Technical Papers
Oct 12, 2017

Effects of Lateral and Vertical Constrictions on Flow in Rough Steep Channels with Bedload

Publication: Journal of Hydraulic Engineering
Volume 143, Issue 12

Abstract

Two-phase flows occurring at flow constrictions such as bridges or open sediment check dams are complex, especially for steep rivers with bedload transport. Dangerous bedload deposition and backwater effects may occur in steep mountain rivers at bridges. In contrast, sediment deposition is desirable at open check dams combined with sediment traps. For design purposes, the discharge and bedload capacity across these flow constrictions must be known. The energy losses, discharge capacity, and bedload transport capacity of vertical and lateral flow constrictions are experimentally studied in a rough, 2% inclined, trapezoidal channel. Both free surface and pressurized flow conditions, as caused by lateral and vertical flow constrictions, respectively, were analyzed because both may occur at bridges and check dams. The experiments demonstrate that the vertical flow constrictions cause a faster increase in the backwater depth, with increasing discharge, than lateral constrictions. The resulting upstream flow conditions can be described by the upstream Froude number, defined as a function of the constriction dimensions (height and width). The bedload transport capacity through the flow constriction decreases with the upstream Froude number. The practical relevance of the findings is illustrated by a design example of flow constrictions at open sediment check dams.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is funded by the Swiss Federal Office for the Environment within the Sediment and Habitat Dynamics project. Guillaume Piton (Irstea Grenoble, France) contributed within fruitful discussions to the research.

