Technical Papers
Mar 13, 2014

Estimation of Concentration and Load of Suspended Bed Sediment in a Large River by Means of Acoustic Doppler Technology

Publication: Journal of Hydraulic Engineering
Volume 140, Issue 7

Abstract

The standard experimental methods used for sampling suspended loads in large rivers are usually time consuming, unsafe, rather expensive, and have a limited spatial resolution. Acoustic Doppler current profilers (ADCPs), usually applied to measure the flow discharge, may also be used to assess the suspended sediment concentration by analyzing the backscattering acoustic strength. Though important efforts have been dedicated to test this method, results are not as reliable as engineering practices require, especially in large fluvial systems. In this paper, the correlation between the corrected backscatter from a 1,200 kHz ADCP and the suspended concentration from a depth-integrated sampler is presented and discussed. Despite the assumptions required to utilize this method (i.e., monosized grain and homogeneous vertical concentration), the results showed acceptable differences when they were compared with traditional methods. An evaluation of the backscatter and attenuation of sound produced by fine and coarse material is presented. Finally, the total suspended load of bed sediment is assessed using moving-boat ADCP measurements and compared with results from the corresponding standard method. Differences are at most 46%.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank Roberto Mir and Santiago Cañete for their assistance during the field work. This study is part of project PICT 2006-00758, “Measurement and calculation of river sediment transport” funded by the Agencia Nacional de Promoción Científica y Tecnológica of Argentina and project CAID 2009 “Analysis of morphodynamics processes in a floodplain of a large lowland river: The Parana river in its middle reach” funded by the Universidad Nacional del Litoral of Argentina.

