Technical Papers
Feb 10, 2022

Turbulence Parameters during Transient Cavitation Flow in Viscoelastic Pipe

Publication: Journal of Hydraulic Engineering
Volume 148, Issue 4

Abstract

A two-dimensional model of distributed vaporous cavitation is developed for transient flow in a low-density polyethylene pipeline. In this model, the governing equations of transient flow are solved with viscoelastic and cavitation equations simultaneously. The k-ω turbulence model is further combined with the model of transient flow to (1) simulate the energy dissipation during transient flow; and (2) investigate the effect of temperature and cavitation on turbulence behavior. Based on the results, the increase in flow velocity of cavitation significantly augments the intensity of turbulence production near the wall and the transport of turbulence in the inner layers. Higher temperatures result in higher power for the generation of turbulence near the wall. Cavitation significantly reduces the production of turbulence near the wall and intensifies the turbulence transport in the inner layers of the flow.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author upon reasonable request.

References

Abdel-Gawad, H. A. A., and B. Djebedjian. 2020. “Modeling water hammer in viscoelastic pipes using the wave characteristic method.” Appl. Math. Modell. 83 (Jul): 322–341. https://doi.org/10.1016/j.apm.2020.01.045.
Adamkowski, A., and M. Lewandowski. 2009. “A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines.” J. Fluids Eng. 131 (7): 071302. https://doi.org/10.1115/1.3153365.
Alexander, J., P. J. Lee, M. Davidson, H.-F. Duan, Z. Li, R. Murch, S. Meniconi, and B. Brunone. 2019. “Experimental validation of existing numerical models for the interaction of fluid transients with in-line air pockets.” J. Fluids Eng. 141 (12): 121101. https://doi.org/10.1115/1.4043776.
Bergant, A., and A. R. Simpson. 1999. “Pipeline column separation flow regimes.” J. Hydraul. Eng. 125 (8): 835–848. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(835).
Bergant, A., J. Vitkovský, A. Simpson, M. Lambert, and A. S. Tijsseling. 2006. “Discrete vapour cavity model with efficient and accurate convolution type unsteady friction term.” In Proc., 23rd IAHR Symp. on Hydraulic Machinery and Systems. Yokohama, Japan: IAHR.
Covas, D., and H. Ramos. 2010. “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Resour. Plann. Manage. 136 (2): 248–257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248).
Daude, F., A. Tijsseling, and P. Galon. 2018. “Numerical investigations of water-hammer with column-separation induced by vaporous cavitation using a one-dimensional Finite-Volume approach.” J. Fluids Struct. 83 (Nov): 91–118. https://doi.org/10.1016/j.jfluidstructs.2018.08.014.
Duan, H. F., M. S. Ghidaoui, and Y. K. Tung. 2009. “An efficient quasi-2D simulation of waterhammer in complex pipe systems.” J. Fluids Eng. 131 (8): 081105. https://doi.org/10.1115/1.3176978.
Firkowski, M., K. Urbanowicz, and H. Duan. 2019. “Simulation of unsteady flow in viscoelastic pipes.” SN Appl. Sci. 1 (6): 519. https://doi.org/10.1007/s42452-019-0524-2.
Frey, R., M. Güdel, J. Dual, and T. Staubli. 2019. “Phase and amplitude based characterization of small viscoelastic pipes in the frequency domain with a reservoir–pipeline–oscillating-valve system.” J. Hydraul. Res. 58 (3): 460–470.
Gally, M., M. Güney, and E. Rieutord. 1979. “An investigation of pressure transients in viscoelastic pipes.” J. Fluids Eng. 101 (23): 495–499. https://doi.org/10.1115/1.3449017.