References

Adams, R. K., and Spotila, J. A. (2005). “The form and function of headwater streams based on field and modeling investigations in the Southern Appalachian Mountains.” Earth Surf. Processes Landforms, 30(12), 1521–1546.
Armanini, A., Dalri, C., and Larcher, M. (2006). “Slit-check dams for controlling debris flow and mudflow.” Int. Symp. on Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Universal Academy Press, Inc., Niigata, Japan, 141–148.
Armanini, A., Dellagiacoma, F., and Ferrari, L. (1991). “From the check dam to the development of functional check dams.” Fluvial hydraulics of mountain regions, Springer, Berlin, 331–344.
Armanini, A., and Larcher, M. (2001). “Rational criterion for designing opening of slit-check dam.” J. Hydraul. Eng., 94–104.
Barenblatt, G. I. (1987). Dimensional analysis, Gordon and Breach Science Publishers, New York.
Benda, L. (1990). “The influence of debris flows on channels and valley floors in the Oregon coast range, U.S.A.” Earth Surf. Processes Landforms, 15(5), 457–466.
Beschta, R. L. (1979). “Debris removal and its effects on sedimentation in an Oregon Coast Range stream.” Northwest Sci., 53(1), 71–77.
Bezzola, G. R., and Hegg, C. (2007). Ereignisanalyse Hochwasser 2005, Teil 1—Prozesse, Schäden und erste Einordnung [Event analyses of the 2005 flood. 1: Processes, damages and preliminary classification], Swiss Federal Office for the Environment FOEN/Eidgenössische Forschungsanstalt WSL, Bern, Switzerland.
Brooke Benjamin, T. (1956). “On the flow in channels when rigid obstacles are placed in the stream.” J. Fluid Mech., 1(2), 227–248.
Chapra, S. C., and Canale, R. P. (2010). Numerical methods for engineers, 6th Ed., McGraw-Hill, New York.
Chow, V. T. (1959). Open-channel hydraulics, McGraw-Hill, Tokyo.
Davies, P., et al. (2005). “Changes to headwater stream morphology, habitats and riparian vegetation recorded 15 years after pre-forest practices code forest clearfelling in upland granite terrain, Tasmania, Australia.” For. Ecol. Manage., 217(2–3), 331–350.
Einstein, H. A. (1950). “The bed-load function for sediment transport in open channel flows.”, U.S. Dept. of Agriculture, Soil Conservation Service, Quilcene, WA, 71.
Ferguson, R. I. (2010). “Time to abandon the manning equation?” Earth Surf. Processes Landforms, 35(15), 1873–1876.
Ferguson, R. I. (2012). “River channel slope, flow resistance, and gravel entrainment thresholds.” Water Resour. Res., 48(5), 1–13.
Frey, P., Tannou, S., Tacnet, J., Richard, D., and Koulinski, V. (1999). Interactions Ecoulements torrentiels—Ouvrages terminaux de plages de dépôt [Interactions between torrential flows and open check dams], Pôle grenoblois d’Etudes et de Recherche pour la prévention des risques naturels, Grenoble, France.
Gertsch, E. (2009). “Geschiebelieferung alpiner Wildbachsysteme bei Grossereignissen–Ereignis analysen und Entwicklung eines Abschätzverfahrens.” Ph.D. thesis, Geographisches Institut der Universität Bern, Bern, Switzerland.
Gomi, T., Sidle, R. C., and Richardson, J. S. (2002). “Understanding processes and downstream linkages of headwater systems.” BioScience, 52(10), 905–916.
Gregoretti, C. (2008). “Inception sediment transport relationships at high slopes.” J. Hydraul. Eng., 1620–1629.
Hassan, M. A., Church, M., Lisle, T. E., Brardinoni, F., Benda, L., and Grant, G. E. (2005). “Sediment transport and channel morphology of small, forested streams.” J. Am. Water Resour. Assoc., 41(4), 853–876.
Henderson, F. M. (1966). Open channel flow, The Macmillan Company, New York.
Khatsuria, R. (2005). Hydraulics of spillways and energy dissipaters, Marcel Dekker, New York, 635.
Kondolf, G. M. (1997). “Hungry water: Effects of dams and gravel mining on river channels.” Environ. Manage., 21(4), 533–551.
Lange, D., and Bezzola, G. R. (2006). Schwemmholz Probleme und Lösungansätze [Driftwood problems and approaches for solutions], Vol. 188, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der Eidgenössischen Technischen Hochschule Zürich, Zürich, Switzerland.
Leopold, L. B., and Wolman, M. G. (1957). “River channel patterns: Braided meandering and straight.”, U.S. Government Printing Office, Washington, DC, 45–62.
LeRoy, N., et al. (1997). “The natural flow regime—A paradigm for river conservation and restoration.” BioScience, 47(11), 769–784.
Leys, E. (1976). “Die technischen und wirtschaftlichen Grundlagen in der Wildbachverbauung der groß doligen und der kronenoffenen Bauweise [Technical and economical basics of hydraulic constructions in mountain rivers in terms of large openings and open crested architecture].” Ph.D. thesis, Universität für Bodenkultur, Vienna, Austria.
McEnroe, B. M. (2009). “Hydrologic design of bridges and culverts: A historical review.” World Environmental and Water Resources Congress, Great Rivers History, ASCE, Reston, VA, 83–90.
Mejean, S., Piton, G., and Recking, A. (2015). Caractérisation des conditions hydrauliques du piégeage de la charge sédimentaire grossière des torrents [Characterization of hydraulic conditions for the trapping of the coarse sediment load of torrents], Erosion torrentielle neige et avalanche Grenoble, IRSTEA, Grenoble, France, 90.
Montgomery, D. R., Abbe, T. B., Buffington, J. M., Peterson, N. P., Schmidt, K. M., and Stock, J. D. (1996). “Distribution of bedrock and alluvial channels in forested mountain drainage basins.” Nature, 381(6583), 587–589.
