TECHNICAL PAPERS
Mar 16, 2011

One-Dimensional Mixing Model for Surcharged Manholes

Publication: Journal of Hydraulic Engineering
Volume 137, Issue 10

Abstract

Mixing and dispersion processes affect the timing and concentration of contaminants transported within urban drainage systems. Hence, methods of characterizing the mixing effects of specific hydraulic structures are of interest to drainage network modelers. Previous research, focusing on surcharged manholes, used the first-order advection-dispersion equation (ADE) and aggregated dead zone (ADZ) models to characterize dispersion. However, although systematic variations in travel time as a function of discharge and surcharge depth were identified, the ADE and ADZ models did not provide particularly good fits to observed manhole mixing data, which meant that the derived parameter values were not independent of the upstream temporal concentration profile, and no rules for predicting parameter values based on manhole size and configuration were provided. An alternative, more robust, method is described by using the system’s cumulative residence time distribution (CRTD). This paper shows how a deconvolution approach derived from systems theory may be applied to identify, from laboratory data, the CRTDs associated with surcharged manholes. Archive laboratory data are reanalyzed to demonstrate that the solute transport characteristics of a surcharged manhole with straight-through inflow and outlet pipes over a range of flow rates and surcharge depths may be modeled using just two dimensionless CRTDs, one for prethreshold and the other for postthreshold surcharge depths. The model combines the derived manhole CRTDs with a standard (Gaussian) pipe dispersion model to provide temporal solute concentration profiles that are independent of both scale and the ratio of the pipe and manhole diameters.

Get full access to this article

View all available purchase options and get full access to this article.

References

Arao, S., and Kusuda, T. (1999). “Effects of pipe bending angle on energy losses at two-way circular drop manholes.” 8th Int. Conf. On Urban Storm Drainage, IWA, London, 2163–2168.
Danckwerts, P. V. (1953). “Continuous flow systems.” Chem. Eng. Sci., 2(1), 1–13.
Guymer, I., Dennis, P., O’Brien, R., and Saiyudthong, C. (2005). “Diameter and surcharge effects on solute transport across surcharged manholes.” J. Hydraul. Eng., 131(4), 312–321.
Guymer, I., and Dutton, R. (2007). “Application of transient storage modelling to solute transport across a surcharged manhole.” Water Sci. Technol., 55(4), 65–73.
Guymer, I., and O’Brien, R. T. (2000). “Longitudinal dispersion due to surcharged manhole.” J. Hydraul. Eng., 126(2), 137–149.
Hansen, P. C. (1998). Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion, SIAM, Philadelphia.
Hattersley, J., Evans, N. D., Bradwell, A. R., Mead, G. P., and Chappell, M. J. (2008). “Nonparametric predication of free-light chain generation in multiple myeloma patients.” Proc., 17th IFAC World Congress, International Federation of Automatic Control, Laxenburg, Austria.
Lau, S. D. (2008). “Scaling dispersion processes in surcharged manholes.” Ph.D. thesis, Univ. of Sheffield, UK.
Lau, S., Stovin, V. R., and Guymer, I. (2008). “Scaling the solute transport characteristics of a surcharged manhole.” Urban Water J., 5(1), 33–42.
Levenspiel, O. (1972). Chemical reaction engineering, 2nd Ed., Wiley, New York.
Madden, F. N., Godfrey, K. R., Chappell, M. J., Hovorka, R., and Bates, R. A. (1996). “A comparison of six deconvolution techniques.” J. Pharmacokin. Biopharm., 24(3), 283–299.
MathWorks. (2007). MATLAB version R2007b, Natick, MA.
Rutherford, J. C. (1994). River mixing, Wiley, London.
Skilling, J., and Bryan, R. K. (1984). “Maximum-entropy image-reconstruction: General algorithm.” Mon. Not. R. Astron. Soc., 211(1), 111–124.
Stovin, V. R., Grimm, J. P., and Lau, S. D. (2008). “Solute transport modelling for urban drainage structures.” J. Environ. Eng., 134(8), 640–650.
Stovin, V. R., Guymer, I., Chappell, M. J., and Hattersley, J. G. (2010a). “The use of deconvolution techniques to identify the fundamental mixing characteristics of urban drainage structures.” Water Sci. Technol., 61(8), 2075–2081.
Stovin, V. R., Guymer, I., and Lau, S.-T. D. (2010b). “Dimensionless method to characterize the mixing effects of surcharged manholes.” J. Hydraul. Eng., 136(5), 318–327.
Taylor, G. I. (1954). “The dispersion of matter in turbulent flow through a pipe.” Proc. R. Soc. London, Ser. A, 223, 446–468.
Young, P., Jakeman, A., and McMurtie, R. (1980). “An instrument variable method for model order identification.” Automatica, 16, 281–294.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 137Issue 10October 2011
Pages: 1160 - 1172

History

Received: Sep 3, 2010
Accepted: Mar 14, 2011
Published online: Mar 16, 2011
Published in print: Oct 1, 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Engineering, Univ. of Warwick, Coventry, CV4 7AL, UK. E-mail: [email protected]
V. R. Stovin [email protected]
Senior Lecturer, Dept. of Civil and Structural Engineering, Univ. of Sheffield, Mappin St., Sheffield, S1 3JD, UK (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share