Abstract

Freshwater flocculation in the Usumacinta River delta during the high flow season was confirmed and supported by field data and the results from experiments conducted in a rotating annular flume and in a settling column device. Although the stream intensity and a bottom macroform generated and disturbed the 3D turbulence components in the cross section, the flow patterns followed the logarithmic law and the Nezu and Nakagawa models. The Rouse model can be applied to predict suspended sediment flux; however, flocculation led to diffusivity ratios less than 0.63 and effective settling velocities close to 1  mm/s that were consistent with the mass conservation equation. When comparing the suspended load patterns of several lowland rivers, flocculation stages are related to shear rate; furthermore, in contrast to saline environments, the representative aggregate size in freshwater systems is presumably higher than the Kolmogorov microscale.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code used during the study were provided by a third party (ADCP data). Direct requests for these materials may be made to the provider as indicated in the Acknowledgments.
Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request (field concentrations, results from experiments, and data analysis).

Acknowledgments

The first author is grateful to CONACYT (the Mexican research funding agency) for the economic support during his doctoral studies. The authors are also grateful to ECOSUR for providing the ADCP data and the support during the sampling campaigns (Ph.D., M. Mercedes Castillo-Uzcaga).

References

Afzalimehr, H., and C. D. Rennie. 2009. “Determination of bed shear stress in gravel-bed rivers using boundary-layer parameters.” Hydrol. Sci. J. 54 (1): 147–159. https://doi.org/10.1623/hysj.54.1.147.
Alauddin, M., and T. Tsujimoto. 2014. “Sandbars in alluvial channels: Their formation processes and interaction with groins.” World J. Eng. 11 (5): 473–480. https://doi.org/10.1260/1708-5284.11.5.473.
Armijos, E., et al. 2017. “Measuring and modeling vertical gradients in suspended sediments in the Solimões/Amazon river.” Hydrol. Processes 31 (3): 654–667. https://doi.org/10.1002/hyp.11059.
Bagherimiyab, F., and U. Lemmin. 2013. “Shear velocity estimates in rough-bed open-channel flow.” Earth Surf. Processes Landforms 38 (14): 1714–1724. https://doi.org/10.1002/esp.3421.
Bainbridge, Z. T., E. Wolanski, J. G. Álvarez-Romero, S. E. Lewis, and J. E. Brodie. 2012. “Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia.” Mar. Pollut. Bull. 65 (4–9): 236–248. https://doi.org/10.1016/j.marpolbul.2012.01.043.
Baranya, S., and J. Józsa. 2013. “Estimation of suspended sediment concentrations with ADCP in Danube River.” J. Hydrol. Hydromech. 61 (3): 232–240. https://doi.org/10.2478/johh-2013-0030.
Baronas, J. J., E. I. Stevenson, C. R. Hackney, S. E. Darby, M. J. Bickle, R. G. Hilton, C. S. Larkin, D. R. Parsons, A. Myo Khaing, and E. T. Tipper. 2020. “Integrating suspended sediment flux in large alluvial river channels: Application of a synoptic rouse-based model to the Irrawaddy and Salween rivers.” J. Geophys. Res.: Earth Surf. 125 (9): e2020JF005554. https://doi.org/10.1029/2020JF005554.
Best, J. 2019. “Anthropogenic stresses on the world’s big rivers.” Nat. Geosci. 12 (1): 7–21. https://doi.org/10.1038/s41561-018-0262-x.
Best, J., S. Bennett, J. Bridge, and M. Leeder. 1997. “Turbulence modulation and particle velocities over flat sand beds at low transport rates.” J. Hydraul. Eng. 123 (12): 1118–1129. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1118).
Bombardelli, F. A., and S. K. Jha. 2009. “Hierarchical modeling of the dilute transport of suspended sediment in open channels.” Environ. Fluid Mech. 9 (2): 207–235. https://doi.org/10.1007/s10652-008-9091-6.
Bouchez, J., F. Métivier, M. Lupker, L. Maurice, M. Perez, J. Gaillardet, and C. France-Lanord. 2011. “Prediction of depth-integrated fluxes of suspended sediment in the amazon river: Particle aggregation as a complicating factor.” Hydrol. Processes 25 (5): 778–794. https://doi.org/10.1002/hyp.7868.
Camenen, B., and M. Larson. 2008. “A general formula for noncohesive suspended sediment transport.” J. Coastal Res. 24 (3): 615–627. https://doi.org/10.2112/06-0694.1.