Montgomery, D. R., and Buffington, J. (1997). “Channel-reach morphology in mountain drainage basins.” Geol. Soc. Am. Bull., 109(5), 596–611.
Parker, G., Paola, C., Whipple, K. X., and Mohrig, D. (1998). “Alluvial fans formed by channelized fluvial and sheet flow. I: Theory.” J. Hydraul. Eng., 985–995.
Piton, G., et al. (2017). “Why do we build check dams in Alpine streams? An historical perspective from the French experience.” Earth Surf. Processes Landforms, 42(1), 91–108.
Piton, G., and Recking, A. (2016a). “Design of sediment traps with open check dams. I: Hydraulic and deposition processes.” J. Hydraul. Eng., 04015045.
Piton, G., and Recking, A. (2016b). “Design of sediment traps with open check dams. II: Woody debris.” J. Hydraul. Eng., 142(2), 04015046.
Powell, M. D. (2014). “Flow resistance in gravel-bed rivers: Progress in research.” Earth Sci. Rev., 136, 301–338.
Prancevic, J. P., Lamb, M. P., and Fuller, B. M. (2014). “Incipient sediment motion across the river to debris-flow transition.” Geology, 42(3), 191–194.
Recking, A. (2010). “A comparison between flume and field bedload transport data and consequences for surface-based bedload transport prediction.” Water Resour. Res., 46(3), W03518.
Recking, A. (2012). “Influence of sediment supply on mountain streams bedload transport.” Geomorphology, 175–176, 139–150.
Recking, A., Frey, P., Paquier, A., Belleudy, P., and Champagne, J. Y. (2008a). “Bed-load transport flume experiments on steep slopes.” J. Hydraul. Eng., 1302–1310.
Recking, A., Frey, P., Paquier, A., Belleudy, P., and Champagne, J. Y. (2008b). “Feedback between bed load transport and flow resistance in gravel and cobble bed rivers.” Water Resour. Res., 44(5), W05412.
Sawada, T., Ashida, K., and Takahashi, T. (1983). “Relationship between channel pattern and sediment transport in a steep gravel bed river.” Zeitschrift für Geomorphologie, Supplementband, 46, 55–66.
Schleiss, A. J., et al. (2014). “Geschiebe- und Habitatsdynamik—Forschungsprogramm Wasserbau und Ökologie [The research program sediment and habitat dynamics].” Wasser Energie Luft, 106(2), 117–122.
Schwindt, S., Franca, M. J., and Schleiss, A. J. (2016). “The influence of the opening width of check dams on bedload continuity of mountain rivers.” River Flow 2016, G. Constantinescu, M. Garcia, and D. Hanes, eds., Tayler & Francis, St. Louis, 1156–1160.
Shields, A. (1936). Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Application of the similarity in mechanics and turbulence research on the mobility of bed load], Vol. 26, Preußische Versuchsanstalt für Wasserbau und Schiffbau, Berlin.
Smart, G. M., and Jaeggi, M. N. R. (1983). Sedimenttransport in steilen Gerinnen [Sediment transport on steep slopes], Vol. 64, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der Eidgenössischen Technischen Hochschule Zürich, Zürich, Switzerland.
Sutherland, D. G., Hansler Ball, M., Hilton, S., and Lisle, T. E. (2002). “Evolution of a landslide-induced sediment wave in the Navarro River, California.” Geol. Soc. Am. Bull., 114(8), 1036–1048.
Uchiogi, T., Shima, J., Tajima, H., and Ishikawa, Y. (1996). “Design methods for wood-debris entrapment.” Proc., INTERPRAEVENT, Vol. 5, International Research Society Interpraevent, Klagenfurt, Austria, 279–288.
Von Mises, R. (1917). “Berechnung von Ausfluss- und Ueberfallzahlen [Computation of discharge coefficients].” Zeitschrift des Vereins deutscher Ingenieure, 61(22), 447–452.
Werner, W. (1963). “Ableitung einer kinematischen Beziehung zur Berechnung des Durchflusses unter Planschützen nach der Theorie freier Stromlinien [Derivation of a kinematic relation for the computation of the discharge under sluice gates according to the theory of free streamlines].” Wissenschaftliche Zeitschrift der Technischen Universität Dresden, 12(6), 1693–1699.
Whittaker, J. G. (1987). “Sediment transport in step-pool streams.” Sediment transport in gravel bed rivers, C. R. Thorne, J. C. Bathurst, and R. D. Hey, eds., Wiley, Chichester, U.K.
Wilcock, P. (1993). “Critical shear stress of natural sediments.” J. Hydraul. Eng., 491–505.
Williams, G. P., and Wolman, M. G. (1984). “Downstream effects of dams on alluvial rivers.”, U.S. Government Printing Office, Washington, DC.
Zollinger, F. (1983). Die Vorgänge in einem Geschiebeablagerungsplatz: ihre Morphologie und ihre Möglichkeiten einer Steuerung [The processes in sediment traps: Their morphology and their possibilities of control], ETH Zürich, Zürich, Switzerland.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 143Issue 12December 2017

History

Received: Aug 22, 2016
Accepted: Jun 23, 2017
Published online: Oct 12, 2017
Published in print: Dec 1, 2017
Discussion open until: Mar 12, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

S. Schwindt [email protected]
Research Assistant, Laboratoire de constructions hydrauliques, École polytechnique fédérale de Lausanne, Station 18, 1015 Lausanne, Switzerland (corresponding author). E-mail: [email protected]
M. J. Franca
Research and Teaching Associate, Laboratoire de constructions hydrauliques, École polytechnique fédérale de Lausanne, Station 18, 1015 Lausanne, Switzerland.
A. J. Schleiss, M.ASCE
Full Professor, Laboratoire de constructions hydrauliques, École polytechnique fédérale de Lausanne, Station 18, 1015 Lausanne, Switzerland.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share