TECHNICAL PAPERS
Apr 4, 2011

Comparison of Models for Calculation of Diel Sediment-Water Heat Flux from Water Temperatures

This article has been corrected.
VIEW CORRECTION
Publication: Journal of Hydraulic Engineering
Volume 137, Issue 10

Abstract

We investigated sediment-water heat flux estimation in relation to applications (hydrodynamics simulation, evaporation studies, or global change effects assessment) in which sediment temperatures are not available because of technical complications (difficulties in installing sensors, for example) or because of methodology used (remote sensing, for example). We used field sediment temperature data measured every 10 min to 1 m depth at Doñana National Park marshland to obtain sediment thermal properties and to calculate diel sediment-water heat exchange through Beck’s sequential function specification method. We compare four models for the simulation of sediment-water heat flux by using surface temperatures. Two models need initial estimated inside sediment temperatures; the other two do not. Influence of estimated initial temperature profiles depends on the temperature distribution assumption and is significant for three days or fewer at the daily timescale. A model that does not use initial sediment temperatures provides accurate estimations with low computation time.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank Doñana National Park and the Estación Biológica de Doñana for assisting with installing instrumentation. The authors would also like to acknowledge the work of Quim Rabadà and Daniel Niñerola in maintaining and installing field instrumentation. This study was funded by the Ministerio de Educación y Cultura (complementary action UNSPECIFIEDCMT2007-30881-E/TECNO), by the 6th Framework Program of the European Union (contract EUGOCE-CT-2006-037081), and by the Confederación Hidrográfica del Guadalquivir.