Cao, Z., S. Egashira, and P. A. Carling. 2003. “Role of suspended-sediment particle size in modifying velocity profiles in open channel flows.” Water Resour. Res. 39 (2): 1229. https://doi.org/10.1029/2001WR000934.
Cao, Z., G. Pender, and J. Meng. 2006. “Explicit formulation of the shields diagram for incipient motion of sediment.” J. Hydraul. Eng. 132 (10): 1097–1099. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1097).
Cartwright, G. M., C. T. Friedrichs, and S. J. Smith. 2013. “A test of the adv-based Reynolds flux method for in situ estimation of sediment settling velocity in a muddy estuary.” Geo-Mar. Lett. 33 (6): 477–484. https://doi.org/10.1007/s00367-013-0340-4.
Castro-Orgaz, O., J. V. Giráldez, L. Mateos, and S. Dey. 2012. “Is the von Kármán constant affected by sediment suspension?” J. Geophys. Res.: Earth Surf. 117 (F4): F4002. https://doi.org/10.1029/2011JF002211.
Curran, K., P. Hill, T. Milligan, O. Mikkelsen, B. Law, X. D. de Madron, and F. Bourrin. 2007. “Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France.” Cont. Shelf Res. 27 (10–11): 1408–1421. https://doi.org/10.1016/j.csr.2007.01.014.
Day, G., W. E. Dietrich, J. C. Rowland, and A. Marshall. 2008. “The depositional web on the floodplain of the Fly River, Papua New Guinea.” J. Geophys. Res.: Earth Surf. 113 (F1): F1S02. https://doi.org/10.1029/2006JF000622.
Droppo, I. G., D. S. Jeffries, C. Jaskot, and S. M. Backus. 1998. “The prevalence of freshwater flocculation in cold regions: A case study from the Mackenzie River Delta, Northwest Territories, Canada.” Arctic 51 (2): 85–199. https://doi.org/10.14430/arctic1056.
Esposito, C. R., Z. Shen, T. E. Törnqvist, J. Marshak, and C. White. 2017. “Efficient retention of mud drives land building on the Mississippi Delta plain.” Earth Surf. Dyn. 5 (3): 387–397. https://doi.org/10.5194/esurf-5-387-2017.
Filizola, N., J.-L. Guyot, H. Wittmann, J.-M. Martinez, and E. de Oliveira. 2011. “The significance of suspended sediment transport determination on the Amazonian hydrological scenario.” In Sediment transport in aquatic environments, 45–64. Rijeka, Croatia: IntechOpen.
Fugate, D. C., and R. J. Chant. 2005. “Near-bottom shear stresses in a small, highly stratified estuary.” J. Geophys. Res.: Oceans 110 (C3): C03022. https://doi.org/10.1029/2004JC002563.
Fugate, D. C., and C. T. Friedrichs. 2002. “Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST.” Cont. Shelf Res. 22 (11–13): 1867–1886. https://doi.org/10.1016/S0278-4343(02)00043-2.
Fugate, D. C., and C. T. Friedrichs. 2003. “Controls on suspended aggregate size in partially mixed estuaries.” Estuarine Coastal Shelf Sci. 58 (2): 389–404. https://doi.org/10.1016/S0272-7714(03)00107-0.
García, M. H., E. M. Laursen, C. Michel, and J. M. Buffington. 2000. “The legend of AF shields.” J. Hydraul. Eng. 126 (9): 718–723. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:9(718).
Garcia-Aragon, J., H. Salinas-Tapia, J. Moreno-Guevara, V. Diaz-Palomarez, and S. Tejeda-Vega. 2014. “A model for the settling velocity of flocs; application to an aquaculture recirculation tank.” Int. J. Comput. Methods Exp. Meas. 2 (3): 313–322. https://doi.org/10.2495/CMEM-V2-N3-313-322.
Garcia-Aragon, J. A., K. Izquierdo-Ayala, M. M. Castillo-Uzcanga, L. Carrillo-Bibriezca, and H. Salinas-Tapia. 2019. “Experimental validation of a cohesive suspended sediment transport model for two Mexican rivers.” Environ. Syst. Res. 8 (1): 12. https://doi.org/10.1186/s40068-019-0139-z.
Gartner, J. W. 2004. “Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California.” Mar. Geol. 211 (3–4): 169–187. https://doi.org/10.1016/j.margeo.2004.07.001.
