Abstract

The validation of numerical models for large lakes is difficult because of sparse field observations. In this study, a Froude-Rossby scaled physical model of Lake Ontario, North America, is used to support numerical simulations. Experimental data are consistent with available field observations and provide a more comprehensive view of lake-wide features that include, in the absence of wind, strong eastward flows along both northern and southern shorelines, a large cyclonic gyre in the Rochester basin, and smaller midlake cyclonic eddies. With a west wind (most common direction), a well-defined westward flow in the middle of the lake separates an anticyclonic gyre in the north from a cyclonic gyre in the south. A review of numerical models shows that most models can capture general features of these observed patterns but do not always reproduce all details, especially in nearshore regions. A numerical model based on the Environmental Fluid Dynamics Code (EFDC), with a 200-m resolution in nearshore regions, is developed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All numerical results that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was implemented while the authors were funded by the US Geological Survey, CESU Grant [G15AS00064]. The authors acknowledge support from the University at Buffalo’s Center for Undergraduate Research and Creative Activities and machinists for the consultation on the design and manufacture of several physical elements that were necessary for the physical modeling parts of this study. We would like to thank Jeremy Grush from LimnoTech, Ann Arbor, MI, for generating the horizontal grid. We would like to acknowledge the University at Buffalo Center of Computational Research for providing computational clusters for numerical simulations.

References

Althaus, J. M. I. J., G. D. Cesare, and A. J. Schleiss. 2015. “Sediment evacuation from reservoirs through intakes by jet-induced flow.” J. Hydraul. Eng. 141 (2): 04014078. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000970.
Arifin, R. R., S. C. James, D. A. Pitts, D. A. de Alwis Pitts, A. F. Hamlet, A. Sharma, and H. J. Fernando. 2016. “Simulating the thermal behavior in Lake Ontario using EFDC.” J. Great Lakes Res. 42 (3): 511–523. https://doi.org/10.1016/j.jglr.2016.03.011.
Atkinson, J. F., W. J. Edwards, and Y. Feng. 2012. “Physical measurements and nearshore nested hydrodynamic modeling for Lake Ontario near-shore nutrient study.” Supplement, J. Great Lakes Res. 38 (S4): 184–193. https://doi.org/10.1016/j.jglr.2012.07.003.
Atkinson, J. F., G. Lin, and M. Joshi. 1994. “Physical model of Niagara River discharge.” J. Great Lakes Res. 20 (3): 583–589. https://doi.org/10.1016/S0380-1330(94)71174-6.
Bai, X., J. Wang, D. J. Schwab, Y. Yang, L. Luo, G. A. Leshkevich, and S. Liu. 2013. “Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM.” Ocean Model. 65 (May): 40–63. https://doi.org/10.1016/j.ocemod.2013.02.003.
Beletsky, D., N. Hawley, and R. Y. Rao. 2013. “Modeling summer circulation and thermal structure of Lake Erie.” J. Geophys. Res. Oceans 18 (11): 6238–6252. https://doi.org/10.1002/2013JC008854.
Beletsky, D., J. H. Saylor, and D. J. Schwab. 1999. “Mean circulation in the Great Lakes.” J. Great Lakes Res. 25 (1): 78–93. https://doi.org/10.1016/S0380-1330(99)70718-5.
Bennett, J. R. 1977. “A three-dimensional model of Lake Ontario’s summer circulation: I. Comparison with observations.” J. Phys. Oceanogr. 7 (4): 591–601. https://doi.org/10.1175/1520-0485(1977)007%3C0591:ATDMOL%3E2.0.CO;2.
Boyce, F. M., M. A. Donelan, P. F. Hamblin, C. Murthy, and T. Simons. 1989. “Thermal structure and circulation in the Great Lakes.” Atmos. Ocean 27 (4): 607–642. https://doi.org/10.1080/07055900.1989.9649358.
Bye, J. 1965. “Wind-driven circulation in unstratified lakes.” Limnol. Oceanogr. 10 (3): 451–458. https://doi.org/10.4319/lo.1965.10.3.0451.