References

Alarcon, J., Szupiany, R., Montagnini, M., Gaudin, H., Prendes, H., and Amsler, M. (2003). “Evaluación del transporte de sedimentos en el tramo medio del río Paraná.” Proc., Primer Simposio Regional sobre Hidráulica de Ríos, Instituto Nacional del Agua, Buenos Aires, Argentina, 1–2.
Czuba, J. A., and Oberg, K. A. (2008). “Validation of exposure time for discharge measurements made with two bottom-tracking acoustic Doppler current profilers.” Proc., IEEE/OES/CMTC 9th Working Conf. on Current Measurement Technology, Current Measurement Technology Committee of the Oceanic Engineering Society Institute of Electrical and Electronics Engineers, Piscataway, NJ, 250–257.
Deines, K. L. (1999). “Backscatter estimation using broadband acoustic Doppler current profilers.” Proc., IEEE/OES/CMTC 6th Working Conf. on Current Measurement Technology, Current Measurement Technology Committee of the Oceanic Engineering Society Institute of Electrical and Electronics Engineers, Piscataway, NJ, 249–253.
Dinehart, R. L., and Burau, J. R. (2005). “Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossing of bends.” Water Resour. Res., 41(9), 1–18.
Downing, A., Thorne, P. D., and Vincent, C. E. (1995). “Backscattering from a suspension in the near-field of a piston transducer.” J. Acoust. Soc. Am., 97(3), 1614–1620.
Drago, E., and Amsler, M. L. (1988b). “Suspended sediment at a cross section of the Middle Parana River: Concentration, granulometry and influence of main tributaries.” Proc., Symp. on Sediment Budgets, Vol. 174, International Association of Hydrological Sciences, Wallingford, Oxfordshire, 381–396.
Drago, E., and Amsler, M. L. (1998). “Bed sediment characteristics in the Parana and Paraguay rivers.” Water Int., 23(3), 174–183.
Fulford, J. M., and Sauer, V. B. (1986). “Comparison of velocity interpolation methods for computing open-channel discharge.” Hydrologic Sciences, S.Y. Subitsky, ed., U.S. Geological Survey Water-Supply, Washington, 154.
García, M. H. (2008). “Sediment transport and morphodynamics.” Chapter 2, Sedimentation engineering: Processes, measurements, modelling and practice, M. H. García, ed., ASCE, Reston, VA, 111–114.
Gartner, J. W. (2004). “Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California.” Mar. Geol., 211(3–4), 169–187.
Giacosa, R., Paoli, C., and Cacik, P. (2000). “El Río Paraná en su Tramo Medio.” Chapter 2, Conocimiento del Régimen Hidrológico, C. Paoli and M. Schreider, eds., Centro de Publicaciones, Universidad Nacional del Litoral, Santa Fe, Argentina, 71–103.
Gray, J. R., and Gartner, J. W. (2009). “Technological advances in suspended-sediment surrogate monitoring.” Water Resour. Res., 45(4), W00D29.
Gray, J. R., Glysson, D., and Edwards, T. (2008). “Suspended-sediment samplers and sampling methods.” Chapter 5, Sedimentation engineering—Processes, measurements, modeling, and practice, M. García, ed., ASCE, Reston, VA, 320–353.
Gray, J. R., and Simões, F. J. M. (2008). “Estimating sediment discharge.” Sedimentation engineering—Processes, measurements, modeling, and practice, M. García, ed., ASCE, 1067–1088.
Guerrero, M., Rüther, N., and Szupiany, R. N. (2012). “Laboratory validation of ADCP techniques for suspended sediments investigation.” Flow Meas. Instrum., 23(1), 40–48.
Guerrero, M., Szupiany, R. N., and Amsler, M. (2011). “Comparison of acoustic backscattering techniques for suspended sediments investigation.” Flow Meas. Instrum., 22(5), 392–401.
Guerrero, M., Szupiany, R. N., and Latosinski, F. (2013). “Multi-frequency acoustics for suspended sediment investigation: Validation in the Parana River.” J. Hydraul. Res., 51(6), 696–707.
Guy, H. P., and Norman, V. W. (1970). “Fluvial sediment concepts.” Chapter C1, Techniques for water resources investigations of the U.S. Geological Survey, USGS, Arlington, VA.
Hanes, D. M. (2012). “On the possibility of single-frequency acoustic measurement of sand and clay concentrations in uniform suspensions.” Cont. Shelf Res., 46, 64–66.
Hoitink, A., and Hoekstra, P. (2005). “Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment.” Coastal Eng., 52(2), 103–118.
Holdaway, G. P., Thorne, P. D., Flatt, D., Jones, S. E., and Prandle, D. (1999). “Comparison between ADCP and transmissometer measurement of suspended sediment concentration.” Cont. Shelf Res., 19(3), 421–441.
Latrubesse, E. (2008). “Patterns of anabranching channels: The ultimate end-member adjustments of mega-rivers.” Geomorphology, 101(1–2), 130–145.
Mangini, S. P., Prendes, H. H., Amsler, M. L., and Huespe, J. (2003). “Importancia de la floculación en la sedimentación de la carga de lavado en ambientes del Río Paraná.” Revista Ingeniería Hidráulica En México, XVIII(3), 55–69.
Moate, B. D., and Thorne, P. D. (2012). “Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition.” Cont. Shelf Res., 46, 67–82.
Montagnini, M. D., Prendes, H. H., Schreider, M. I., Amsler, M. L., and Martinez, H. L. (1998). “Desarrollo de un muestreador de sedimentos en suspensión integrador en profundidad.” Proc., XVII Congreso Nacional del Agua, Santa Fe, Argentina, III, 535–537.
Moore, S. A., Le Coz, J., Hurther, D., and Paquier, A. (2012). “On the application of horizontal ADCPs to suspended sediment transport surveys in rivers.” Cont. Shelf Res., 46, 50–63.
Oberg, K. A., and Mueller, D. S. (2007). “Analysis of exposure time on streamflow measurements made with acoustic Doppler current profilers.” Proc., Hydraulic Measurements and Experimental Methods Conf., ASCE, Reston, VA, 6.
Office of Surface Water (OSW). (2011). “Exposure time for ADCP moving-boat discharge measurements made during steady flow conditions.” Technical Memorandum 2011.08, U.S. Geological Survey, Reston, VA.
Parsons, D. R., et al. (2013). “Velocity mapping toolbox (VMT): A new post-processing suite for acoustic Doppler current profiler data.” Earth Surf. Processes Landforms, 38(11), 1244–1260.
Prendes, H. H., Mangini, S. P., and Huespe, J. (2009). “Deposition of fine sediments in ports and navigation channels in Paraná River.” Proc., 10th Int. Conf. on Cohesive Sediment Transport Processes, Laboratory of Cohesive Sediment Dynamics-Universidad Federal de Río de Janeiro, Rio de Janeiro, Brazil.
RD Instruments. (1999). “Using the 305A4205 hydrophone to identify the RSSI scale factors for calibrating the echo strength output of an ADCP.”, RD Instrument, San Diego, CA.
Reichel, G., and Nachtnebel, H. P. (1994). “Suspended sediment monitoring in a fluvial environment—Advantages and limitations applying an acoustic-Doppler-current-profiler.” Water Res. 28(4), 751–761.
Sassi, M. G., Hoitink, A. J. F., and Vermeulen, B. (2012). “Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations.” Water Resour. Res., 48(9), W09520.
Schulkin, M., and Marsh, H. W. (1962). “Sound absorption in sea water.” J. Acoust. Soc. Am., 34(6), 864–865.
Simpson, M. R. (2001). “Discharge measurements using a broad-band acoustic Doppler current profiler.”, USGS, Sacramento, CA.
Szupiany, R. N., et al. (2012). “Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river.” Water Resour. Res., 48(11), W11515.
Szupiany, R. N., Amsler, M. L., Best, J. L., and Parsons, D. R. (2007). “Comparison of fixed- and moving vessel measurements with an ADP in a large river.” J. Hydraul. Eng., 1299–1309.
Szupiany, R. N., Amsler, M. L., Parsons, D. R., and Best, J. L. (2009). “Morphology, flow structure and suspended bed sediment transport at two large braid-bar confluences.” Water Resour. Res., 45(5), W05415.
Teledyne RD Instruments. (2007). “Work Horse Rio Grande ADCP User’s Guide.”, Teledyne RDI Instruments, Poway, CA, 28.
Thevenot, M. M., Prickett, T. L., and Kraus, N. C. (1992). “Tylers Beach, Virginia, dredged material plume monitoring project 27 September to 4 October 1991.” Dredging research program, U.S. Army Corps of Engineers, Washington, DC, 204.
Thorne, P. D., and Hanes, D. M. (2002). “A review of acoustic measurements of small-scale sediment processes.” Cont. Shelf Res., 22(4), 603–632.
Thorne, P. D., and Meral, R. (2008). “Formulations for the scattering properties of suspended sandy sediments for use in the application of acoustics to sediment transport processes.” Cont. Shelf Res., 28(2), 309–317.
Topping, D. J., Rubin, D. M., Wright, S. A., and Melis, T. S. (2011). “Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers.”, USGS, Reston, VA, 95.
Topping, D. J., Wright, S. A., Melis, T. S., and Rubin, D. M. (2007). “High-resolution measurements of suspended-sediment concentration and grain size in the Colorado River in Grand Canyon using a multi-frequency acoustic system.” Proc., 10th Int. Symp. on River Sedimentation, M. V. Lomonosov, Moscow State Univ., Moscow, Russia.
Trento, A. E., Amsler, M. L., and Pujol, A. (1990). “Perfiler observados de velocidad en un tramo del río Paraná—Analisis Teorico.” Proc., XIV Congreso Latinoamericano de Hidráulica, Montevideo, Uruguay.
Urick, R. J. (1948). “The absorption of sound in suspensions of irregular particles.” J. Acoust. Soc. Am., 20(3), 283–289.
Vanoni, V. A. (1975). “Sediment measurement techniques. Fluvial Sediment.” Chapter III-A, Sedimentation engineering, ASCE-manuals and reports on engineering practise-N°54, V. A. Vanoni, ed., ASCE, Reston, VA, 317–321.
Wall, G. R., Nystrom, E. A., and Litten, S. (2006). “Use of an ADCP to compute suspended sediment discharge in the Tidal Hudson River, New York.” Scientific Investigations Report 2006–5055, USGS, Reston, VA.
World Meteorological Organization (WMO). (1994). “Guide to hydrological practices.” Data acquisition and processing, analysis, forecasting and other applications, 5th Ed., Geneva, 176–178.
Wright, S. A., Topping, D. J., and Williams, C. A. (2010). “Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers.” Proc., 2nd Joint Federal Interagency Conf., Advisory Committee on Water Information, Reston, VA.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 140Issue 7July 2014