Graf, W., and M. Cellino. 2002. “Suspension flows in open channels; experimental study.” J. Hydraul. Res. 40 (4): 435–447. https://doi.org/10.1080/00221680209499886.
Guo, J., and P. Y. Julien. 2006. “Application of modified log-wake law in open-channels.” In Proc., World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns, 1–9. Reston, VA: ASCE.
Guo, J., and W. L. Wood. 1995. “Fine suspended sediment transport rates.” J. Hydraul. Eng. 121 (12): 919–922. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(919).
Guo, L., and Q. He. 2011. “Freshwater flocculation of suspended sediments in the Yangtze River, China.” Ocean Dyn. 61 (2–3): 371–386. https://doi.org/10.1007/s10236-011-0391-x.
Guo, L., J.-Z. Zhang, and C. Guéguen. 2004. “Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River.” Global Biogeochem. Cycles 18 (1): GB1038. https://doi.org/10.1029/2003GB002152.
Ha, H. K., and J. P.-Y. Maa. 2010. “Effects of suspended sediment concentration and turbulence on settling velocity of cohesive sediment.” Geosci. J. 14 (2): 163–171. https://doi.org/10.1007/s12303-010-0016-2.
Hajek, E. A., and D. Edmonds. 2014. “Is river avulsion style controlled by floodplain morphodynamics?” Geology 42 (3): 199–202. https://doi.org/10.1130/G35045.1.
Heathershaw, A. 1979. “The turbulent structure of the bottom boundary layer in a tidal current.” Geophys. J. Int. 58 (2): 395–430. https://doi.org/10.1111/j.1365-246X.1979.tb01032.x.
Hill, P. S., J. P. Syvitski, E. A. Cowan, and R. D. Powell. 1998. “In situ observations of floc settling velocities in Glacier Bay, Alaska.” Mar. Geol. 145 (1–2): 85–94. https://doi.org/10.1016/S0025-3227(97)00109-6.
Holmes, R. R., Jr., and M. H. Garcia. 2008. “Flow over bedforms in a large sand-bed river: A field investigation.” J. Hydraul. Res. 46 (3): 322–333. https://doi.org/10.3826/jhr.2008.3040.
Izquierdo-Ayala, K. 2019. “Determinación del perfil de concentraciones para sedimentos cohesivos en ríos - validación grijalva y usumacinta.” Ph.D. thesis, Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México.
Jha, S. K., and F. A. Bombardelli. 2009. “Two-phase modeling of turbulence in dilute sediment-laden, open-channel flows.” Environ. Fluid Mech. 9 (2): 237. https://doi.org/10.1007/s10652-008-9118-z.
Kemp, G. P., J. W. Day, A. Yáñez-Arancibia, and N. S. Peyronnin. 2016. “Can continental shelf river plumes in the northern and southern Gulf of Mexico promote ecological resilience in a time of climate change?” Water 8 (3): 83. https://doi.org/10.3390/w8030083.
Khelifa, A., and P. S. Hill. 2006. “Models for effective density and settling velocity of flocs.” J. Hydraul. Res. 44 (3): 390–401. https://doi.org/10.1080/00221686.2006.9521690.
Kranenburg, C. 1994. “The fractal structure of cohesive sediment aggregates.” Estuarine Coastal Shelf Sci. 39 (5): 451–460. https://doi.org/10.1006/ecss.1994.1075.
Krishnappan, B. G., and J. Marsalek. 2002. “Modelling of flocculation and transport of cohesive sediment from an on-stream stormwater detention pond.” Water Res. 36 (15): 3849–3859. https://doi.org/10.1016/S0043-1354(02)00087-8.
Kuprenas, R., D. Tran, and K. Strom. 2018. “A shear-limited flocculation model for dynamically predicting average floc size.” J. Geophys. Res. Oceans 123 (9): 6736–6752. https://doi.org/10.1029/2018JC014154.
Lamb, M. P., J. de Leeuw, W. W. Fischer, A. J. Moodie, J. G. Venditti, J. A. Nittrouer, D. Haught, and G. Parker. 2020. “Mud in rivers transported as flocculated and suspended bed material.” Nat. Geosci. 13 (8): 566–570. https://doi.org/10.1038/s41561-020-0602-5.
