Technical Papers
Oct 31, 2018

Modeling Subaqueous and Subaerial Muddy Debris Flows

Publication: Journal of Hydraulic Engineering
Volume 145, Issue 1

Abstract

Debris flows are notorious geohazards existing in both subaerial and subaqueous environments. They may cause catastrophic destructions to adjacent life and properties along their overriding path. As such, predictions of their movement are critical to future geohazard mitigations, and there is a need to develop an effective numerical model to achieve this purpose. In this paper, a two-dimensional depth-averaged numerical model is presented to simulate the movement of subaqueous and subaerial muddy debris flows. The Herschel-Bulkley rheological model is used to describe the rheology of debris flow. The conservation equations of mass and momentum in conservative forms are numerically solved using an explicit finite difference scheme. The model is applied to a series of one-dimensional laboratory experiments in subaerial environments. The model is also applied to a field setting within the Na Kika Basin, Gulf of Mexico. Modeling results of deposit thickness of debris flow agree with those laboratory and field observations. Furthermore, the model is applied to two synthetic two-dimensional field conditions, one with a uniform slope and the other with a sinuous canyon. Sensitivity analyses are performed to explore the relative importance of yield stress, dynamic viscosity, bottom slope, initial failure height, and initial failure shape for runout distances of debris flow. For the application with a sinuous canyon, two different dimensions of canyon are used to demonstrate possible deposition patterns of debris flow.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research work was primarily supported by the US Army Research Office (Grant No. W911NF1310128) and the Fugro Inc. (Grant No. 636567). Partial financial support was also provided by the Coastal Hazards Center of Excellence and the Institute for Multimodal Transportation at Jackson State University and are greatly appreciated.