History

Received: Dec 7, 2012
Accepted: Dec 9, 2013
Published online: Mar 13, 2014
Published in print: Jul 1, 2014
Discussion open until: Aug 13, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Francisco G. Latosinski [email protected]
Ph.D. Fellow, Concejo Nacional de Investigación Científica y Tecnológica, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, C.C. 217, RN° 168–Km. 472 (CP 3000), Santa Fe, Argentina (corresponding author). E-mail: [email protected]
Ricardo N. Szupiany [email protected]
Associate Professor, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, C.C. 217, RN° 168–Km. 472 (CP 3000), Santa Fe, Argentina. E-mail: [email protected]
Carlos M. García [email protected]
Associate Professor, Concejo Nacional de Investigación Científica y Tecnológica, Centro de Estudios y Tecnología del Agua, Laboratorio de Hidráulica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Filloy s/n, Ciudad Universitaria (CP 5000), Córdoba, Argentina. E-mail: [email protected]
Massimo Guerrero [email protected]
Researcher, Hydraulic Laboratory, DICAM Dept., Bologna Univ., via Terracini (CP 40131) Bologna, Italy. E-mail: [email protected]
Mario L. Amsler [email protected]
Researcher, Concejo Nacional de Investigación Científica y Tecnológica, Instituto Nacional de Limnología, Ciudad Universitaria, RN° 168–Km. 472 (CP 3000), Santa Fe, Argentina. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share