russell, and D. Muir Wood. 2012. “Assessment of laboratory sample preparation for fibre reinforced sands.” Geotext. Geomembr. 34: 69–79. https://doi.org/10.1016/j.geotexmem.2012.03.002.
Iler, R. K. 1979. The chemistry of silica - solubility, polymerization, colloid and surface properties and biochemistry. New York: John Wiley & Sons.
Inagaki, I., M. Tsukamoto, H. Mori, T. Sasaki, K. Soga, A. Al Qabany, and T. Hata. 2011. “The influence of injection conditions and soil types on soil improvement by microbial functions.” In Geo-Frontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication 211, edited by J. Han, and D. E. Alzamora, 4021–4030. Reston, VA: ASCE.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Bio/Technol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Ivanov, V., J. Chu, V. Stabnikov, J. He, and M. Naeimi. 2010. “Iron-based bio-grout for soil improvement and land reclamation.” In Proc., 2nd Int. Conf. on Sustainable Construction Materials and Technologies, 415–420. Ancona, Italy: Università Politecnica della Marche.
Ivanov, V., and V. Stabnikov. 2017. Construction biotechnology. Berlin: Springer.
Japan National Committee on Earthquake Engineering. 1965. “Niigata earthquake, 1964.” In Proc., 3rd World Conf. on Earthquake Engineering, 78–105. Wellington, N.Z.: New Zealand National Committee on Earthquake Engineering.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Kaneko, T., R. P. Orense, M. Hyodo, and N. Yoshimoto. 2013. “Seismic response characteristics of saturated sand deposits mixed with tire chips.” J. Geotech. Geoenviron. Eng. 139 (4): 633–643. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000752.
Kang, C. H., S. J. Oh, Y. J. Shin, S. H. Han, I. H. Nam, and J. S. So. 2015. “Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea.” Ecol. Eng. 74: 402–407. https://doi.org/10.1016/j.ecoleng.2014.10.009.
Karakan, E., T. Eskişar, and S. Altun. 2018. “The liquefaction behavior of poorly graded sands reinforced with fibers.” Adv. Civ. Eng. 2018: 1–14. https://doi.org/10.1155/2018/4738628.
Karol, R. H. 2003. Chemical grouting and soil stabilization. New York: Marcel Dekker.
Kavazanjian, E., A. Almajed, and N. Hamdan. 2017. “Bio-inspired soil improvement using EICP soil columns and soil nails.” In Grouting 2017:Grouting, Drilling, and Verification, Geotechnical Special Publication 288, edited by M. J. Byle, L. F. Johnsen, D. A. Bruce, C. S. El Mohtar, P. Gazzarrini, and T. D. Richards Jr., 13–22. Reston, VA: ASCE.
Kavazanjian, E., S. T. O. Donnell, and N. Hamdan. 2015. “Biogeotechnical mitigation of earthquake-induced soil liquefaction by denitrification: A two-stage process.” In Proc., 6th Int. Conf. on Earthquake Geotechnical Engineering. New Zealand: ISSMGE and Christchurch.
Kavazanjian, E., and N. Hamdan. 2015. “Enzyme induced carbonate precipitation (EICP) columns for ground improvement.” In Proc., Int. Foundations Congress and Equipment Expo, 2252–2261. Reston, VA: ASCE.
Kavazanjian, E., and I. Karatas. 2008. “Microbiological improvement of the physical properties of soil.” In Int. Conf. on Case Histories in Geotechnical Engineering, 1–10. Rolla, MO: Missouri University of Science and Technology.
Keramatikerman, M., A. Chegenizadeh, and H. Nikraz. 2017. “Experimental study on effect of fly ash on liquefaction resistance of sand.” Soil Dyn. Earthquake Eng. 93: 1–6. https://doi.org/10.1016/j.soildyn.2016.11.012.
Khachatoorian, R., I. G. Petrisor, C. C. Kwan, and T. F. Yen. 2003. “Biopolymer plugging effect: Laboratory-pressurized pumping flow studies.” J. Pet. Sci. Eng. 38 (1–2): 13–21. https://doi.org/10.1016/S0920-4105(03)00019-6.