Castillo, G. L., M. J. Carrillo, and A. M. Álvarez. 2015. “Complementary methods for determining the sedimentation and flushing in a reservoir.” J. Hydraul. Eng. 141 (11): 05015004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001050.
Chapra, S. C., and D. M. Dolan. 2012. “Great Lakes total phosphorus revisited: 2. Mass balance modeling.” J. Great Lakes Res. 38 (4): 741–754. https://doi.org/10.1016/j.jglr.2012.10.002.
Cheng, R. T., T. M. Powell, and T. M. Dillon. 1976. “Numerical models of wind-driven circulation in lakes.” Appl. Math. Modell. 1 (3): 141–159. https://doi.org/10.1016/0307-904X(76)90035-4.
Csanady, G. T. 1975. “Hydrodynamics of large lakes.” Annu. Rev. Fluid Mech. 7 (1): 357–386. https://doi.org/10.1146/annurev.fl.07.010175.002041.
Dolan, D. M., and S. C. Chapra. 2012. “Great Lakes total phosphorus revisited: 1. Loading analysis and update (1994–2008).” J. Great Lakes Res. 38 (4): 730–740. https://doi.org/10.1016/j.jglr.2012.10.001.
Emery, K. O., and G. T. Csanady. 1973. “Surface circulation of lakes and nearly land-locked seas.” Proc. Natl. Acad. Sci. U.S.A. 70: 93–97. https://doi.org/10.1073/pnas.70.1.93.
Falconer, R. A., D. G. George, and P. Hall. 1991. “Three-dimensional numerical modelling of wind-driven circulation in a shallow homogeneous lake.” J. Hydrol. 124 (1–2): 59–79. https://doi.org/10.1016/0022-1694(91)90006-4.
Galperin, B., L. H. Kantha, S. Hassid, A. Rosati, B. Galperin, L. H. Kantha, and A. Rosati. 1988. “A quasi-equilibrium turbulent energy model for geophysical flows.” J. Atmos. Sci. 45 (1): 55–62. https://doi.org/10.1175/1520-0469(1988)045%3C0055:AQETEM%3E2.0.CO;2.
GLCFS (Great Lakes Coastal Forecasting System). 2019. “Great lakes coastal forecasting system: Next generation.” Accessed February 14, 2019. https://www.glerl.noaa.gov/res/Programs/ipemf/GLCFS_nextgen.html.
Güney, S. M., G. Tayfur, G. Bombar, and S. Elci. 2014. “Distorted physical model to study sudden partial dam break flows in an urban area.” J. Hydraul. Eng. 140 (11): 05014006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000926.
Hall, E. 2008. “Hydrodynamic modelling of Lake Ontario.” M.Sc. dissertation, Dept. of Civil Engineering, Queen’s Univ. Kingston.
Hamrick, J. M. 2007. “ User’s manual for the environmental fluid dynamics computer code.” Accessed September 23, 2017. https://www.epa.gov/ceam/environmental-fluid-dynamics-code-efdc.
Holeck, K. T., J. M. Watkins, E. L. Mills, O. Johannsson, S. Mil-lard, V. Richardson, and K. Bowen. 2008. “Spatial and long- term temporal assessment of Lake Ontario water clarity, nutrients, chlorophyll a, and zooplankton.” Aquat. Ecosyst. Health Manage. 11 (4): 377–391. https://doi.org/10.1080/14634980802515302.
Howell, E. T., and A. Dove. 2017. “Chronic nutrient loading from Lake Erie affecting water quality and nuisance algae on the St. Catharines shores of Lake Ontario.” J. Great Lakes Res. 43 (5): 899–915. https://doi.org/10.1016/j.jglr.2017.06.006.
Huang, A., Y. R. Rao, and Y. Lu. 2010a. “Evaluation of a 3-D hydrodynamic model and atmospheric forecast forcing using observations in Lake Ontario.” J. Geophys. Res. 115: C02004. https://doi.org/10.1029/2009JC005601.
