Technical Notes
May 14, 2012

Accounting for Rough Bed Friction Factors of Mud Beds as a Result of Biological Activity in Erosion Experiments

Publication: Journal of Hydraulic Engineering
Volume 138, Issue 11

Abstract

The average bed shear stress and bed friction factor of samples with any roughness was derived from the head loss between upstream and downstream of a test section in an erosion tunnel. The method was validated in both hydraulically smooth (plexiglass; Reynolds number less than 25,000) and rough regimes (calibrated particles with known roughness). As a first step toward using this method on natural sediment, this method was tested with experimental mesocosms assembled from field collected materials (sieved sediments; diatoms). Bed shear stress measurement precision was high enough in the experiments to detect a positive significant relationship between bed friction factor and core roughness. The observed bed friction factor increase could be related to diatom growth but not to diatoms biomass.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the French ANR (National Research Agency) through the VASIREMI project “Trophic significance of microbial biofilms in tidal flats” (contract ANR-06-BLAN-0393-01). The assistance of Caroline Nérot for the mesocosms experiments is gratefully acknowledged. The authors also thank Jennifer Coston-Guarini and Ian Salter for language correction.

References

Aberle, J. (2003). “Straight benthic flow-through flume for in situ measurement of cohesive sediment dynamics.” J. Hydraul. Eng., 129(1), 63–67.
Amos, C. L., Feeney, T., Sutherland, T. F., and Luternauer, J. L. (1997). “The stability of fine-grained sediments from Fraser River delta.” Estuarine Coastal Shelf Sci., 45(4), 507–524.
Amos, C. L., Grant, J., Draborn, G. R., and Black, K. (1992). “Sea carousel: A benthic, annular flume.” Estuarine Coastal Shelf Sci., 34(6), 557–577.
Andersen, T. J. (2001). “Seasonal variation in erodibility of two temperate microtidal mudflats.” Estuarine Coastal Shelf Sci., 53(1), 1–12.
Black, K. S., and Paterson, D. M. (1997). “Measurement of the erosion potential of cohesive marine sediments: A review of current in situ technology.” J. Mar. Environ. Eng., 4, 43–83.
Black, K. S., Tolhurst, T. J., Paterson, D. M., and Hagerthey, S. E. (2002). “Working with natural cohesive sediments.” J. Hydraul. Eng., 128(1), 1–7.
Blanchard, G. F., Guarini, J.-M., Orvain, F., and Sauriau, P. G. (2001). “Dynamic behaviour of benthic microalgal biomass in intertidal mudflats.” J. Exp. Mar. Biol. Ecol., 264(1), 85–100.
Briaud, J. L., Ting, F. C. K., Cao, Y., and Kwak, K. W. (2001). “Erosion function apparatus for scour rate predictions.” J. Geotech. Geoenviron. Eng., 127(2), 105–113.
Calluaud, D., and Mouazé, D. (2007). “Soutien au calibrage de l’érodimètre de l’IFREMER.”, Brest, France, 38 (in French).
Cartwright, G. M., Friedrichs, C. T., Dickhudt, P. J., Gass, T., and Farmer, F. H. (2009). “Using the acoustic Doppler velocimeter (ADV) in the MUDBED real-time observing system.” Proc., OCEANS 2009 MTS/IEEE, IEEE, 9.
Ciutat, A., Widdows, J., and Pope, N. D. (2007). “Effect of Cerastoderma edule density on near-bed hydrodynamics and stability of cohesive muddy sediments.” J. Exp. Mar. Biol. Ecol., 346(1–2), 114–126.
Debnath, K., Nikora, V., Aberle, J., Westrich, B., and Muste, M. (2007). “Erosion of cohesive sediments: Resuspension, bed load, and erosion patterns from field experiments.” J. Hydraul. Eng., 133(5), 508–520.
Grant, J., Bathmann, U. V., and Mills, E. L. (1986). “The interaction between benthic diatoms films and sediment transport.” Estuarine, Coastal Shelf Sci., 23(2), 225–238.
Gust, G., and Morris, M. J. (1989). “Erosion thresholds and entrainment rates of undisturbed in situ sediments.” J. Coastal Res., 5, 87–99.
Guy, H. P., Simons, D. B., and Richardson, E. V. (1966). “Summary of alluvial channel data from flume experiment, 1956-1961.”, Washington, DC.
Le Hir, P., Cann, P., Jestin, H., and Bassoulet, P. (2006). “Instrumentation légère pour la mesure de l’érodabilité des sédiments vaseux ou sablo-vaseux.” Proc. IXémes Journées Nationales Génie Côtier-Génie Civil, PARALIA, Nantes, France (in French).
Le Hir, P., Monbet, Y., and Orvain, F. (2007). “Sediment erodability in sediment transport modelling: Can we account for biota effects?” Cont. Shelf Res., 27(8), 116–1142.
Lorenzen, C. (1967). “Determination of chlorophyll and phaeopigments spectrophotometric equations.” Limnol. Oceanogr., 12(2), 343–346.
Maa, J. P.-Y., Sandford, L., and Halka, J. P. (1998). “Sediment resuspension characteristics in Baltimore Harbor, Maryland.” Mar. Geol., 146(1–4), 137–145.