Khatami, H. R., and B. C. O’Kelly. 2013. “Improving mechanical properties of sand using biopolymers.” J. Geotech. Geoenviron. Eng. 139 (8): 1402–1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
Khodadadi, H., and H. Bilsel. 2012. “Application of microorganisms for improvement of liquefiable sand.” In Proc., 3rd Int. Conf. on New Developments in Soil Mechanics and Geotechnical Engineering, 857–863. Nicosia, North Cyprus: Near East University.
Kucharski, E., R. Cord-Ruwisch, V. Whiffin, and S. Al-Thawadi. 2006. “Microbial biocementation.” World Patent 066326.
Latifi, N., S. Horpibulsuk, C. L. Meehan, M. Z. A. Majid, and A. S. A. Rashid. 2016. “Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat.” Environ. Earth Sci. 75 (9): 1–10. https://doi.org/10.1007/s12665-016-5643-0.
Lawson, A. C. 1908. The California earthquake of April 18, 1906. Washington, DC: Carnegie Institution of Washington.
Le Métayer-Levrel, G., S. Castanier, G. Orial, J. F. Loubière, and J. P. Perthuisot. 1999. “Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony.” Sediment. Geol. 126 (1–4): 25–34. https://doi.org/10.1016/S0037-0738(99)00029-9.
Lee, M., M. G. Gomez, M. E. Kortbawi, and K. Ziotopoulou. 2020. “Examining the liquefaction resistance of lightly cemented sands using microbially induced calcite precipitation (MICP).” In Geo-Congress 2020: Biogeotechnics, Geotechnical Special Publication 320, edited by E. Kavazanjian Jr., J. P. Hambleton, R. Makhnenko, and A. S. Budge, 53–64. Reston, VA: ASCE.
Lee, M., M. G. Gomez, A. C. M. S. Pablo, C. M. Kolbus, C. M. R. Graddy, J. T. DeJong, and D. C. Nelson. 2019. “Investigating ammonium by-product removal for ureolytic bio-cementation using meter-scale experiments.” Sci. Rep. 9: 18313. https://doi.org/10.1038/s41598-019-54666-1.
Li, M., X. Cheng, and H. Guo. 2013. “Heavy metal removal by biomineralization of urease producing bacteria isolated from soil.” Int. Biodeterior. Biodegrad. 76: 81–85. https://doi.org/10.1016/j.ibiod.2012.06.016.
Li, M., K. Wen, Y. Li, and L. Zhu. 2018. “Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment.” Geomicrobiol. J. 35 (1): 15–22. https://doi.org/10.1080/01490451.2017.1303553.
Liu, J., Y. Bai, Z. Song, D. Prasanna, Y. Wang, F. Bu, and Z. Chen. 2020. “Stabilization of sand using different types of short fibers and organic polymer.” Constr. Build. Mater. 253: 119164. https://doi.org/10.1016/j.conbuildmat.2020.119164.
Liu, J., G. Wang, T. Kamai, F. Zhang, J. Yang, and B. Shi. 2011. “Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests.” Geotext. Geomembr. 29 (5): 462–471. https://doi.org/10.1016/j.geotexmem.2011.03.002.
Madigan, M. T., and J. M. Martinko. 2003. Brock biology of microorganisms. Upper Saddle River, NJ: Pearson Education.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018a. “Improvement of coarse sand engineering properties by microbially induced calcite precipitation.” Geomicrobiol. J. 35 (10): 887–897. https://doi.org/10.1080/01490451.2018.1488019.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018b. “Factors affecting the bio-cementing process of coarse sand.” Proc. Inst. Civ. Eng. Ground Improv. 172 (1): 25–36. https://doi.org/10.1680/jgrim.17.00039.
Maher, M. H., and D. H. Gray. 1990. “Static response of sands reinforced with randomly distributed fibers.” J. Geotech. Eng.116 (11): 1661–1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
Maher, M. H., and Y. C. Ho. 1994. “Mechanical properties of kaolinite/fiber soil composite.” J. Geotech. Eng. 120 (8): 1381–1393. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1381).
Maleki, M., S. Ebrahimi, F. Asadzadeh, and M. Emami Tabrizi. 2016. “Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil.” Int. J. Environ. Sci. Technol. 13 (3): 937–944. https://doi.org/10.1007/s13762-015-0921-z.