Huang, A., Y. R. Rao, Y. Lu, and J. Zhao. 2010b. “Hydrodynamic modeling of Lake Ontario: An intercomparison of three models.” J. Geophys. Res. Oceans 115 (12): 1–16. https://doi.org/10.1029/2010JC006269.
Hui, Y., J. F. Atkinson, and Z. Zhu. 2018. “Mass balance analysis and calculation of wind effects on heat fluxes and water temperature in a large lake.” J. Great Lakes Res. 44 (6): 1293–1305. https://doi.org/10.1016/j.jglr.2018.09.003.
Ji, Z. 2008. Hydrodynamics and water quality: Modeling rivers, lakes, and estuaries. Hoboken, NJ: Wiley.
Karamigolbaghi, M., Y. Feng, J. F. Atkinson, E. M. Verhamme, and G. L. Boyer. 2019. “Circulation and mixing in Sodus Bay due to water exchange with Lake Ontario.” J. Great Lakes Res. 45 (6): 1090–1102. https://doi.org/10.1016/j.jglr.2019.09.020.
Leon, L. F., R. E. H. Smith, S. Y. Malkin, D. Depew, M. R. Hipsey, J. P. Antenucci, S. N. Higgins, R. E. Hecky, and R. Y. Rao. 2012. “Nested 3D modeling of the spatial dynamics of nutrients and phytoplankton in a Lake Ontario nearshore zone.” Supplement, J. Great Lakes Res. 38 (S4): 171–183. https://doi.org/10.1016/j.jglr.2012.02.006.
Li, C., K. Kiser, and R. Rumer. 1975. “Physical model study of circulation patterns in Lake Ontario.” Limnol. Oceanogr. 20 (3): 323–337. https://doi.org/10.4319/lo.1975.20.3.0323.
Lien, S., and J. Hoopes. 1978. “Wind-driven, steady flows in Lake Superior.” Limnol. Oceanogr. 23 (1): 91–103. https://doi.org/10.4319/lo.1978.23.1.0091.
Lin, G., and J. F. Atkinson. 2000. “Coriolis effects on turbulence structures in free surface jets.” Dyn. Atmos. Oceans 31 (1–4): 247–269. https://doi.org/10.1016/S0377-0265(99)00036-6.
Makarewicz, J. C., T. W. Lewis, C. M. Pennuto, J. F. Atkinson, W. J. Edwards, G. L. Boyer, E. T. Howell, and G. Thomas. 2012. “Physical and chemical characteristics of the nearshore zone of Lake Ontario.” Supplement, J. Great Lakes Res. 38 (S4): 21–31. https://doi.org/10.1016/j.jglr.2011.11.013.
Mao, M., and M. Xia. 2017. “Dynamics of wave–current–surge interactions in Lake Michigan: A model comparison.” Ocean Modell. 110 (Oct): 1–20. https://doi.org/10.1016/j.ocemod.2016.12.007.
Marmorino, G. O. 1978. “Inertial currents in Lake Ontario, Winter 1972-73 (lFYGL).” J. Phys. Oceanogr. 8 (6): 1104–1120. https://doi.org/10.1175/1520-0485(1978)008%3C1104:ICILOW%3E2.0.CO;2.
Mcculloch, A. W. J. 1973. “The international field year for the Great Lakes.” Hydrol. Sci. J. 18 (3): 367–373. https://doi.org/10.1080/02626667309494047.
Meijering, E., O. Dzyubachyk, and I. Smal. 2012. “Chapter nine—Methods for cell and particle tracking.” Methods Enzymol. 504: 183–200. https://doi.org/10.1016/B978-0-12-391857-4.00009-4.
Michalak, A. M., et al. 2013. “Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions.” Proc. Natl. Acad. Sci. 110 (16): 6448–6452. https://doi.org/10.1073/pnas.1216006110.
Mills, E. L., et al. 2003. “Lake Ontario: Food web dynamics in a changing ecosystem (1970–2000).” Can. J. Fish. Aquat. Sci. 60 (4): 471–490. https://doi.org/10.1139/f03-033.
