Technical Papers
Oct 7, 2015

Effects of Engineered Nanomaterials Released into the Atmosphere

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 20, Issue 1

Abstract

Engineered nanomaterials (ENMs) are manufactured for use in nanoproducts and during the lifecycle are released as waste nanoparticles (size <100nm). The ENMs pose risks to workers and consumers, and when they become airborne, they cause broader effects on the environment and human health. Its increasing proportion in the atmosphere is a potential threat. In this, the past studies are reviewed to identify the types, effect-initiating properties, potential exposure pathways, and determine the effects on humans and atmospheric environment. The ENMs could be more hazardous than silica and asbestos because they are manufactured with specific properties and synthetically developed for wide applications. ENMs such as metals, metal oxides, and quantum dots are biopersistent, whereas fullerenes and single-walled carbon nanotubes cause adverse effects but have a shorter life span. The airborne ENMs may have modified properties and toxicological effects. Therefore, the knowledge of the inhalation toxicity of specific ENMs needs consideration in human exposure assessments.

Get full access to this article

View all available purchase options and get full access to this article.

References

Afsset. (2006). “Nanomaterials effects on human health and the environment—Summary.” 〈http://www.afssa.fr/ET/DocumentsET/afsset-summary-nanomaterials.pdf〉 (Apr. 2014).
Alt, V., et al. (2004). “An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement.” Biomaterials, 25(18), 4383–4391.
Arepalli, S., Nikolaev, P., Holmes, W., and Files, B. S. (2001). “Production and measurements of individual single-wall nanotubes and small ropes of carbon.” Appl. Phys. Lett., 78(11), 1610–1612.
Aschberger, K., Micheletti, C., Sokull-Kluettgen, B., and Christensen, F. M. (2011). “Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health e lessons learned from four case studies.” Environ. Int., 37(6), 1143–1156.
Baker, C., Pradhan, A., Pakstis, L., Pochan, D., and Shah, S. (2005). “Synthesis and antibacterial properties of silver nanoparticles.” J. Nanosci. Nanotechnol., 5(2), 244–249.
Bello, D., et al. (2008). “Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films.” Carbon, 46(6), 974–977.
Biskos, G., and Schmidt-Ott, A. (2012). “Airborne engineered nanoparticles: Potential risks and monitoring challenges for assessing their impacts on children.” Paediatric Respir. Rev., 13(2), 79–83.
Borm, P. J. A., et al. (2006). “The potential risks of nanomaterials: A review carried out for ECETOC (review).” Part. Fibre Toxicol., 3(1), 11.
Brown, D., Wilson, M., MacNee, W., Stone, V., and Donaldson, K. (2001). “Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines.” Toxicol. Appl. Pharmacol., 175(3), 191–199.
Buzea, C., Pacheco, I. I., and Robbie, K. (2007). “Nanomaterials and nanoparticles: Sources and toxicity.” Biointerphases, 2(4), MR17–MR71.
Carrero-Sanchez, J., et al. (2007). “Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen.” Nano Lett., 6(8), 1609–1616.
Cassee, F. R., et al. (2002). “Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats—Application of a multiple path dosimetry model.” Arch. Toxicol., 76(5–6), 277–286.
Chang, E., Thekkek, N., Yu, W., Colvin, V., and Drezek, R. (2006). “Evaluation of quantum dot cytotoxicity based on intracellular uptake.” Small, 2(12), 1412–1417.
Chao, C. C., Park, S. H., and Aust, A. E. (1996). “Participation of nitric-oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial-cells.” Arch. Biochem. Biophys., 326(1), 152–157.
Choi, A. O., Cho, S. J., Desbarats, J., Lovric, J., and Maysinger, D. (2007). “Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells.” J. Nanobiotechnol., 5(1), in press.