Martin, D., K. Dodds, I. B. Butler, and B. T. Ngwenya. 2013. “Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification.” Environ. Sci. Technol. 47 (15): 8692–8699. https://doi.org/10.1021/es401270q.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Meddah, A., and K. Merzoug. 2017. “Feasibility of using rubber waste fibers as reinforcements for sandy soils.” Innovative Infrastruct. Solutions 2: 5. https://doi.org/10.1007/s41062-017-0053-z.
Michalowski, R. L., and A. Zhao. 1996. “Failure of fiber-reinforced granular soils.” J. Geotech. Eng. 122 (3): 226–234. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(226).
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131 (10): 1222–1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
Mitchell, J. K., and F. J. Wentz. 1991. Performance of improved ground during the Loma Prieta earthquake. Berkeley, CA: Earthquake Engineering Research Center, Univ. of California at Berkeley.
Mohtar, C. S. E., A. Bobet, V. P. Drnevich, C. T. Johnston, and M. C. Santagata. 2014. “Pore pressure generation in sand with bentonite: From small strains to liquefaction.” Géotechnique 64 (2): 108–117. https://doi.org/10.1680/geot.12.P.169.
Mohtar, C. S. E., A. Bobet, M. C. Santagata, V. P. Drnevich, and C. T. Johnston. 2013. “Liquefaction mitigation using bentonite suspensions.” J. Geotech. Geoenviron. Eng. 139 (8): 1369–1380. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000865.
Mohtar, C. S. E., J. Clarke, A. Bobet, M. Santagata, V. Drnevich, and C. Johnston. 2008. “Cyclic response of a sand with thixotropic pore fluid.” In Geotechnical Earthquake Engineering and Soil Dynamics IV, Geotechnical Special Publication 181, edited by D. Zeng, M. T. Manzari, and D. R. Hiltunen, 1–10. Reston, VA: ASCE.
Mola-Abasi, H., and I. Shooshpasha. 2016. “Influence of zeolite and cement additions on mechanical behavior of sandy soil.” J. Rock Mech. Geotech. Eng. 8 (5): 746–752. https://doi.org/10.1016/j.jrmge.2016.01.008.
Molins, S., J. Greskowiak, C. Wanner, and K. U. Mayer. 2015. “A benchmark for microbially mediated chromium reduction under denitrifying conditions in a biostimulation column experiment.” Comput. Geosci. 19 (3): 479–496. https://doi.org/10.1007/s10596-014-9432-0.
Mongondry, P., T. Nicolai, and J. F. Tassin. 2004. “Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions.” J. Colloid Interface Sci. 275 (1): 191–196. https://doi.org/10.1016/j.jcis.2004.01.037.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Moravej, S., G. Habibagahi, E. Nikooee, and A. Niazi. 2018. “Stabilization of dispersive soils by means of biological calcite precipitation.” Geoderma 315: 130–137. https://doi.org/10.1016/j.geoderma.2017.11.037.
Mujah, D., L. Cheng, and M. A. Shahin. 2019. “Microstructural and geomechanical study on biocemented sand for optimization of MICP process.” J. Mater. Civ. Eng. 31 (4): 04019025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660.
Mwandira, W., K. Nakashima, and S. Kawasaki. 2017. “Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse- and fine-grained sand.” Ecol. Eng. 109: 57–64. https://doi.org/10.1016/j.ecoleng.2017.09.011.
Naseri, F., M. Irani, and M. Dehkhodarajabi. 2016. “Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil.” Arch. Civ. Mech. Eng. 16 (4): 695–701. https://doi.org/10.1016/j.acme.2016.04.008.
Ni, J. J., X. W. Chen, C. W. W. Ng, and H. W. Guo. 2018. “Effects of biochar on water retention and matric suction of vegetated soil.” Géotech. Lett. 8 (2): 124–129. https://doi.org/10.1680/jgele.17.00180.
Ni, J. J., B. Sanandam, A. Garg, W. Shao, and S. Sreedeep. 2019. “Simple model on water retention and permeability in soil mixed with lignocellulose fibres.” KSCE J. Civ. Eng. 23 (1): 138–146. https://doi.org/10.1007/s12205-017-0657-z.
Noorzad, R., and P. F. Amini. 2014. “Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading.” Soil Dyn. Earthquake Eng. 66: 281–292. https://doi.org/10.1016/j.soildyn.2014.07.011.
Nugent, R. A., G. Zhang, and R. Gambrell. 2009. “Effect of exopolymers on the liquid limit of clays and its engineering implications.” Transp. Res. Rec. 2101: 34–43. https://doi.org/10.3141/2101-05.