Gao, H., X. Tang, X. Li, and X. Shi. 2018. “Analyses of 2D transient models for vaporous cavitating flows in reservoir-pipeline-valve systems.” J. Hydroinf. 20 (4): 934–945. https://doi.org/10.2166/hydro.2018.141.
Güney, M. 1977. “Contribution à l’étude du phénomène de coup de bélier en conduite viscoélastique.” Ph.D. thesis, İzmir Univ. of Economics. https://people.ieu.edu.tr/tr/mehmetsukruguney/makaleler.
Hadj-Taïeb, L., and E. Hadj-Taïeb. 2009. “Numerical simulation of transient flows in viscoelastic pipes with vapour cavitation.” Int. J. Modell. Simul. 29 (2): 206–213. https://doi.org/10.1080/02286203.2009.11442526.
Keramat, A., M. Fathi-Moghadam, R. Zanganeh, M. Rahmanshahi, A. S. Tijsseling, and E. Jabbari. 2020. “Experimental investigation of transients-induced fluid–structure interaction in a pipeline with multiple-axial supports.” J. Fluids Struct. 93 (Feb): 102848. https://doi.org/10.1016/j.jfluidstructs.2019.102848.
Keramat, A., and A. Tijsseling. 2012. “Water hammer with column separation, fluid-structure interaction and unsteady friction in a viscoelastic pipe.” In Proc., 11th Int. Conf. on Pressure Surges, 24–26. Lisbon, Portugal: BHR Group.
Kim, H., and S. Kim. 2019a. “A generalized procedure for pipeline hydraulic components in quasi-two-dimensional unsteady flow analysis.” J. Fluids Eng. 141 (6): 1–13.
Kim, H., and S. Kim. 2019b. “Two dimensional cavitation water hammer model for a reservoir-pipeline-valve system.” J. Hydraul. Res. 57 (3): 327–336. https://doi.org/10.1080/00221686.2018.1494046.
Kita, Y., Y. Adachi, and K. Hirose. 1980. “Periodically oscillating turbulent flow in a pipe.” Bull. JSME 23 (179): 656–664. https://doi.org/10.1299/jsme1958.23.656.
Mahdizadeh, H. 2019. “Numerical modelling of one- and two-dimensional water hammer problems using a modified wave propagation algorithm and turbulence model.” J. Hydraul. Res. 57: 374–3852.
Pezzinga, G. 1999. “Quasi-2D model for unsteady flow in pipe networks.” J. Hydraul. Eng. 125 (7): 676–685. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:7(676).
Pezzinga, G., B. Brunone, D. Cannizzaro, M. Ferrante, S. Meniconi, and A. Berni. 2014. “Two-dimensional features of viscoelastic models of pipe transients.” J. Hydraul. Eng. 140 (8): 04014036. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000891.
Pezzinga, G., B. Brunone, and S. Meniconi. 2016. “Relevance of pipe period on Kelvin-Voigt viscoelastic parameters: 1D and 2D inverse transient analysis.” J. Hydraul. Eng. 142 (12): 04016063. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001216.
Pezzinga, G., and D. Cannizzaro. 2014. “Analysis of transient vaporous cavitation in pipes by a distributed 2D model.” J. Hydraul. Eng. 140 (6): 04014019. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000840.
Pezzinga, G., and V. Santoro. 2017. “Unitary framework for hydraulic mathematical models of transient cavitation in pipes: Numerical analysis of 1D and 2D flow.” J. Hydraul. Eng. 143 (12): 04017053. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001384.
Riasi, A., A. Nourbakhsh, and M. Raisee. 2013. “Energy dissipation in unsteady turbulent pipe flows caused by water hammer.” J. Comput. Fluids 73 (Mar): 124–133. https://doi.org/10.1016/j.compfluid.2012.12.015.
Riasi, A., P. A. Nourbakhsh, and A. P. M. Raisee. 2009. “Unsteady turbulent pipe flow due to water hammer using k–ω turbulence model.” J. Hydraul. Res. 47 (4): 429–437. https://doi.org/10.1080/00221686.2009.9522018.
Santoro, V., A. Crimì, and G. Pezzinga. 2018. “Developments and limits of discrete vapor cavity models of transient cavitating pipe flow: 1D and 2D flow numerical analysis.” J. Hydraul. Eng. 144 (Mar): 04018047. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001490.