Churg, A., Stevend, B., and Wright, J. L. (1998). “Comparison of the uptake of fine and ultrafine TiO2 in a tracheal explant system.” Am. J. Physiol. Soc., 274, L81–L86.
CIEL (Center for International Environmental Law). (2015). “Toxicity of engineered nanomaterials.” 〈www.oeko.de/oekodoc/2215/2015-002-en.pdf〉 (Apr. 2014).
Cui, D., Tian, F., Ozkan, C. S., Wang, M., and Gao, H. (2005). “Effect of single wall carbon nanotubes on human HEK293 cells.” Toxicol. Lett., 155(1), 73–85.
Da Silva, L. C., Oliva, M. A., Azevedo, A. A., and De Araujo, J. M. (2006). “Responses of resting plant species to pollution from an iron pelletization factory.” Water Air Soil Pollut., 175(1–4), 241–256.
Donaldson, K., and Stone, V. (2003). “Current hypotheses on the mechanisms of toxicity of ultrafine particles.” Ann. Ist. Super Sanita, 39(3), 405–410.
Donaldson, K., Stone, V., Seaton, A., and MacNee, W. (2001). “Ambient particles and the cardiovascular system: Potential mechanisms.” Environ. Health Perspect., 109(s4), 523–527.
ECJRC (European Commission Joint Research Center). (2003). “European commission technical guidance document (TGD) on risk assessment.” 〈http://ecb.jrc.ec.europa.eu/tgd/〉 (Sep. 10, 2009).
Elder, A., et al. (2006). “Translocation of inhaled ultrafine manganese oxide particles to the central nervous system.” Environ. Health Perspect., 114(8), 1172–1178.
Elder, A. C. P., Gelein, R., Azadniv, M., Frampton, M., Finkelstein, J., and Oberdorster, G. (2004). “Systemic effects of inhaled ultrafine particles in two compromised, aged rat strains.” Inhalation Toxicol., 16(6/7), 461–471.
Filley, T., Ahn, M., Held, B., and Blanchette, R. (2005). “Investigations of fungal mediated (C60-C70) fullerene decomposition.” Div. Environ. Chem., 45, 446–450.
Fubini, B. (1997). “Surface reactivity in the pathogenic response to particulates.” Environ. Health Perspect., 105(Suppl 5), 1013–1020.
Gagné, F., Auclair, J., Turcotte, P., Fournier, M., Gagnon, C., and Sauvé, S. (2008). “Ecotosicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity.” Aquat. Toxicol., 86(3), 333–340.
Gokhale, S. (2015). “Behavior and fate of natural and engineered nanomaterials in atmosphere.” Chapter 10, Nanomaterials in the environment, S. K. Brar, T. C. Zhang, M. Verma, R. Y. Surampalli, and R. D. Tyagi, eds., ASCE, Reston, VA, 265–291.
Gordon, T., et al. (1992). “Pulmonary effects of inhaled zinc-oxide in human-subjects, guinea-pigs, rats, and rabbits.” Am. Ind. Hyg. Assoc. J., 53(8), 503–509.
Gottschalk, F., Sonderer, T., Scholz, R. W., and Nowack, B. (2009). “Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.” Environ. Sci. Technol., 43(24), 9216–9222.
Green, M., and Howman, E. (2005). “Semiconductor quantum dots and free radical induced DNA nicking.” Chem. Commun., 1(1), 121–123.
Gurr, J. R., Wang, A. S. S., Chen, C. H., and Jan, K. Y. (2005). “Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells.” Toxicology, 213(1–2), 66–73.
Haick, H. (2007). “Chemical sensors based on molecularly modified metallic nanoparticles.” J. Phys. D-Appl. Phys., 40(23), 7173–7186.
Han, J., et al. (2008). “Monitoring multi-walled carbon nanotube exposure in carbon nanotube research facility.” Inhalation Toxicol., 20(8), 741–749.
Hansen, S. (2009). “Regulation and risk assessment of nanomaterials—Too little, too late?” 〈http://www2.er.dtu.dk/publications/fulltext/2009/ENV2009-069.pdf〉 (Sep. 10, 2009).
Hansen, S., Michelson, E., Kamper, A., Borling, P., Stuer-Lauridsen, F., and Baun, A. (2008). “Categorization framework to aid exposure assessment of nanomaterials in consumer products.” Ecotoxicology, 17(5), 438–447.
Hardman, R. (2006). “A toxicological review of quantum dots: Toxicity depends on physicochemical and environmental factors.” Environ. Health Perspect., 114(2), 165–172.
Heymann, D., Jenneskens, L. W., Jehlicka, J., Koper, C., and Vlietstra, E. (2003). “Terrestrial and extraterrestrial fullerenes.” Fullerenes Nanotubes Carbon Nanostruct., 11(4), 333–370.