Nekouee, N., P. J. W. Roberts, D. J. Schwab, and M. J. McCormick. 2013. “Classification of buoyant river plumes from large aspect ratio channels.” J. Hydraul. Eng. 139 (3): 296–309. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000651.
NOAA (National Oceanic and Atmospheric Administration). 2018. “About our great lakes: Lake by lake profiles.” Accessed April 4, 2018. https://www.glerl.noaa.gov/education/ourlakes/lakes.html.
Pal, B. K., R. Murthy, and R. E. Thomson. 1998. “Lagrangian measurements in Lake Ontario.” J. Great Lakes Res. 24 (3): 681–697. https://doi.org/10.1016/S0380-1330(98)70854-8.
Paturi, S., L. Boegman, D. Bouffard, and R. Y. Rao. 2015. “Three-dimensional simulation of Lake Ontario north-shore hydrodynamics and contaminant transport.” J. Hydraul. Eng. 141 (3): 04014082. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000963.
Pickett, R. L. 1976. “Lake Ontario circulation in November.” Limnol. Oceanogr. 21 (4): 608–611. https://doi.org/10.4319/lo.1976.21.4.0608.
Pickett, R. L. 1977. “The observed winter circulation of lake Ontario.” J. Phys. Oceanogr. 7 (1): 152–156. https://doi.org/10.1175/1520-0485(1977)007%3C0152:TOWCOL%3E2.0.CO;2.
Prakash, S., J. F. Atkinson, and M. L. Green. 2007. “A semi-Lagrangian study of circulation and transport in Lake Ontario.” J. Great Lakes Res. 33 (4): 774–790. https://doi.org/10.3394/0380-1330(2007)33[774:ASSOCA]2.0.CO;2.
Quinn, F. H. 1992. “Hydraulic residence times for the Laurentian great lakes.” J. Great Lakes Res. 18 (1): 22–28. https://doi.org/10.1016/S0380-1330(92)71271-4.
Richardson, V., J. G. Warren, M. Nielson, and J. P. Horvatin. 2012. “Cooperative science and monitoring initiative (CSMI) for the Great Lakes—Lake Ontario 2008.” J. Great Lakes Res. 38 (4): 10–13. https://doi.org/10.1016/j.jglr.2012.07.005.
Rubin, H., and J. F. Atkinson. 2002. “Environmental fluid mechanics.” Appl. Mech. Rev. 55 (3): 59–60. https://doi.org/10.1115/1.1470688.
Rumer, R. R., and L. Robson. 1968. “Circulation studies in a rotating model of Lake Erie.” In Proc., 11th Conf. Great Lakes Research. Buffalo, NY: State Univ. of New York at Buffalo.
Saylor, J. H., et al. 1981. “Water movements.” In IFYGL—The international field year for the great lakes, edited by E. J. Aubert and T. L. Richards, 247–324. Ann Arbor, MI: NOAA Great Lakes Environmental Research Laboratory, US Department of Commerce.
Schwab, D. J. 1992. “A review of hydrodynamic modeling in the Great Lakes from 1950–1990 and prospects for the 1990’s.” In Chemical dynamics in fresh water ecosystems. New York: A. F. Lewis.
Shen, H., and I. K. Tsanis. 1995. “A three-dimensional nested hydrodynamic/pollutant transport simulation model for the nearshore areas of Lake Ontario.” J. Great Lakes Res. 21 (2): 161–177. https://doi.org/10.1016/S0380-1330(95)71029-2.
Simons, T. J. 1974. “Verification of numerical models of Lake Ontario I. Circulation in spring and early summer.” J. Phys. Oceanogr. 4 (4): 507–523. https://doi.org/10.1175/1520-0485(1974)004%3C0507:VONMOL%3E2.0.CO;2.