References

Beguería, S., T. W. J. Van Asch, J. P. Malet, and S. Gröndahl. 2009. “A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain.” Nat. Hazards Earth Syst. Sci. 9 (6): 1897–1909. https://doi.org/10.5194/nhess-9-1897-2009.
Bjerrum, L. 1971. “Subaqueous slope failure in Norwegian Fjords.” Norwegian: Geotechnical institute (NGI) publication no. 88, 1–8. Oslo, Norway: Geotechnical Institute.
Bruschi, R., S. Bughi, M. Spinazzè, E. Torselletti, and L. Vitali. 2006. “Impact of debris flows and turbidity currents on seafloor structures.” Norw. J. Geol. 86 (3): 317–337.
Canals, M., et al. 2004. “Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: Case studies from the COSTA project.” Mar. Geol. 213 (1–4): 9–72. https://doi.org/10.1016/j.margeo.2004.10.001.
Courant, R., K. Friedrichs, and H. Lewy. 1928. “Über die partiellen Differenzengleich-ungen der mathematischen Physik” [On the partial differential equations of mathematical physics]. Mathematische Annalen 100 (1): 32–74. https://doi.org/10.1007/BF01448839.
Das, H. S. 2012. Mass gravity flow analyses (Gorgon expansion project). Rep. to Fugro Corporation. Houston: Fugro Geoconsulting.
De Blasio, F. V., A. Elverhøi, D. Issler, C. B. Harbitz, P. Bryn, and R. Lien. 2004a. “Flow models of natural debris flows originating from over consolidated clay materials.” Mar. Geol. 213 (1–4): 439–455. https://doi.org/10.1016/j.margeo.2004.10.018.
De Blasio, F. V., A. Elverhøi, D. Issler, C. B. Harbitz, P. Bryn, and R. Lien. 2005. “On the dynamics of subaqueous clay rich gravity mass flows-the giant Storegga slide, Norway.” Mar. Petrol. Geol. 22 (1–2): 179–186. https://doi.org/10.1016/j.marpetgeo.2004.10.014.
De Blasio, F. V., L. Engvik, C. B. Harbitz, and A. Elverhøi. 2004b. “Hydroplaning and submarine debris flows.” J. Geophys. Res. 109 (C1): C01002. https://doi.org/10.1029/2002JC001714.
Denlinger, R. P., and R. M. Iverson. 2001. “Flow of variably fluidized granular masses across three-dimensional terrain. 2: Numerical predictions and experimental tests.” J. Geophys. Res. 106 (B1): 553–566. https://doi.org/10.1029/2000JB900330.
Elverhøi, A., C. B. Harbitz, P. Dimakis, D. Mohrig, J. Marr, and G. Parker. 2000. “On the dynamics of subaqueous debris flows.” Oceanography 13 (3): 109–117. https://doi.org/10.5670/oceanog.2000.20.
Fine, I. V., A. B. Rabinovich, B. D. Bornhold, R. E. Thomson, and E. A. Kulikov. 2005. “The grand banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modeling.” Mar. Geol. 215 (1–2): 45–57. https://doi.org/10.1016/j.margeo.2004.11.007.
Gauer, P., A. Elverhøi, D. Issler, and F. V. De Blasio. 2006. “On numerical simulations of subaqueous slides: Back-calculations of laboratory experiments.” Norw. J. Geol. 86 (3): 295–300.
Gauer, P., T. J. Kvalstad, C. F. Forsberg, P. Bryn, and K. Berg. 2005. “The last phase of the Storegga Slide: Simulation of retrogressive slide dynamics and comparison with slide-scar morphology.” Mar. Pet. Geol. 22 (1–2): 171–178. https://doi.org/10.1016/j.marpetgeo.2004.10.004.
Hampton, M. A. 1972. “The role of subaqueous debris flow in generating turbidity currents.” J. Sediment. Petrol. 42 (4): 775–793. https://doi.org/10.1306/74D7262B-2B21-11D7-8648000102C1865D.
Hampton, M. A., and J. Locat. 1996. “Submarine landslides.” Rev. Geophys. 34 (1): 33–59. https://doi.org/10.1029/95RG03287.
Han, Z., G. Chen, Y. Li, C. Tang, L. Xu, Y. He, X. Hang, and W. Wang. 2015. “Numerical simulation of debris-flow behavior incorporating a dynamic method for estimating the entrainment.” Eng. Geol. 190: 52–64. https://doi.org/10.1016/j.enggeo.2015.02.009.
Herschel, W. H., and R. Bulkley. 1926. “Konsistenzmessungen von Gummi-Benzollösungen” [Measuring the consistency of rubber benzene solution]. Kolloid Zeitschrift 39 (4): 291–300. https://doi.org/10.1007/BF01432034.
Huang, X., and M. H. García. 1997. “A perturbation solution for Bingham-plastic mudflows.” J. Hydraul. Eng. 123 (11): 986–994. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:11(986).
Huang, X., and M. H. García. 1998. “A Herschel-Bulkley model for mud flow down a slope.” J. Fluid Mech. 374: 305–333. https://doi.org/10.1017/S0022112098002845.
Huang, X., and M. H. García. 1999. “Modelling of non-hydroplaning mudflows on continental slopes.” Mar. Geol. 154 (1–4): 131–142. https://doi.org/10.1016/S0025-3227(98)00108-X.