Hoet, P. (2005). “Nanotech and toxicity studies.” ECOPA Workshop, Brussels.
Hoet, P. H. M., Brüske-Hohlfeld, I., and Salata, O. V. (2004). “Nanoparticles—Known and unknown health risks.” J. Nanobiotechnol., 2(1), 12.
Hristozov, D., and Malsch, I. (2009). “Review: Hazards and risks of engineered nanoparticles for the environment and human health.” Sustainability, 1(4), 1161–1194.
Ijima, S., and Ichihashi, T. (1993). “Single-shell carbon nanotubes of 1-nm diameter.” Nature, 363(6430), 603–605.
IPCC (Intergovernmental Panel for Climate Change). (2007). “The scientific basis.” Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Rep. of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., Cambridge University Press, Cambridge, U.K.
Jaiswal, J., Mattoussi, H., Mauro, J., and Simon, S. (2003). “Long-term multiple color imaging of live cells using quantum dot bioconjugates.” Nat. Biotechnol., 21(1), 47–51.
Jośko, I., and Oleszczuk, P. (2013). “Influence of soil type and environmental conditions on the ZnO, TiO2 and Ni nanoparticles phytotoxicity.” Chemosphere, 92(1), 91–99.
Ju-Nam, Y., and Lead, J. R. (2008). “Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications.” Sci. Tot. Environ., 400(1–3), 396–414.
Kadish, K. M. and Ruoff, R. S. (2000). Fullerenes: Chemistry, physics, and technology, Wiley, New York.
Kaegi, R., et al. (2008). “Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment.” Environ. Pollut., 156(2), 233–239.
Kang, S., Mauter, M., and Elimelech, M. (2008). “Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity.” Environ. Sci. Technol., 42(16), 5843–5859.
Klaine, S. J., et al. (2008). “Nanomaterials in the environment: Behavior, fate, bioavailability, and effects.” Environ. Toxicol. Chem., 27(9), 1825–1851.
Kojima, C., Haba, Y., Fukui, T., Kona, K., and Takagishi, T. (2003). “Design of biocompatible dendrimers with environment sensitivity.” Macromolecules, 36(7), 2183–2186.
Kreyling, W. G., et al. (2002). “Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low.” J. Toxicol. Environ. Health A, 65(20), 1513–1530.
Kumar, C. (2006). Nanomaterials—Toxicity, health and environmental issues, Wiley-VCH, Weinheim, Germany.
Lai, H., Chen, W., and Chiang, L. (2000). “Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs.” World J. Surg., 24(4), 450–454.
Lam, C., James, J., McCluskey, R., and Hunter, R. (2004). “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation.” Toxicol. Sci., 77(1), 126–134.
Liu, J., Aruguete, D. M., Murayama, M., and Hochella, M. F. (2009). “Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS).” Environ. Sci. Technol., 43(21), 8178–8183.
Lovric, J., Bazzi, H., Cuie, Y., Fortin, G., Winnik, F., and Maysinger, D. (2005). “Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots.” J. Mol. Med., 83(5), 377–385.
Madden, A. S., Hochella, M. F. J., and Luxton, T. P. (2006). “Insights for size-dependant reactivity of hematite nanomineral surfaces through Cu2+ sorption.” Geochim. Cosmochim. Acta, 70(16), 4095–4104.
Majestic, B. J., et al. (2010). “A review of selected engineered nanoparticles in the atmosphere: Sources, transformations, and techniques for sampling and analysis.” Int. J. Occup. Environ. Health, 16(4), 488–507.
Manke, A., Wang, L., and Rojanasakul, Y. (2013). “Mechanisms of nanoparticle-induced oxidative stress and toxicity.” Biomed. Res. Int., 15.
Mark, D. (2004). “Nanomaterials a risk to health at work.” 1st Int. Symp. on Occupational Health Implications of Nanomaterials, Health and Safety Laboratory, Buxton, Derbyshire, U.K.
Maynard, A., Baron, P., Foley, M., Shvedova, A., Kisin, E., and Castranova, V. (2004). “Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material.” J. Toxicol. Environ. Health, 67(1), 87–107.
Miller, A., Ahlstrand, G., Kittelson, D., and Zachariah, M. (2007). “The fate of metal (Fe) during diesel combustion: Morphology, chemistry, and formation pathways of nanoparticles.” Combust. Flame, 149(1–2), 129–143.