Mehta, A. J. (1986). “Characterisation of cohesive sediment properties and transport processes in estuaries.” Estuarine cohesive sediment dynamics, Mehta, A. J.ed., Springer, Berlin, 290–325.
Mehta, A. J., Parchure, T. M., Dixit, J. G., and Ariathurai, R. (1982). “Resuspension potential of deposited cohesive sediment beds.” Estuarine comparisons, Kennedy, V. S.ed., Academic Press, New York, 591–609.
Moody, L. F. (1944). “Friction factors for pipe flow.” Trans. Am. Soc. of Mech. Eng., 66(8), 675–684.
Nikuradse, J. (1933). “Stromungsgesetze in glatten und rauhen rohren.” VDI-Forschungsh., 361, Berlin (in German).
Nowell, A. R. M., Jumars, P. A., and Eckman, J. E. (1981). “Effects of biological activity on the entrainment of marine sediments.” Mar. Geol., 42(1–4), 133–153.
Orvain, F., Le Hir, P., and Sauriau, P.-G. (2003). “A model of fluff layer erosion and subsequent bed erosion in presence of the bioturbator, Hydrobia ulvae.” J. Mar. Res., 61, 823–851.
Orvain, F., Sauriau, P.-G., Le Hir, P., Guillou, G., Cann, P., and Paillard, M. (2007). “Spatio-temporal variations in intertidal mudflat erodability: Marennes-Oléron Bay, western France.” Cont. Shelf. Res., 27(8), 1153–1173.
Parchure, T. M., and Mehta, A. J. (1985). “Erosion of soft cohesive sediment deposits.” J. Hydraul. Eng., 111(10), 1308–1326.
Paterson, D. M. (1989). “Short term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms.” Limnol. Oceanogr., 34(1), 223–234.
Ravens, T. M. (2007). “Comparison of two techniques to measure sediment erodibility in the Fox River, Wisconsin.” J. Hydraul. Eng., 133(1), 111–115.
Schlichting, H. (1979). Boundary layer theory, McGraw-Hill, New York, 362–817.
Shields, A. (1936). “Anwendung der Aehnlichkeitsmechanik und Turbulenzforhcung auf die Geschiebebewegung.” Mitt Preuss Versuchsanstalt fur Wasserbau und Schiffbau, 26, Berlin (in German).
Soulsby, R. (1997). Dynamics of marine sands, Thomas Telford, London, 249.
Sugihara, G., and May, M. (1990). “Applications of fractals in ecology.” Trends Ecol. Evol., 5(3), 79–86.
Tolhurst, T. J., Black, K. S., Mather, S., Black, I., Baker, K., and Paterson, D. M. (1999). “Measuring the in situ erosion shear stress of intertidal sediments with the cohesive strength meter (CSM).” Estuarine Coastal Shelf Sci., 49(2), 281–294.
Tolhurst, T. J., Black, K. S., and Paterson, D. M. (2009). “Muddy sediment erosion: Insights from field studies.” J. Hydraul. Eng., 135(2), 73–87.
Tolhurst, T. J., Black, K. S., Paterson, D. M., Mitchener, H., Termaat, R., and Shayler, S. A. (2000). “A comparison and measurement standardisation of four in situ devices for measuring the erosion shear stress of intertidal sediments.” Cont. Shelf Res., 20(10–11), 1397–1418.
Tolhurst, T. J., Reithmuller, R., and Paterson, D. M. (2000). “In situ versus laboratory analysis of sediment stability from intertidal mudflats.” Cont. Shelf Res., 20(10–11), 1317–1334.
Widdows, J., Brinsley, M. D., Bowley, N., and Barret, C. (1998). “A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments.” Estuarine Coastal Shelf Sci., 46(1), 27–38.
Widdows, J., Brown, S., Brinsley, M. D., Salkield, P. N., and Elliot, M. (2000). “Temporal changes in intertidal sediment erodability: Influence of biology and climatic factors.” Cont. Shelf Res., 20(10–11), 1275–1290.
Widdows, J., Friend, P. L., Bale, A. J., Brinsley, M. D., Pope, N. D., and Thompson, C. E. L. (2007). “Inter-comparison between five devices for determining erodability of intertidal sediments.” Cont. Shelf Res., 27(8), 1174–1189.
Wright, L. D., Friedrichs, C. T., and Hepworth, D. A. (1997). “Effects of benthic biology onbottom boundary layer processes. Dry Tortugas Bank, Florida Keys.” Geo-Mar. Lett., 17(4), 291–298.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 138Issue 11November 2012
Pages: 979 - 984

History

Received: Jan 14, 2011
Accepted: May 11, 2012
Published online: May 14, 2012
Published in print: Nov 1, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Katell Guizien [email protected]
CNRS/Université Paris 06, FRE3350, LECOB, Observatoire Océanologique, rue du Fontaulé, F-66650, Banyuls/mer, France (corresponding author). E-mail: [email protected]
Francis Orvain
Laboratoire PE2M (Physiologie et Ecophysiologie des Mollusques Marins), Université de Caen, Esplanade de la Paix, F-14032 Caen CEDEX, France.
Jean-Claude Duchêne
Université de Bordeaux, CNRS, UMR 5805-EPOC, Talence, F-33405 France.
Pierre Le Hir
IFREMER, Centre de Brest, BP70, F-29280 Plouzané, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share