O’Donnell, S. T., C. A. Hall, E. Kavazanjian Jr., and B. E. Rittmann. 2019. “A biogeochemical model for soil improvement by denitrification.” J. Geotech. Geoenviron. Eng. 145 (11): 04019091. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002126.
O’Donnell, S. T., E. Kavazanjian, and B. E. Rittmann. 2017a. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP.” J. Geotech. Geoenviron. Eng. 143 (12): 04017095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806.
O’Donnell, S. T., B. E. Rittmann, and E. Kavazanjian. 2017b. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation.” J. Geotech. Geoenviron. Eng. 143 (12): 04017094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818.
Ochoa-Cornejo, F., A. Bobet, C. T. Johnston, M. Santagata, and J. V. Sinfield. 2016. “Cyclic behavior and pore pressure generation in sands with laponite, a super-plastic nanoparticle.” Soil Dyn. Earthquake Eng. 88: 265–279. https://doi.org/10.1016/j.soildyn.2016.06.008.
Oldham, R. D. 1899. Report of the great earthquake of 12th June, 1897. Kolkata, India: Geological Survey of India.
Osinubi, K. J., A. O. Eberemu, T. S. Ijimdiya, S. E. Yakubu, E. W. Gadzama, J. E. Sani, and P. Yohanna. 2020. “Review of the use of microorganisms in geotechnical engineering applications.” SN Appl. Sci. 2: 207. https://doi.org/10.1007/s42452-020-1974-2.
Otsubo, M., I. Towhata, T. Hayashida, B. Liu, and S. Goto. 2016. “Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials.” Soils Found. 56 (3): 365–378. https://doi.org/10.1016/j.sandf.2016.04.004.
Pablo, A. C. M. S., et al. 2020. “Examining spatial control, ammonium by-product removal, and chemical reductions for bio-cementation soil improvement using meter-scale experiments alexandra.” In Geo-Congress 2020: Foundations, Soil Improvement, and Erosion, Geotechnical Special Publication 315, edited by J. P. Hambleton, R. Makhnenko, and A. S. Budge, 458–468. Reston, VA: ASCE.
Pardo, G. S., and R. P. Orense. 2016. “Use of biochar as countermeasure against liquefaction.” In New Zealand Society for Earthquake Engineering Annual Technical Conf., 1–8. Christchurch: New Zealand Society for Earthquake Engineering.
Pardo, G. S., R. P. Orense, and A. K. Sarmah. 2018. “Cyclic strength of sand mixed with biochar: Some preliminary results.” Soils Found. 58 (1): 241–247. https://doi.org/10.1016/j.sandf.2017.11.004.
Pardo, G. S., A. K. Sarmah, and R. P. Orense. 2019. “Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand.” Géotechnique 69 (6): 471–480. https://doi.org/10.1680/jgeot.17.P.040.
Park, S.-S., S.-G. Choi, and I.-H. Nam. 2014. “Effect of plant-induced calcite precipitation on the strength of sand.” J. Mater. Civ. Eng. 26 (8): 06014017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029.
Patricia, G. G., and M. M. James. 2002. “Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand.” Soil Dyn. Earthquake Eng. 22 (9–12): 1017–1026. https://doi.org/10.1016/S0267-7261(02)00126-4.
Paul, V. G., D. J. Wronkiewicz, and M. R. Mormile. 2017. “Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration.” Appl. Geochem. 78: 250–271. https://doi.org/10.1016/j.apgeochem.2017.01.010.
Persoff, P., J. Apps, G. Moridis, and J. M. Whang. 1999. “Effect of dilution and contaminants on sand grouted with colloidal silica.” J. Geotech. Geoenviron. Eng. 125 (6): 461–469. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(461).
Pettit, N. M., A. R. J. Smith, R. B. Freedman, and R. G. Burns. 1976. “Soil urease: Activity, stability and kinetic properties.” Soil Biol. Biochem. 8 (6): 479–484. https://doi.org/10.1016/0038-0717(76)90089-4.
Phua, Y. J., and A. Røyne. 2018. “Bio-cementation through controlled dissolution and recrystallization of calcium carbonate.” Constr. Build. Mater. 167: 657–668. https://doi.org/10.1016/j.conbuildmat.2018.02.059.