Hungr, O. 1995. “A model for the runout analysis of rapid flow slides, debris flows, and avalanches.” Can. Geotech. J. 32 (4): 610–623. https://doi.org/10.1139/t95-063.
Ilstad, T., F. V. De Blasio, A. Elverhøi, C. B. Harbitz, L. Engvik, O. Longva, and J. G. Marr. 2004a. “On the frontal dynamics and morphology of submarine debris flows.” Mar. Geol. 213 (1–4): 481–497. https://doi.org/10.1016/j.margeo.2004.10.020.
Ilstad, T., A. Elverhøi, D. Issler, and J. G. Marr. 2004b. “Subaqueous debris flow behavior and its dependence on the sand/clay ratio: A laboratory study using particle tracking.” Mar. Geol. 213 (1–4): 415–438. https://doi.org/10.1016/j.margeo.2004.10.017.
Ilstad, T., J. G. Marr, A. Elverhøi, and C. B. Harbitz. 2004c. “Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress.” Mar. Geol. 213 (1–4): 403–414. https://doi.org/10.1016/j.margeo.2004.10.016.
Imran, J., G. Parker, J. Locat, and H. Lee. 2001. “1D numerical model of muddy subaqueous and subaerial debris flows.” J. Hydraul. Eng. 27 (6): 717–729. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(959).
Ingarfield, S., M. Sfouni-Grigoriadou, C. de Brier, and B. Spinewine. 2016. “The importance of soil characterization in modelling sediment density flows.” In Proc., Offshore Technology Conf. Houston: Offshore Technology Conference.
Iverson, R. M., and R. P. Denlinger. 2001. “Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory.” J. Geophys. Res. 106 (B1): 537–552. https://doi.org/10.1029/2000JB900329.
Jiang, L., and P. H. Le Blond. 1992. “The coupling of a submarine slide and the surface waves which it generates.” J. Geophys. Res. 97 (C8): 12731–12744. https://doi.org/10.1029/92JC00912.
Jiang, L., and P. H. Le Blond. 1993. “Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates.” J. Geophys. Res. 98 (C6): 10303–10317. https://doi.org/10.1029/93JC00393.
Jiang, L., and P. H. Le Blond. 1994. “Three-dimensional modeling of tsunami generation due to a submarine mudslide.” J. Phys. Oceanogr. 24 (3): 559–572. https://doi.org/10.1175/1520-0485(1994)024%3C0559:TDMOTG%3E2.0.CO;2.
Lee, H. J., J. Locat, P. Desgagnes, J. D. Parsons, B. G. McAdoo, D. L. Orange, P. Puig, F. L. Wong, P. Dartnell, and E. Boulanger. 2007. “Submarine mass movements on continental margins.” In Continental margin sedimentation: From sediment transport to sequence stratigraphy, edited by C. A. Nittrouer, J. A. Austin, M. E. Field, J. H. Kravitz, J. P. M. Syvitski, and P. L. Wiberg. Oxford: Blackwell Publishing.
Marr, J. G., A. Elverhoi, C. Harbitz, J. Imran, and P. Harff. 2002. “Numerical simulation of mud-rich subaqueous debris flows on the glacially active margins of the Svalbard-Barents Sea.” Mar. Geol. 188 (3–4): 351–364. https://doi.org/10.1016/S0025-3227(02)00310-9.
Marr, J. G., P. A. Harff, G. Shanmugam, and G. Parker. 2001. “Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures.” Geol. Soc. Am. Bull. 113 (11): 1377–1386. https://doi.org/10.1130/0016-7606(2001)113%3C1377:EOSSGF%3E2.0.CO;2.
Masson, D. G., C. B. Harbitz, R. B. Wynn, G. Pedersen, and F. Løvholt. 2006. “Submarine landslides: Processes, triggers and hazard prediction.” Philos. Trans. R. Soc. London A 364 (1845): 2009–2039. https://doi.org/10.1098/rsta.2006.1810.
McDougall, S., and O. Hungr. 2004. “A model for the analysis of rapid landslide motion across three-dimensional terrain.” Can. Geotech. J. 41 (6): 1084–1097. https://doi.org/10.1139/t04-052.
Mienert, J. 2004. “COSTA-continental slope stability: Major aims and topics.” Mar. Geol. 213 (1–4): 1–7. https://doi.org/10.1016/j.margeo.2004.10.025.
Mohrig, D., C. Ellis, G. Parker, K. X. Whipple, and M. Hondzo. 1998. “Hydroplaning of subaqueous debris flows.” Geol. Soc. Am. Bull. 110 (3): 387–394. https://doi.org/10.1130/0016-7606(1998)110%3C0387:HOSDF%3E2.3.CO;2.
Mohrig, D., A. Elverhøi, and G. Parker. 1999. “Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits.” Mar. Geol. 154 (1–4): 117–129. https://doi.org/10.1016/S0025-3227(98)00107-8.
Mohrig, D., and J. G. Marr. 2003. “Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments.” Mar. Petrol. Geol. 20 (6–8): 883–899. https://doi.org/10.1016/j.marpetgeo.2003.03.002.
Niedoroda, A. W., C. W. Reed, H. S. Das, J. L. Hatchett, and A. B. Perlet. 2006. “Controls of the behavior of marine debris flows.” Norw. J. Geol. 86 (4): 265–274.