Monteiro-Riviere, N. A., Nemanich, R. J., Inman, A. O., Wang, Y. Y., and Riviere, J. E. (2005). “Multi-walled carbon nanotube interactions with human epidermal keratinocytes.” Toxicol. Lett., 155(3), 377–384.
Mueller, N. C., and Nowack, B. (2008). “Exposure modeling of engineered nanoparticles in the environment.” Environ. Sci. Technol., 42(12), 4447–4453.
Muller, J., et al. (2005). “Respiratory toxicity of multi-wall carbon nanotubes.” Toxicol. Appl. Pharmacol., 207(3), 221–231.
Nel, A., Xia, T., Ma¨dler, L., and Li, N. (2006). “Toxic potential of materials at the nanolevel.” Science, 311(5761), 622–627.
Nemmar, A., Hoet, P. H. M., Vanquickenborne, B., Dinsdale, D., Thomeer, M., and Hoylaerts, M. F. (2002). “Passage of inhaled particles into the blood circulation in humans.” Circulation, 105(4), 411–414.
Niemeyer, C. M. (2001). “Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science.” Angew. Chem. Int. Ed., 40(22), 4128–4158.
Nikula, K. J., Avila, K. J., Griffith, W. C., and Mauderly, J. L. (1997). “Lung tissue responses and sites of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust.” Fundam. Appl. Toxicol., 37(1), 37–53.
Noguez, C. (2007). “Surface plasmons on metal nanoparticles: The influence of shape and physical environment.” J. Phys. Chem. C, 111(10), 3806–3819.
Norwegian Pollution Control Authority. (2008). “Environmental fate and ecotoxicity of engineered nanoparticles.”, E. J. Joner, T. Hartnik, and C. E. Amundsen, eds., Bioforsk, 64.
Nowack, B., and Bucheli, T. D. (2007). “Occurrence, behavior and effects of nanoparticles in the environment.” Environ. Pollut., 150(1), 5–22.
Nowack, B., Mueller, N. C., Krug, H. F., and Wick, P. (2014). “How to consider engineered nanomaterials in major accident regulations?” Environ. Sci. Eur., 26(1), 2.
Nutt, M., Hughes, J., and Wong, M. (2005). “Designing Pd on Au bimetallic nanoparticles catalysts for trichloroethene hydrodechlorination.” Environ. Sci. Technol., 39(5), 1346–1353.
Oberdörster, E. (2004). “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in juvenile largemouth bass.” Environ. Health Perspect., 112(10), 1058–1062.
Oberdörster, G., et al. (2005a). “Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy.” Part. Fibre Toxicol., 2(1), 8.
Oberdörster, G., Ferin, J., and Lehnert, B. E. (1994). “Correlation between particle size, in vivo particle persistence, and lung injury.” Environ. Health Perspect., 102(Suppl 5), 173–179.
Oberdörster, G., et al. (2000). “Acute pulmonary effects of ultrafine particles in rats and mice.” Res. Rep. Health Eff. Inst., 96, 5–74.
Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005b). “Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles.” Environ. Health. Perspect., 113(7), 823–839.
Oberdörster, G., Stone, V., and Donaldson, K. (2007). “Toxicology of nanoparticles: A historical perspective.” Nanotoxicology, 1(1), 2–25.
Pal, S., Tak, Y. K., and Song, J. M. (2007). “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli.” Appl. Environ. Microbiol., 73(6), 1712–1720.
Pekkanen, J., Peters, A., Hoek, G., Tiittanen, P., Brunekreef, B., and de Hartog, J. (2002). “Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease. The exposure and risk assessment for fine and ultrafine particles in ambient air [ultra] study.” Circulation, 106(8), 933–938.
Penttinen, P., Timonen, K. L., Tiittanen, P., Mirme, A., Ruuskanen, J., and Pekkanen, J. (2001). “Ultrafine particles in urban air and respiratory health among adult asthmatics.” Eur. Respir. J., 17(3), 428–435.
Pietroiusti, A., and Magrini, A. (2014). “Engineered nanoparticles at the workplace: Current knowledge about workers’ risk.” Occup. Med., 64(5), 319–330.