Rashid, A. S. A., M. G. Shirazi, H. Mohamad, and F. Sahdi. 2017. “Bearing capacity of sandy soil treated by Kenaf fibre geotextile.” Environ. Earth Sci. 76 (12): 1–6. https://doi.org/10.1007/s12665-017-6762-y.
Rebata-Landa, V. 2007. “Microbial activity in sediments: effects on soil behavior.” Doctoral dissertation, School of Civil & Environmental Engineering, Georgia Institute of Technology.
Rebata-Landa, V., and J. C. Santamarina. 2006. “Mechanical limits to microbial activity in deep sediments.” Geochem. Geophys. Geosyst. 7 (11): 1–12. https://doi.org/10.1029/2006GC001355.
Rebata-Landa, V., and J. C. Santamarina. 2012. “Mechanical effects of biogenic nitrogen gas bubbles in soils.” J. Geotech. Geoenviron. Eng. 138 (2): 128–137. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000571.
Riveros, G. A., and A. Sadrekarimi. 2020. “Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation.” Soil Dyn. Earthquake Eng. 131: 106034. https://doi.org/10.1016/j.soildyn.2020.106034.
Rugg, D. A., J. Yoon, H. Hwang, and C. S. E. Mohtar. 2011. “Undrained shearing properties of sand permeated with a bentonite suspension for static liquefaction mitigation.” In Geo-Frontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication 211, edited by J. Han, and D. E. Alzamora, 677–686. Reston, VA: ASCE.
Sabbar, A. S., A. Chegenizadeh, and H. Nikraz. 2017. “Static liquefaction of very loose sand–slag–bentonite mixtures.” Soils Found. 57 (3): 341–356. https://doi.org/10.1016/j.sandf.2017.05.003.
Saffari, R., E. Nikooee, G. Habibagahi, and M. T. van Genuchten. 2019. “Effects of biological stabilization on the water retention properties of unsaturated soils.” J. Geotech. Geoenviron. Eng. 145 (7): 04019028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002053.
Saggar, S., N. Jha, J. Deslippe, N. S. Bolan, J. Luo, D. L. Giltrap, D. G. Kim, M. Zaman, and R. W. Tillman. 2013. “Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts.” Sci. Total Environ. 465: 173–195. https://doi.org/10.1016/j.scitotenv.2012.11.050.
Santagata, M., J. P. Clarke, A. Bobet, V. P. Drnevich, C. S. El Mohtar, P. T. Huang, and C. T. Johnston. 2014. “Rheology of concentrated bentonite dispersions treated with sodium pyrophosphate for application in mitigating earthquake-induced liquefaction.” Appl. Clay Sci. 99: 24–34. https://doi.org/10.1016/j.clay.2014.05.017.
Seed, H. B. 1968. “Landslides during earthquakes due to soil liquefaction.” J. Soil Mech. Found. Div. 94 (5): 1053–1122.
Seed, H. B., and I. M. Idriss. 1971. “A simplified procedure for evaluating soil liquefaction potential.” J. Soil Mech. Found. Div. 97 (9): 1249–1273.
Seed, R. B., K. O. Cetin, R. E. S. Moss, A. M. Kammerer, J. Wu, J. M. Pestana, and M. F. Riemer. 2001. “Recent advances in soil liquefaction engineering and seismic site response evaluation.” In Proc., 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symp. in Honor of Professor W. D. Liam Finn, 1–45. Rolla, Missouri: Missouri University of Science and Technology.
Shao, W., B. Cetin, Y. Li, J. Li, and L. Li. 2014. “Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber.” Geotech. Geol. Eng. 32 (4): 901–910. https://doi.org/10.1007/s10706-014-9766-3.
Sharma, M., N. Satyam, and K. R. Reddy. 2019. “Investigation of various gram-positive bacteria for MICP in Narmada Sand, India.” Int. J. Geotech. Eng. 1–15. https://doi.org/10.1080/19386362.2019.1691322.
Sharma, M., N. Satyam, and K. R. Reddy. 2020. “Strength enhancement and lead immobilization of sand using consortia of bacteria.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020049. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000548.
Shengcong, F., and F. Tatsuoka. 1984. “Soil liquefaction during Haicheng and Tangshan earthquake in China; a review.” Soils Found. 24 (4): 11–29. https://doi.org/10.3208/sandf1972.24.4_11.