Larsen, M. C., A. C. Gellis, G. D. Glysson, J. R. Gray, and A. J. Horowitz. 2010. “Fluvial sediment in the environment–a national challenge.” In Proc., 9th Federal Interagency Sedimentation Conf. Reston, VA: USGS Publications Warehouse.
Latosinski, F. G., R. N. Szupiany, C. M. García, M. Guerrero, and M. L. Amsler. 2014. “Estimation of concentration and load of suspended bed sediment in a large river by means of acoustic Doppler technology.” J. Hydraul. Eng. 140 (7): 04014023. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000859.
Le, H.-A., N. Gratiot, W. Santini, O. Ribolzi, D. Tran, X. Meriaux, E. Deleersnijder, and S. Soares-Frazão. 2020. “Suspended sediment properties in the Lower Mekong River, from fluvial to estuarine environments.” Estuarine Coastal Shelf Sci. 233 (Feb): 106522. https://doi.org/10.1016/j.ecss.2019.106522.
Leeuw, J. D., M. P. Lamb, G. Parker, A. J. Moodie, D. Haught, J. G. Venditti, and J. A. Nittrouer. 2020. “Entrainment and suspension of sand and gravel.” Earth Surf. Dyn. 8 (2): 485–504. https://doi.org/10.5194/esurf-8-485-2020.
Lemmin, U., and T. Rolland. 1997. “Acoustic velocity profiler for laboratory and field studies.” J. Hydraul. Eng. 123 (12): 1089–1098. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1089).
Li, R., S. Liu, Y. Li, G. Zhang, J. Ren, and J. Zhang. 2014. “Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea.” Biogeosciences 11 (2): 481–506. https://doi.org/10.5194/bg-11-481-2014.
Li, W., J. Wang, S. Yang, and P. Zhang. 2015. “Determining the existence of the fine sediment flocculation in the three gorges reservoir.” J. Hydraul. Eng. 141 (2): 05014008. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000921.
Lupker, M., C. France-Lanord, J. Lavé, J. Bouchez, V. Galy, F. Métivier, J. Gaillardet, B. Lartiges, and J.-L. Mugnier. 2011. “A rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin.” J. Geophys. Res.: Earth Surf. 116 (F4): F4012. https://doi.org/10.1029/2010JF001947.
Ma, H., et al. 2020. “Universal relation with regime transition for sediment transport in fine-grained rivers.” Proc. Natl. Acad. Sci. 117 (1): 171–176. https://doi.org/10.1073/pnas.1911225116.
Maa, J.-Y., and J.-I. Kwon. 2007. “Using adv for cohesive sediment settling velocity measurements.” Estuarine Coastal Shelf Sci. 73 (1–2): 351–354. https://doi.org/10.1016/j.ecss.2007.01.008.
Manning, A. J., J. V. Baugh, J. R. Spearman, and R. J. Whitehouse. 2010. “Flocculation settling characteristics of mud: Sand mixtures.” Ocean Dyn. 60 (2): 237–253. https://doi.org/10.1007/s10236-009-0251-0.
Mietta, F., C. Chassagne, A. J. Manning, and J. C. Winterwerp. 2009. “Influence of shear rate, organic matter content, pH and salinity on mud flocculation.” Ocean Dyn. 59 (5): 751–763. https://doi.org/10.1007/s10236-009-0231-4.
Mikkelsen, O., and M. Pejrup. 2001. “The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity.” Geo-Mar. Lett. 20 (4): 187–195. https://doi.org/10.1007/s003670100064.
Mukhopadhyay, S., H. Biswas, T. De, and T. Jana. 2006. “Fluxes of nutrients from the tropical River Hooghly at the land–ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India.” J. Mar. Syst. 62 (1–2): 9–21. https://doi.org/10.1016/j.jmarsys.2006.03.004.
Muste, M., K. Yu, I. Fujita, and R. Ettema. 2005. “Two-phase versus mixed-flow perspective on suspended sediment transport in turbulent channel flows.” Water Resour. Res. 41 (10): W10402. https://doi.org/10.1029/2004WR003595.
Neary, V., B. Gunawan, and D. Sale. 2013. “Turbulent inflow characteristics for hydrokinetic energy conversion in rivers.” Renewable Sustainable Energy Rev. 26 (Oct): 437–445. https://doi.org/10.1016/j.rser.2013.05.033.
Nezu, I., A. Kadota, and H. Nakagawa. 1997. “Turbulent structure in unsteady depth-varying open-channel flows.” J. Hydraul. Eng. 123 (9): 752–763. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:9(752).