Plata, D. L., Gschwend, P. M., and Reddy, C. M. (2008). “Industrially synthesized single-walled carbon nanotubes: Compositional data for users, environmental risk assessments, and source apportionment.” Nanotechnology, 19(18), 185706.
Poland, C., et al. (2008). “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study.” Nat. Nanotechnol., 3(7), 423–428.
Priesnitz, W. (2008). “Ask natural life: What is nanotechnology and should we be concerned about it?” Natural Life Magazine, 〈http://www.naturallifemagazine.com/0804/asknl.htm〉 (Apr. 2014).
Quadros, M. E., and Marr, L. C. (2010). “Environmental and human health risks of aerosolized silver nanoparticles.” J. Air Waste Manage. Assoc., 60(7), 770–781.
Querol, X., et al. (2004). “Nanoparticles in the atmosphere.”, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain, 24–39.
Quinlan, T. R., et al. (1995). “Patterns of inflammation, cell-proliferation, and related gene-expression in lung after inhalation of chrysotile asbestos.” Am. J. Pathol., 147(3), 728–739.
Reijnders, L. (2008). “Hazard reduction for the application to titania nanoparticles in environmental technology.” J. Hazard. Mater., 152(1), 440–445.
Roco, M. C. (2011). “The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years.” J. Nanopart. Res., 13, 427–445.
RRPM (Report of Review Panel Meetings). (2008). “Preventive measures for worker exposure to chemical substances posing unknown risks to human health (nanomaterials).” Ministry of Health, Labour and Welfare, Japan.
Sanchis, J., Berrojalbiz, N., Caballero, G., Dachs, J., Farre, M., and Barcelo, D. (2012). “Occurrence of aerosol-bound fullerenes in the Mediterranean sea atmosphere.” Environ. Sci. Technol., 46(3), 1335–1343.
Sayes, C., et al. (2006). “Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro.” Toxicol. Lett., 161(2), 135–142.
Sayes, C., Marchione, A., Reed, K., and Warheit, D. (2007a). “Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles.” Nano Lett., 7(8), 2399–2406.
Sayes, C., Reed, K., and Warheit, D. (2007b). “Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles.” Toxicol. Sci., 97(1), 163–180.
Schins, R. P., Knaapen, A. M., Cakmak, G. D., Shi, T., Weishaupt, C., and Borm, P. J. (2002). “Oxidant-induced DNA damage by quartz in alveolar epithelial cells.” Mutat. Res., 517(1–2), 77–86.
Schmid, G., and Corain, B. (2003). “Nanoparticulated gold: Syntheses, structures electronics, and reactivities.” Eur. J. Inorg. Chem., 2003(17), 3081–3098.
Seaton, A. (1995). “Silicosis.” Occupational lung diseases, 3rd Ed., W. K. C. Morgan and A. Seaton, eds., WB Saunders, PA.
Seaton, A., MacNee, W., Donaldson, K., and Godden, D. (1995). “Particulate air pollution and acute health effects.” Lancet, 345(8943), 176–178.
Shahverdi, A. R., Kakhimi, A., Shahverdi, H. D., and Minaian, S. (2007). “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli.” Nanomed. Nanotechnol. Biol. Med., 3(2), 168–171.
Shvedova, A., et al. (2006). “Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells.” J. Toxicol. Environ. Health, 66(20), 1909–1926.
Smita, S., Gupta, S. K., Bartonova, A., Dusinska, M., Gutleb, A. C., and Rahman, Q. (2012). “Nanoparticles in the environment: Assessment using the causal diagram approach.” Environ. Health, 11(Suppl 1), S13.
Smith, C., Shaw, B., and Handy, R. (2007). “Toxicity of single walled carbon nanotubes on rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects.” Aquat. Toxicol., 82(2), 94–109.
Soto, K. F., Carrasco, A., Powell, T. G., Garza, K. M., and Murr, L. E. (2005). “Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy.” J. Nanopart. Res., 7(2–3), 145–169.
Soutter, W. (2012). “Nanopollution—Hype or health risk.” 〈http://www.azonano.com/article.aspx?ArticleID=3138〉 (Feb. 2014).
Sperling, R. A., and Parak, W. J. (2010). “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles.” Philos. Trans. R. Soc. A, 368(1915), 1333–1383.
Stoeger, T., et al. (2006). “Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice.” Environ. Health Perspect., 114(3), 328–333.