Simatupang, M., and M. Okamura. 2017. “Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing.” Soils Found. 57 (4): 619–631. https://doi.org/10.1016/j.sandf.2017.04.003.
Simatupang, M., M. Okamura, K. Hayashi, and H. Yasuhara. 2018. “Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation.” Soil Dyn. Earthquake Eng. 115: 710–718. https://doi.org/10.1016/j.soildyn.2018.09.027.
Sivakumar Babu, G. L., and A. K. Vasudevan. 2008. “Strength and stiffness response of coir fiber-reinforced tropical soil.” J. Mater. Civ. Eng. 20 (9): 571–577. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(571).
Sobolev, D., and M. F. T. Begonia. 2008. “Effects of heavy metal contamination upon soil microbes: Lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers.” Int. J. Environ. Res. Public Health 5 (5): 450–456. https://doi.org/10.3390/ijerph5050450.
Spencer, L., G. J. Rix, and P. Gallagher. 2008. “Colloidal silica gel and sand mixture dynamic properties.” In Geotechnical Earthquake Engineering and Soil Dynamics IV, Geotechnical Special Publication 181, edited by D. Zeng, M. T. Manzari, and D. R. Hiltunen, 1–10. Reston, VA: ASCE.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Stotzky, G. 1997. “Soil as an environment for microbial life.” In Modern soil microbiology, edited by J. van Elsas, J. Trevors, and E. Wellington, 1–20. London: Taylor & Francis.
Sun, X., L. Miao, T. Tong, and C. Wang. 2018. “Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification.” J. Mater. Civ. Eng. 30 (11): 04018301. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002507.
Tiwari, N., and N. Satyam. 2019. “Experimental study on the influence of polypropylene fiber on the swelling pressure expansion attributes of silica fume stabilized clayey soil.” Geosciences 9 (9): 377. https://doi.org/10.3390/geosciences9090377.
Tiwari, N., and N. Satyam. 2020. “An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade.” Eng. Sci. Technol. 4–12.
Tiwari, N., N. Satyam, and K. Singh. 2020. “Effect of curing on micro-physical performance of polypropylene fiber reinforced and silica fume stabilized expansive soil under freezing thawing cycles.” Sci. Rep. 10: 7624. https://doi.org/10.1038/s41598-020-64658-1.
Tobler, D. J., E. Maclachlan, and V. R. Phoenix. 2012. “Microbially mediated plugging of porous media and the impact of differing injection strategies.” Ecol. Eng. 42: 270–278. https://doi.org/10.1016/j.ecoleng.2012.02.027.
Torgal, F. P., J. A. Labrincha, M. V. Diamanti, C. P. Yu, and H. K. Lee. 2015. Biotechnologies and biomimetics for civil engineering. Berlin: Springer.
Towhata, I. 2008. “Mitigation of liquefaction-induced damage.” In Vol. 1 of Geotechnical earthquake engineering, edited by I. Towhata, 588–642. Berlin: Springer.
van Paassen, L. A. 2009. “Biogrout: Ground improvement by microbially induced carbonate precipitation.” Ph.D. thesis, Biotechnology, Delft Univ. of Technology.
van Paassen, L. A. 2011. “Bio-mediated ground improvement: From laboratory experiment to pilot applications.” In Geo-Frontiers Congress: Advances in Geotechnical Engineering, Geotechnical Special Publication 211, edited by J. Han, and D. E. Alzamora, 4099–4108. Reston, VA: ASCE.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L. A., R. Ghose, T. J. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
van Paassen, L. A., V. P. Pham, and W. R. L. van der Star. 2010c. “Quantifying the desaturation effect of biogenic gas formation in sandy soil.” J. Virol. 84 (1): 330–339. https://doi.org/10.1128/JVI.01808-09.
van Veen, J. A., L. S. van Overbeek, and J. D. van Elsas. 1997. “Fate and activity of microorganisms introduced into soil.” Microbiol. Mol. Biol. Rev. 61 (2): 121–135. https://doi.org/10.1128/.61.2.121-135.1997.
van Westen, C., and P. K. C. Ray. 2001. Liquefaction hazard zonation, case study Bhuj, India. Enschede, Netherlands: International Institute for Geo-Information Science and Earth Observation, ITC.