Nezu, I., and H. Nakagawa. 1993. Turbulence in open-channel flows, IAHR monograph series, 1–281. Rotterdam, Netherlands: AA Balkema.
Nikora, V., and G. Smart. 1997. “Turbulence characteristics of new Zealand gravel-bed rivers.” J. Hydraul. Eng. 123 (9): 764–773. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:9(764).
Nikora, V. I., and D. G. Goring. 2002. “Fluctuations of suspended sediment concentration and turbulent sediment fluxes in an open-channel flow.” J. Hydraul. Eng. 128 (2): 214–224. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:2(214).
Nooren, C., et al. 2017. “The Usumacinta-Grijalva beach-ridge plain in southern Mexico: A high-resolution archive of river discharge and precipitation.” Earth Surf. Dyn. 5 (3): 529–556. https://doi.org/10.5194/esurf-5-529-2017.
Oberg, K., and D. S. Mueller. 2007. “Validation of streamflow measurements made with acoustic doppler current profilers.” J. Hydraul. Eng. 133 (12): 1421–1432. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1421).
Pejrup, M., and O. A. Mikkelsen. 2010. “Factors controlling the field settling velocity of cohesive sediment in estuaries.” Estuarine Coastal Shelf Sci. 87 (2): 177–185. https://doi.org/10.1016/j.ecss.2009.09.028.
Raudkivi, A. J. 2006. “Transition from ripples to dunes.” J. Hydraul. Eng. 132 (12): 1316–1320. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1316).
Rouse, H. 1937. “Modern conceptions of the mechanics of fluid turbulence.” Trans. Am. Soc. Civ. Eng. 102 (1): 463–505.
Salinas-Tapia, H., J. Garcia-Aragón, D. M. Hernandez, and B. B. Garcia. 2006. “Particle tracking velocimetry (PTV) algorithm for non-uniform and non-spherical particles.” In Vol. 2 of Proc., Electronics, Robotics and Automotive Mechanics Conference (CERMA’06), 325–330. New York: IEEE.
Sandbach, S. D., et al. 2012. “Application of a roughness-length representation to parameterize energy loss in 3-D numerical simulations of large rivers.” Water Resour. Res. 48 (12): W12501. https://doi.org/10.1029/2011WR011284.
Santini, W., et al. 2019. “An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland.” Earth Surf. Dyn. 7 (2): 515–536. https://doi.org/10.5194/esurf-7-515-2019.
Sime, L. C., R. I. Ferguson, and M. Church. 2007. “Estimating shear stress from moving boat acoustic Doppler velocity measurements in a large gravel bed river.” Water Resour. Res. 43 (3): W03418. https://doi.org/10.1029/2006WR005069.
Smith, S. J., and C. T. Friedrichs. 2011. “Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume.” Cont. Shelf Res. 31 (10): S50–S63. https://doi.org/10.1016/j.csr.2010.04.002.
Soulsby, R., A. Manning, J. Spearman, and R. Whitehouse. 2013. “Settling velocity and mass settling flux of flocculated estuarine sediments.” Mar. Geol. 339 (May): 1–12. https://doi.org/10.1016/j.margeo.2013.04.006.
Strom, K., and A. Keyvani. 2016. “Flocculation in a decaying shear field and its implications for mud removal in near-field river mouth discharges.” J. Geophys. Res. Oceans 121 (4): 2142–2162. https://doi.org/10.1002/2015JC011169.
Sukhodolov, A., M. Thiele, and H. Bungartz. 1998. “Turbulence structure in a river reach with sand bed.” Water Resour. Res. 34 (5): 1317–1334. https://doi.org/10.1029/98WR00269.
Sukhodolov, A. N., J. J. Fedele, and B. L. Rhoads. 2006. “Structure of flow over alluvial bedforms: An experiment on linking field and laboratory methods.” Earth Surf. Processes Landforms 31 (10): 1292–1310. https://doi.org/10.1002/esp.1330.
Van Rijn, L. C. 2007a. “Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport.” J. Hydraul. Eng. 133 (6): 649–667. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649).
Van Rijn, L. C. 2007b. “Unified view of sediment transport by currents and waves. II: Suspended transport.” J. Hydraul. Eng. 133 (6): 668–689. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668).
Venditti, J., M. Church, M. Attard, and D. Haught. 2016. “Use of ADCPs for suspended sediment transport monitoring: An empirical approach.” Water Resour. Res. 52 (4): 2715–2736. https://doi.org/10.1002/2015WR017348.