References

Beck, J., Blackwell, B., and Clair, C. R. (1985). Inverse heat conduction, Wiley-Interscience, New York.
Beck, J. V., Blackwell, B., and Haji-Sheikh, A. (1996). “Comparison of some inverse heat conduction methods using experimental data.” Int. J. Heat Mass Transfer, 39(17), 3649–3657
.
Beck, J. V., and Woodbury, K. A. (1998). “Inverse problems and parameter estimation: Integration of measurements and analysis.” Meas. Sci. Technol., 9, 839–847
.
Bladé, E., and Gómez, M. (2006). “Modelación del flujo en lámina libre sobre cauces naturales: Análisis integrado en una y dos dimensiones.” Ph.D thesis, Dept. d’Enginyeria Hidràulica, Marítima i Ambiental, Univ. Politècnica de Catalunya, Barcelona, Spain
.
Bogan, T., Mohseni, O., and Stefan, H. G. (2003). “Stream temperature-equilibrium temperature relationship.” Water Resour. Res., 39(9), 1245
.
Braun, S. (2008). “Discover signal processing: An interactive guide for engineers,” Wiley, Chichester, U.K
.
Brown, G. W. (1969). “Predicting temperatures of small streams.” Water Resour. Res., 5(1), 68–75
.
Brutsaert, W. (1982). Evaporation into the atmosphere: Theory, history and applications, D. Reidel, Netherlands
.
Caissie, D., El-Jabi, N., and St-Hilaire, A. (1998). “Stochastic modelling of water temperatures in a small stream using air to water relations.” Can. J. Civ. Eng., 25(2), 250–260
.
Caissie, D., El-Jabi, N., and Satish, M. G. (2001). “Modelling of maximum daily water temperatures in a small stream using air temperatures.” J. Hydrol. (Amsterdam), 251(1–2), 14–28
.
Carslaw, H. S., and Jaeger, J. C. (1959). Conduction of heat in solids, Oxford University, New York.
Crooks, S., Schutten, J., Sheern, G. D., Pye, K., and Davy, A. J. (2002). “Drainage and elevation as factors in the restoration of salt marsh in Britain.” Restor. Ecol., 10(3), 591–602
.
Delay, W. H., and Seaders, J. (1966). “Predicting temperatures in rivers and reservoirs.” J. Sanit. Engrg. Div., 92(1), 115–133
.
Dolz, J., Bladé, E., and Gili, J. A. (2005). “Modelo numérico de la hidrodinámica de la Marisma.” Doñana, agua y biosfera, F. García Novo and C. Marín Cabrera, eds., Confederación Hidrográfica del Guadalquivir, Sevilla, Spain, 140–150.
Edinger, J. E., Duttweiler, D. W., and Geyer, J. C. (1968). “Response of water temperatures to meteorological conditions.” Water Resour. Res., 4(5), 1137–1143
.
Edinger, J. E., Brady, D. K., and Geyer, J. C. (1974). “Heat exchange and transport in the environment,” Rep. No. 14 (Publication No. EA 74-049-00-3), Electric Research Institute, Palo Alto, CA
.
Erickson, T. R., and Stefan, H. G. (2000). “Linear air/water temperature correlations for streams during open water periods.” J. Hydrol. Eng., 5(3), 317–321
.
Evans, E. C., and Petts, G. E. (1997). “Hyporheic temperature patterns within riffles.” Hydrol. Sci. J., 42(2), 199–213
.
Evans, E. C., McGregor, G. R., and Petts, G. E. (1998). “River energy budgets with special reference to river bed processes.” Hydrol. Processes, 12(4), 575–595
.
Fang, X., and Stefan, H. G. (1996). “Long-term lake water temperature and ice cover simulations/measurements.” Cold Reg. Sci. Technol., 24(3), 289–304
.
Fang, X., and Stefan, H. G. (1998). “Temperature variability in lake sediments.” Water Resour. Res., 34(4), 717–729
.
García-Novo, F., and Marín, C., eds. (2005). Doñana: Agua y Biosfera, Doñana 2005 Project: Confederación Hidrográfica del Guadalquivir (Guadalquivir Hydrologic Basin Authority), Sevilla, Spain
.
Holmes, T. R. H., Owe, M., De Jeu, R. A. M., and Kooi, H. (2008). “Estimating the soil temperature profile from a single depth observation: A simple empirical heatflow solution.” Water Resour. Res., 44, W02412
.
Hondzo, M., Ellis, C. E., and Stefan, H. G. (1991). “Vertical diffusion in small stratified lake: Data and error analysis.” J. Hydraul. Eng., 117(10), 1352–1369
.
Hondzo, M., and Stefan, H. G. (1994). “Riverbed heat conduction prediction.” Water Resour. Res., 30(5), 1503–1513
.
Incropera, F. P., and DeWitt, D. P. (1996). Fundamentals of heat and mass transfer, 4th Ed., Wiley, Chichester, U.K.
Ji, C.-C., Tuan, P.-C., and Jang, H.-Y. (1997). “A recursive least-squares algorithm for on-line 1-D inverse heat conduction estimation.” Int. J. Heat Mass Transfer, 40(9), 2081–2096
.
Jobson, H. E. (1977). “Bed conduction computation for thermal models.” J. Hydraul. Div., 103(10), 1213–1217
.
Kim, K. S., and Chapra, S. C. (1997). “Temperature model for highly transient shallow streams.” J. Hydraul. Eng., 123(1), 30–40