Shamloo, H., and M. Mousavifard. 2015. “Numerical simulation of turbulent pipe flow for water hammer.” J. Fluids Eng. 137 (11): 111203. https://doi.org/10.1115/1.4030806.
Silva-Araya, W. F., and M. H. Chaudhry. 1997. “Computation of energy dissipation in transient flow.” J. Hydraul. Eng. 123 (2): 108–115. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(108).
Soares, A. K., D. I. Covas, and N. J. Carriço. 2012. “Transient vaporous cavitation in viscoelastic pipes.” J. Hydraul. Res. 50 (2): 228–235. https://doi.org/10.1080/00221686.2012.669143.
Soares, A. K., N. Martins, and D. I. Covas. 2015. “Investigation of transient vaporous cavitation: Experimental and numerical analyses.” Procedia Eng. 119 (Jan): 235–242. https://doi.org/10.1016/j.proeng.2015.08.881.
Soares, A. K., N. M. Martins, and D. I. Covas. 2017. “Transient vaporous cavitation in a horizontal copper pipe.” J. Hydraul. Res. 55 (5): 731–736. https://doi.org/10.1080/00221686.2017.1286394.
Urbanowicz, K., A. Bergant, H.-F. Duan, M. Stosiak, and M. Firkowski. 2019. Using DGCM to predict transient flow in plastic pipe. Bristol, UK: IOP Publishing.
Urbanowicz, K., and M. Firkowski. 2018. “Extended bubble cavitation model to predict water hammer in viscoelastic pipelines.” J. Phys. Conf. Ser. 1101 (1): 12–46.
Vardy, A. E., and K. L. Hwang. 1991. “A characteristics model of transient friction in pipes.” J. Hydraul. Res. 29 (5): 669–684. https://doi.org/10.1080/00221689109498983.
Wahba, E. M. 2017. “On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes.” J. Fluids Struct. 68 (Jan): 113–124. https://doi.org/10.1016/j.jfluidstructs.2016.10.012.
Wang, X., J. Lin, A. Keramat, M. S. Ghidaoui, S. Meniconi, and B. Brunone. 2019. “Matched-field processing for leak localization in a viscoelastic pipe: An experimental study.” Mech. Syst. Sig. Process. 124 (Jun): 459–478. https://doi.org/10.1016/j.ymssp.2019.02.004.
Wilcox, D. C. 1994. Turbulence modeling for CFD. La Canada, CA: DCW Industries.
Wylie, E. B., and V. L. Streeter. 1993. Fluid transients in systems. Englewood Cliffs, NJ: Prentice Hall.
Zanganeh, R., E. Jabbari, A. Tijsseling, and A. Keramat. 2020. “Fluid-structure interaction in transient-based extended defect detection of pipe walls.” J. Hydraul. Eng. 146 (4): 04020015. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001693.
Zhao, M., and M. S. Ghidaoui. 2006. “Investigation of turbulence behavior in pipe transient using a k–ε model.” J. Hydraul. Res. 44 (5): 682–692. https://doi.org/10.1080/00221686.2006.9521717.
Zhou, L., H. Wang, A. Bergant, A. S. Tijsseling, D. Liu, and S. Guo. 2018. “Godunov-type solutions with discrete gas cavity model for transient cavitating pipe flow.” J. Hydraul. Eng. 144 (5): 04018017. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001463.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 148Issue 4April 2022

History

Received: Aug 31, 2020
Accepted: Dec 16, 2021
Published online: Feb 10, 2022
Published in print: Apr 1, 2022
Discussion open until: Jul 10, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Maryam Mousavifard [email protected]
Assistant Professor, Dept. of Engineering, Fasa Univ., Fasa 74616-86131, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Fluid transients in viscoelastic pipes via an internal variable constitutive theory, Applied Mathematical Modelling, 10.1016/j.apm.2022.10.024, 114, (846-869), (2023).
  • Numerical Analysis of Transient Pressure Damping in Viscoelastic Pipes at Different Water Temperatures, Materials, 10.3390/ma15144904, 15, 14, (4904), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share