Simons, T. J. 1975. “Verification of numerical models of Lake Ontario II. Stratified circulations and temperature changes.” J. Phys. Oceanogr. 5 (1): 98–110. https://doi.org/10.1175/1520-0485(1975)005%3C0098:VONMOL%3E2.0.CO;2.
Simons, T. J., C. R. Murthy, and J. E. Campbell. 1985. “Winter circulation in Lake Ontario.” J. Great Lakes Res. 11 (4): 423–433. https://doi.org/10.1016/S0380-1330(85)71787-X.
Stewart, J. T., L. Rudstam, J. Watkins, T. B. Johnson, B. Weidel, and A. M. Koopse. 2016. “Research needs to better understand Lake Ontario ecosystem function: A workshop summary.” J. Great Lakes Res. 42 (1): 1–5. https://doi.org/10.1016/j.jglr.2015.10.017.
Tetra-Tech, Inc. 2002. “User’s manual for environmental fluid dynamics code, hydro version (EFDC-hydro), release 1.00.” Accessed September 3, 2017. https://woodshole.er.usgs.gov/opeations/modeling/seagrid/tutorial.html.
Wu, J. 1983. “Sea-surface drift currents induced by wind and waves.” J. Phys. Oceanogr. 13 (8): 1441–1451. https://doi.org/10.1175/1520-0485(1983)013%3C1441:SSDCIB%3E2.0.CO;2.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 147Issue 8August 2021

History

Received: Feb 19, 2020
Accepted: Mar 20, 2021
Published online: Jun 8, 2021
Published in print: Aug 1, 2021
Discussion open until: Nov 8, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Civil, Structural and Environmental Engineering, Univ. at Buffalo, SUNY, 204 Jarvis Hall, Buffalo, NY 14260 (corresponding author). ORCID: https://orcid.org/0000-0002-2227-1384. Email: [email protected]
Student, Dept. of Civil, Structural and Environmental Engineering, Univ. at Buffalo, SUNY, 204 Jarvis Hall, Buffalo, NY 14260; Postdoctoral Research Scientist, Dept. of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305. ORCID: https://orcid.org/0000-0002-6690-4251. Email: [email protected]
Joseph F. Atkinson, Ph.D. [email protected]
P.E.
Professor and Chair, Dept. of Civil, Structural and Environmental Engineering, Univ. at Buffalo, SUNY, 212 Ketter Hall, Buffalo, NY 14260. Email: [email protected]
Assistant Professor, Dept. of Civil, Structural and Environmental Engineering, Univ. at Buffalo, SUNY, 207 Jarvis Hall, Buffalo, NY 14260. ORCID: https://orcid.org/0000-0002-7711-7632. Email: [email protected]
Yanping Feng, Ph.D. [email protected]
Dept. of Civil, Structural and Environmental Engineering, Univ. at Buffalo, SUNY, 204 Jarvis Hall, Buffalo, NY 14260. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Impacts of Climate Change on Hydrodynamics and Thermal Regime of Green Bay, Lake Michigan, World Environmental and Water Resources Congress 2024, 10.1061/9780784485477.013, (143-153), (2024).
  • Impacts of Tributary Inflows on the Circulation and Thermal Regime of the Green Bay Estuary of Lake Michigan, Journal of Hydraulic Engineering, 10.1061/JHEND8.HYENG-13239, 149, 5, (2023).
  • Modeling River Plume Dynamics in a Large Wind-Forced Embayment, Journal of Hydraulic Engineering, 10.1061/JHEND8.HYENG-13238, 149, 4, (2023).
  • Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva, Geoscientific Model Development, 10.5194/gmd-15-8785-2022, 15, 23, (8785-8807), (2022).
  • Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva, Remote Sensing, 10.3390/rs14194967, 14, 19, (4967), (2022).
  • Marine environment numerical simulation of morphological planning of land reclamation, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 10.1177/14750902221079478, 236, 4, (996-1011), (2022).
  • Impacts of phosphorus loading temporal pattern on benthic algae growth in Lake Ontario, Journal of Hydrology, 10.1016/j.jhydrol.2021.126449, 598, (126449), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share