.
Kothandaraman, V. (1971). “Analysis of water temperature variations in large river.” J. Sanit. Engrg. Div., 97(1), 19–31
.
Likens, G. E., and Johnson, N. M. (1969). “Measurement and analysis of the annual heat budget for the sediments in two Wisconsin lakes.” Limnol. Oceanogr., 14(1), 115–135
.
Liu, J. (1996). “A stability analysis on Beck’s procedure for inverse heat conduction problems.” J. Comput. Phys., 123, 65–73
.
Malcolm, I. A., Soulsby, C., and Youngson, A. F. (2002). “Thermal regime in the hyporheic zone of two contrasting salmonid spawning streams: Ecological and hydrological implications.” Fisheries Manag. Ecol., 9, 1–10
.
Marti-Cardona, B., Lopez-Martinez, C., Dolz-Ripolles, J., and Bladè-Castellet, E. (2010). “ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring.” Remote Sens. Environ., 114, 2802–2815
.
Mohseni, O., Stefan, H. G., and Erickson, T. R. (1998). “A nonlinear regression model for weekly stream temperatures.” Water Resour. Res., 34(10), 2685–2692
.
Moreno, J. M., ed. (2005). “Evaluación preliminar de los impactos en España por efecto del cambio climático.” Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, Spain
.
Raphael, J. M. (1962). “Prediction of temperature in rivers and reservoirs.” J. Power Div., 88(2), 157–182
.
Reina, M., Espinar, J. L., and Serrano, L. (2006). “Sediment phosphate composition in relation to emergent macrophytes in the Doñana marshes (SW Spain).” Water Res., 40, 1185–1190
.
Ruiz, F., et al. (2004). “Late Holocene evolution of the southwestern Doñana National Park (Guadalquivir estuary, SW Spain): A multivariate approach.” Palaeogeogr. Palaeocl., 204, 47–64
.
Shen, H. T., and Chiang, L. A. (1984). “Simulation of growth and decay of river ice cover.” J. Hydraul. Eng., 110(7), 958–971
.
Shenefelt, J. R., Luck, R., Taylor, R. P., and Berry, J. T. (2002). “Solution to inverse heat conduction problems employing singular value decomposition and model-reduction.” Int. J. Heat Mass Transfer, 45, 67–74
.
Shepherd, B. G., Hartman, G. F., and Wilson, W. J. (1986). “Relationships between stream and intragravel temperatures in coastal drainages, and some implications for fisheries workers.” Can. J. Fish. Aquat. Sci., 43, 1818–1822
.
Silliman, S. E., Ramirez, J., and McCabe, R. L. (1995). “Quantifying downflow through creek sediments using temperature time series: One-dimensional solution incorporating measured surface temperature.” J. Hydrol. (Amsterdam), 167(1–4), 99–119
.
Sinokrot, B. A., and Stefan, H. G. (1993). “Stream temperature dynamics: Measurements and modeling.” Water Resour. Res., 29(7), 2299–2312
.
Sinokrot, B. A., and Stefan, H. G. (1994). “Stream water-temperature sensitivity to weather and bed parameters.” J. Hydraul. Eng., 120(6), 722–736
.
Siviglia, A., and Toro, E. F. (2009). “WAF method and splitting procedure for simulating hydro- and thermal-peaking waves in open-channel flows.” J. Hydraul. Eng., 135(8), 651–662
.
Smith, N. P. (2002). “Observations and simulations of water-sediment heat exchange in a shallow coastal lagoon.” Estuaries, 25(3), 483–487
.
Taler, J. (1996). “Theory of transient experimental techniques for surface heat transfer.” Int. J. Heat Mass Transfer, 39(17), 3733–3748
.
Todd, D. K. (1980). Groundwater hydrology, Wiley, New York
.
Tsay, T-K., Ruggaber, G. J., Effler, S. W., and Driscoll, C. T. (1992). “Thermal stratification modeling of lakes with sediment heat flux.” J. Hydraul. Eng., 118(3), 407–419
.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 137Issue 10October 2011
Pages: 1135 - 1147

History

Received: Jul 12, 2010
Accepted: Apr 1, 2011
Published online: Apr 4, 2011
Published in print: Oct 1, 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Jordi Prats [email protected]
Research Assistant, Civil Engineering School, Technical Univ. of Catalonia, C. Jordi Girona 1-3, Barcelona, 08034 Spain (corresponding author). E-mail: [email protected]
Anaïs Ramos [email protected]
Researcher, Civil Engineering School, Technical Univ. of Catalonia, C. Jordi Girona 1-3, Barcelona, 08034 Spain. E-mail: [email protected]
Joan Armengol [email protected]
Professor, Faculty of Biology, Univ. of Barcelona, Avda. Diagonal 645, Barcelona, 08028 Spain. E-mail: [email protected]
Josep Dolz, M.ASCE [email protected]
Professor, Civil Engineering School, Technical Univ. of Catalonia, C. Jordi Girona 1-3, Barcelona, 08034 Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share