Venditti, J. G., and B. O. Bauer. 2005. “Turbulent flow over a dune: Green River, Colorado.” Earth Surf. Processes Landforms 30 (3): 289–304. https://doi.org/10.1002/esp.1142.
Viers, J., B. Dupré, and J. Gaillardet. 2009. “Chemical composition of suspended sediments in world rivers: New insights from a new database.” Sci. Total Environ. 407 (2): 853–868. https://doi.org/10.1016/j.scitotenv.2008.09.053.
Walling, D., P. Owens, J. Carter, G. Leeks, S. Lewis, A. Meharg, and J. Wright. 2003. “Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems.” Appl. Geochem. 18 (2): 195–220. https://doi.org/10.1016/S0883-2927(02)00121-X.
Wang, X.-Q., Z.-C. Liu, J.-L. Miao, and N. Zuo. 2015. “Relationship between nutrient pollutants and suspended sediments in upper reaches of Yangtze River.” Water Sci. Eng. 8 (2): 121–126. https://doi.org/10.1016/j.wse.2015.04.003.
Winterwerp, J., A. Manning, C. Martens, T. De Mulder, and J. Vanlede. 2006. “A heuristic formula for turbulence-induced flocculation of cohesive sediment.” Estuarine Coastal Shelf Sci. 68 (1–2): 195–207. https://doi.org/10.1016/j.ecss.2006.02.003.
Woodward, J., and D. Walling. 2007. “Composite suspended sediment particles in river systems: Their incidence, dynamics and physical characteristics.” Hydrol. Processes 21 (26): 3601–3614. https://doi.org/10.1002/hyp.6586.
Wu, W., and S. S. Wang. 1999. “Movable bed roughness in alluvial rivers.” J. Hydraul. Eng. 125 (12): 1309–1312. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1309).
Yáñez-Arancibia, A., J. W. Day, and B. Currie-Alder. 2009. “Functioning of the Grijalva-Usumacinta river delta, Mexico: Challenges for coastal management.” Ocean Yearb. Online 23 (1): 473–501. https://doi.org/10.1163/22116001-90000205.
Yáñez-Arancibia, A., A. L. Lara-Domínguez, P. Sánchez-Gil, and J. W. Day. 2007. “Estuary-sea ecological interactions: A theoretical framework for the management of coastal environment.” In Environmental analysis of the Gulf of Mexico, 271–301. Corpus Christi, TX: Harte Research Institute for Gulf of Mexico Studies.
Yen, B. C. 2002. “Open channel flow resistance.” J. Hydraul. Eng. 128 (1): 20–39. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20).
Zhang, J.-Z., L. Guo, and C. J. Fischer. 2010. “Abundance and chemical speciation of phosphorus in sediments of the Mackenzie River Delta, the Chukchi Sea and the Bering Sea: Importance of detrital apatite.” Aquat. Geochem. 16 (3): 353–371. https://doi.org/10.1007/s10498-009-9081-4.
Zhang, W., D. P. Swaney, B. Hong, and R. W. Howarth. 2017. “Anthropogenic phosphorus inputs to a river basin and their impacts on phosphorus fluxes along its upstream-downstream continuum.” J. Geophys. Res. Biogeosci. 122 (12): 3273–3287. https://doi.org/10.1002/2017JG004004.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 147Issue 12December 2021

History

Received: May 15, 2020
Accepted: Jul 13, 2021
Published online: Sep 28, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Toluca 50200, México (corresponding author). ORCID: https://orcid.org/0000-0001-8904-7638. Email: [email protected]
Juan Antonio Garcia–Aragon https://orcid.org/0000-0003-0427-2575
Researcher, Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Toluca 50200, México. ORCID: https://orcid.org/0000-0003-0427-2575
Maria Mercedes Castillo–Uzcanga
Researcher, Departamento de Ciencias de la sustentabilidad, El Colegio de la Frontera Sur, Carretera Villahermosa-Reforma Km 15.5, Villahermosa 86280, México.
Researcher, Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco Km 14.5, Toluca 50200, México. ORCID: https://orcid.org/0000-0002-0075-6997

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Biomineral Flocculation of Kaolinite and Microalgae: Laboratory Experiments and Stochastic Modeling, Journal of Geophysical Research: Oceans, 10.1029/2022JC018591, 127, 11, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share