Wan, M. W., I. G. Petrisor, H. T. Lai, D. Kim, and T. F. Yen. 2004. “Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination.” Carbohydr. Polym. 55 (3): 249–254. https://doi.org/10.1016/j.carbpol.2003.09.009.
Wang, K., A. J. Brennan, J. A. Knappett, S. Robinson, and A. G. Bengough. 2018. “Centrifuge modelling of remediation of liquefaction-induced pipeline uplift using model root systems.” In Proc., 9th Int. Conf. on Physical Modelling in Geotechnics, 1265–1270. London: CRC Press.
Wang, Z., N. Zhang, G. Cai, Y. Jin, N. Ding, and D. Shen. 2017. “Review of ground improvement using microbial induced carbonate precipitation (MICP).” Mar. Georesour. Geotechnol. 35 (8): 1135–1146. https://doi.org/10.1080/1064119X.2017.1297877.
Wen, K., Y. Li, F. Amini, and L. Li. 2020. “Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate.” Acta Geotech. 3: 17–27. https://doi.org/10.1007/s11440-019-00899-3.
Wen, K., Y. Li, S. Liu, C. Bu, and L. Li. 2019. “Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration.” Geotech. Geol. Eng. 37 (2): 1015–1027. https://doi.org/10.1007/s10706-018-0669-6.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. thesis, School of Biological Sciences & Biotechnology, Murdoch Univ.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wu, S. 2015. “Mitigation of liquefaction hazards using the combined biodesaturation and bioclogging method.” Ph.D. thesis, Civil Engineering (Geotechnical Engineering), Iowa State Univ.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Effect of relative density and bio-cementation on the cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xu, H., W. Zhu, X. Qian, S. Wang, and X. Fan. 2016. “Studies on hydraulic conductivity and compressibility of backfills for soil-bentonite cutoff walls.” Appl. Clay Sci. 132–133: 326–335. https://doi.org/10.1016/j.clay.2016.06.025.
Ye, B., Z. R. Cheng, C. Liu, Y. D. Zhang, and P. Lu. 2017. “Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres.” Geosynthetics Int. 24 (6): 625–636. https://doi.org/10.1680/jgein.17.00029.
Yetimoglu, T., and O. Salbas. 2003. “A study on shear strength of sands reinforced with randomly distributed discrete fibers.” Geotext. Geomembr. 21 (2): 103–110. https://doi.org/10.1016/S0266-1144(03)00003-7.
Yun, J. C., S. Lee, A. Y. Mi, and G. L. Hyeon. 2006. “Structural and biological characterization of sulfated-derivatized oat β-glucan.” J. Agric. Food. Chem. 54 (11): 3815–3818. https://doi.org/10.1021/jf060243w.
Zamani, A., and B. M. Montoya. 2017. “Shearing and hydraulic behavior of MICP treated silty sand.” In Geotechnical Frontiers 2017: Seismic Performance and Liquefaction, Geotechnical Special Publication 281, edited by T. L. Brandon, and R. J. Valentine, 290–299. Reston, VA: ASCE.
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120: 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.
Zhang, X., Y. Chen, H. Liu, Z. Zhang, and X. Ding. 2020. “Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests.” Soil Dyn. Earthquake Eng. 129: 105959. https://doi.org/10.1016/j.soildyn.2019.105959.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.
Zhu, T., and M. Dittrich. 2016. “Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review.” Front. Bioeng. Biotechnol. 4: 4. https://doi.org/10.3389/fbioe.2016.00004.
Zobel, H. F. 1988. “Molecules to granules: A comprehensive starch review.” Starch - Stärke 40 (1): 44–50. https://doi.org/10.1002/star.19880400203.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 1January 2021

History

Published online: Aug 28, 2020
Published in print: Jan 1, 2021
Discussion open until: Jan 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Doctoral Student, Discipline of Civil Engineering, Indian Institute of Technology Indore 453552, Madhya Pradesh, India. ORCID: https://orcid.org/0000-0002-0351-1637. Email: [email protected]
Neelima Satyam [email protected]
Associate Professor, Discipline of Civil Engineering, Indian Institute of Technology Indore 453552, Madhya Pradesh, India (corresponding author). Email: [email protected]
Professor, Dept. of Civil and Materials Engineering, Univ. of Illinois at Chicago, Chicago, IL 60607. ORCID: https://orcid.org/0000-0002-6577-1151. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share