TRS and TRAE (The Royal Society and The Royal Academy of Engineering). (2004). “Nanoscience and nanotechnologies: Opportunities and uncertainties.” Royal Society, London.
Tsoi, K. M., Dai, Q., Alman, B. A., and Chan, W. C. (2013). “Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies.” Acc. Chem. Res., 46(3), 662–671.
Turner, D. R., and Hunter, K. A. (2001). The biochemistry of iron in seawater, Wiley, Chichester, U.K.
Wagner, J. C., et al. (1982). “A pathological and mineralogical study of asbestos-related deaths in the United Kingdom in 1977.” Ann. Occup. Hyg., 26(3), 423–431.
Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T., and Kammer, F. V. D. (2014). “Spot the difference: Engineered and natural nanoparticles in the environment—Release, behavior, and fate.” Angew. Chem. Int. Ed., 53(46), 12398–12419.
Warheit, D., Webb, T., Sayes, C., Colvin, V., and Reed, K. (2006). “Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area.” Toxicol. Sci., 91(1), 227–236.
Warheit, D. B, George, G., Hill, L. H., Snyderman, R., and Brody, A. R. (1985). “Inhaled asbestos activates a complement-dependent chemoattractant for macrophages.” Lab. Invest., 52(5), 505–514.
Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A. M., and Web, T. R. (2004). “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats.” Toxicol. Sci., 77(1), 117–125.
Watts, P. C. P., Hsu, W. K., Randall, D. P., Kroto, H. W., and Walton, D. R. M. (2002). “Non-linear current-voltage characteristics of electrically conducting carbon nanotube-polystyrene composites.” Phys. Chem. Chem. Phys., 4(22), 5655–5662.
Wiesner, M., Lowry, G., Alvarez, P., Dionysiou, D., and Bisawas, P. (2006). “Assessing the role of manufactured nanomaterials.” Environ. Sci. Technol., 40(14), 4336–4345.
Wild, E., and Jones, K. C. (2009). “Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants.” Environ. Sci. Technol., 43(14), 5290–5294.
WWICS (Woodrow Wilson International Center for Scholars). (2011). “Project on emergining technology—Nanotechnology inventories.” 〈http://www.nanotechproject.org/inventories/consumer/analysis_draft/〉 (Apr. 2014).
Xia, T., et al. (2006). “Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.” Nano Lett., 6(8), 1794–1807.
Yeganeh, B., Kull, C., Hull, M., and Marr, L. (2008). “Characterization of airborne particles during production of carbonaceous nanomaterials.” Environ. Sci. Technol., 42(12), 4600–4606.
Yoon, K. Y., Byeon, J. H., Park, J. H., and Hwang, J. (2007). “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.” Sci. Total Environ., 373(2–3), 572–575.
Yu, J. C., Yu, J., and Zhao, J. (2002). “Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment.” Appl. Catal. B Environ., 36(1), 31–43.
Zhang, W. (2003). “Nanoscale iron particle for environmental remediation: An overview.” J. Nanopart. Res., 5(3–4), 323–332.
Zhou, J., Xu, N. S., and Wang, Z. L. (2006). “Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures.” Adv. Mater., 18(18), 2432–2435.
Zhou, Y. M., Zhong, C. Y., Kennedy, I. M., Leppert, V. J., and Pinkerton, K. E. (2003). “Oxidative stress and NFκB activation in the lungs of rats: A synergistic interaction between soot and iron particles.” Toxicol. Appl. Pharmacol., 190(2), 157–169.
Zhu, S., Oberdorster, E., and Haasch, M. (2006). “Toxicity of an engineered nanoparticle (Fullerene, C60) in two aquatic species, daphnia and fathead minnow.” Mar. Environ. Res., 62, S5–S9.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 20Issue 1January 2016

History

Received: Jun 16, 2014
Accepted: Jul 24, 2015
Published online: Oct 7, 2015
Published in print: Jan 1, 2016
Discussion open until: Mar 7, 2016

Permissions

Request permissions for this article.

Authors

Affiliations

Sharad Gokhale, M.ASCE [email protected]
Professor of Environmental Engineering, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share