Nittrouer, C. A., and J. H. Kravitz. 1996. “STRATAFORM: A program to study the creation and interpretation of sedimentary strata on continental margins.” Oceanography 9 (3): 146–152. https://doi.org/10.5670/oceanog.1996.01.
Parsons, J. D., C. T. Friedrichs, P. A. Traykovski, D. Mohrig, J. Imran, J. P. M. Syvitski, G. Parker, P. Puig, J. L. Buttles, and M. H. García. 2007. “The mechanics of marine sediment gravity flows.” In Continental margin sedimentation: From sediment transport to sequence stratigraphy, edited by C. A. Nittrouer, J. A. Austin, M. E. Field, J. H. Kravitz, J. P. M. Syvitski, and P. L. Wiberg. Oxford: Blackwell Publishing.
Pastor, M., M. Quecedo, E. Gonzalez, M. I. Herreros, J. A. F. Merodo, and P. Mira. 2004. “Simple approximation to bottom friction for Bingham fluid depth integrated models.” J. Hydraul. Eng. 130 (2): 149–155. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(149).
Pirmez, C., J. Marr, C. Shipp, and F. Kopp. 2004. “Observations and numerical modeling of debris flows in the Na Kika Basin, Gulf of Mexico.” In Proc., Offshore Technology Conf. Houston: Offshore Technology Conference.
Remaître, A., J. Malet, O. Maquaire, C. Ancey, and J. Locat. 2005. “Flow behavior and run out modelling of a complex debris flow in a clay-shale basin.” Earth Surf. Process. Landforms 30 (4): 479–488. https://doi.org/10.1002/esp.1162.
Rzadkiewicz, S. A., C. Mariotti, and P. Heinrich. 1997. “Numerical simulation of submarine landslides and their hydraulic effects.” J. Waterw. Port Coastal Ocean Eng. 123 (4): 149–157. https://doi.org/10.1061/(ASCE)0733-950X(1997)123:4(149).
Spinewine, B., D. Rensonnet, T. De Thier, M. Clare, G. Unterseh, and H. Capart. 2013. “Numerical modeling of runout and velocity for slide-induced submarine density flows—A building block of integrated geohazards assessment for deepwater developments.” In Proc., Offshore Technology Conf. Houston: Offshore Technology Conference.
Talling, P. J., et al. 2007. “Onset of submarine debris flow deposition far from original giant landslide.” Nature 450 (7169): 541–544. https://doi.org/10.1038/nature06313.
Talling, P. J. 2014. “On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings.” Mar. Geol. 352: 155–182. https://doi.org/10.1016/j.margeo.2014.02.006.
Tappin, D. R. 2010. “Submarine mass failures as tsunami sources: Their climate control.” Philos. Trans. R. Soc. London A 368 (1919): 2417–2434. https://doi.org/10.1098/rsta.2010.0079.
Toniolo, H., P. Harff, J. Marr, C. Paola, and G. Parker. 2004. “Experiments on reworking by successive unconfined subaqueous and subaerial muddy debris flows.” J. Hydraul. Eng. 130 (1): 38–48. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:1(38).
White, D. J., M. F. Randolph, C. Gaudin, N. Boylan, D. Wang, N. Boukpeti, H. Zhu, and F. Sahdi. 2016. “The impact of submarine slides on pipelines: Outcomes from the COFS-MERIWA JIP.” In Proc., Offshore Technology Conf. Houston: Offshore Technology Conference.
Wright, V., and R. Krone. 1987. “Laboratory and numerical study of mud and debris flows.” In Proc., 22nd Int. Association for Hydraulic Research Congress. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Yuan, F., L. Wang, Z. Guo, and R. Shi. 2012. “A refined analytical model for landslide or debris flow impact on pipelines. Part I: Surface pipelines.” Appl. Ocean Res. 35 (1): 95–104. https://doi.org/10.1016/j.apor.2011.12.001.
Zakeri, A., K. Høeg, and F. Nadim. 2008. “Submarine debris flow impact on pipelines—Part I: Experimental investigation.” Coast. Eng. 55 (12): 1209–1218. https://doi.org/10.1016/j.coastaleng.2008.06.003.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 145Issue 1January 2019

History

Received: Aug 29, 2017
Accepted: May 10, 2018
Published online: Oct 31, 2018
Published in print: Jan 1, 2019
Discussion open until: Mar 31, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Xuesheng Qian, S.M.ASCE [email protected]
Ph.D. Student, Dept. of Civil and Environmental Engineering, Jackson State Univ., Jackson, MS 39217. Email: [email protected]
Himangshu S. Das, M.ASCE [email protected]
Hydraulics and Hydrology Expert, Engineering and Construction Division, US Army Corps of Engineers, Galveston, TX 77550 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share