Technical Papers
Nov 8, 2022

Spatiotemporal Simulation of Nitrate, Phosphate, and Salinity in the Unsaturated Zone for an Irrigation District West of Iran Using SWAP-ANIMO Model

Publication: Journal of Hydrologic Engineering
Volume 28, Issue 1

Abstract

Spatial and temporal distribution of nitrate, phosphate, and salinity of complex soil and water system is essential for land and water resources management. In this study, by aggregating a flow [SWAP (Soil-Water-Air-Plant)] and a transport [ANIMO (Agricultural Nitrogen Model)] model, the regional distributions of salinity, nitrate, and phosphate for an irrigation district, west of Iran, were simulated. Precise sensitivity analysis, calibration, and validation were performed based on the observed values. The results revealed that the soil salinity did not have considerable change with depth, but nitrate and phosphate decreased by about 42% and 92%, respectively. The effects of irrigation, fertilization, and seasonal weather changes on concentration of concerned parameters was also simulated well in time series. The mass balance results indicated that more salt had outflows from and more nitrate and phosphate remained in the soil, which could be a sign of soil deterioration. This spatial-temporal distributed model of unsaturated zone could be used for evaluation of long-term irrigation management scenarios while considering soil and water quantity and quality indicators.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, and reports that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abdelwaheb, M., K. Jebali, H. Dhaouadi, and S. Dridi-Dhaouadi. 2019. “Adsorption of nitrate, phosphate, nickel and lead on soils: Risk of groundwater contamination.” Ecotoxicol. Environ. Saf. 179 (Sep): 182–187. https://doi.org/10.1016/j.ecoenv.2019.04.040.
Afzali Sardoo, M., J. Taei, and M. Amirinezhad. 2018. “Evaluation of WOFOST model for growth and development simulation of maize (Zea mays L.) under summer cropping system condition in tropical regions of Jiroft, Iran.” [In Persian.] Iran. J. Field Crop Sci. 49 (1): 57–64. https://doi.org/10.22059/ijfcs.2017.205678.654112.
Bafkar, A., J. Mozafari, and H. Alizadeh. 2019. “Investigation of water supply and cropping pattern on water level rising in Abbas plain of Ilam province using system dynamics approach.” [In Persian.] Environ. Water Eng. 5 (3): 239–250. https://doi.org/10.22034/jewe.2019.168184.1304.
Bailey, R. T., S. Tavakoli-Kivi, and X. Wei. 2019. “A salinity module for SWAT to simulate salt ion fate and transport at the watershed scale.” Hydrol. Earth Syst. Sci. 23 (7): 3155–3174. https://doi.org/10.5194/hess-23-3155-2019.
Bamdad, A. A., V. R. Rezaverdinejad, and A. A. Ghaemi. 2015. “Prediction of soil profile water content and salinity in sesame and maize fields by SWAP model under farmers management conditions (case study Larestan region).” [In Persian.] Iran. J. Irrig. Drain. 9 (1): 1–12.
Bayat, J., S. H. Hashemi, K. Khoshbakht, and R. Deihimfard. 2016. “Interpolation of soil nutrients (nitrate and phosphate), organic carbon, EC and pH in agricultural lands to the south of Tehran City.” [In Persian.] Environ. Sci. 14 (2): 1–11.
Brouziyne, Y., A. Abouabdillah, R. Bouabid, L. Benaabidate, and O. Oueslati. 2017. “SWAT manual calibration and parameters sensitivity analysis in a semi-arid watershed in north-western Morocco.” Arabian J. Geosci. 10 (19): 427. https://doi.org/10.1007/s12517-017-3220-9.
Cornelissen, P., S. E. A. T. M. van der Zee, and A. Leijnse. 2021. “Framework for the integrated sustainability assessment of irrigation with marginal water.” Water 13 (9): 1168. https://doi.org/10.3390/w13091168.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A fast and elitist multiobjective genetic algorithm: NSGA-II.” IEEE Trans. Evol. Comput. 6 (2): 182–197. https://doi.org/10.1109/4235.996017.
De Filippis, G., L. Ercoli, and R. Rossetto. 2021. “A spatially distributed, physically-based modeling approach for estimating agricultural nitrate leaching to groundwater.” Hydrology 8 (1): 8. https://doi.org/10.3390/hydrology8010008.
de Willigen, P., O. Oenema, and W. de Vries. 2007. “Modelling nitrogen and phosphorus cycling in agricultural systems at field and regional scales.” In Nutrient cycling in terrestrial ecosystems, edited by P. Marschner and Z. Rengel, 361–390. Berlin: Springer.
de Wit, A. J. W., D. d’Abelleyra, S. Veron, J. G. Kroes, I. Supit, and H. L. Boogaard. 2017. “Technical description of crop model (WOFOST) calibration and simulation activities for Argentina, pampas region.” SIGMA. Accessed March 2, 2020. https://edepot.wur.nl/441498.
Ebrahimi Pak, N. A., A. Egdernezhad, A. Tafteh, and M. Ahmadee. 2019. “Evaluation of AquaCrop, WOFOST, and CropSyst to simulate rapeseed yield.” [In Persian.] Iran. J. Irrig. Drain. 13 (3): 715–726.
Eitzinger, J., M. Trnka, J. Hösch, Z. Žalud, and M. Dubrovský. 2004. “Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions.” Ecol. Modell. 171 (3): 223–246. https://doi.org/10.1016/j.ecolmodel.2003.08.012.
Farmaha, B. S. 2014. “Evaluating Animo model for predicting nitrogen leaching in rice and wheat.” Arid Land Res. Manage. 28 (1): 25–35. https://doi.org/10.1080/15324982.2013.801371.
Ge, S., Z. Zhu, and Y. Jiang. 2018. “Long-term impact of fertilization on soil pH and fertility in an apple production system.” J. Soil Sci. Plant Nutr. 18 (1): 282–293. https://doi.org/10.4067/S0718-95162018005001002.
Ghareh Daghi, M. M., S. M. Tabatabaei, and M. Hasanli. 2016. “Simulation of soil salinity and maize yield under saline water application using SWAP and SALTMED models.” [In Persian.] Iran. J. Water Res. Agric. 30 (1): 51–64. https://doi.org/10.22092/jwra.2016.106201.
Groenendijk, P., and J. G. Kroes. 1999. Modelling the nitrogen and phosphorus leaching to groundwater and surface water, ANIMO 3.5. Wageningen, Netherlands: Winand Staring Centre.
Groenendijk, P., L. V. Renaud, and J. Roelsma. 2005. “Prediction of nitrogen and phosphorus leaching to groundwater and surface waters; Process descriptions of the ANIMO 4.0 model.” Accessed April 9, 2020. https://edepot.wur.nl/35121.
Han, J., J. Shi, L. Zeng, J. Xu, and L. Wu. 2015. “Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.” Environ. Sci. Pollut. Res. 22 (4): 2976–2986. https://doi.org/10.1007/s11356-014-3542-z.
Hansen, B., L. Thorling, J. Schullehner, M. Termansen, and T. Dalgaard. 2017. “Groundwater nitrate response to sustainable nitrogen management.” Sci. Rep. 7 (1): 8566. https://doi.org/10.1038/s41598-017-07147-2.
Hendriks, R. F. A., D. J. J. Walvoort, and M. H. J. L. Jeuken. 2008. “Evaluation of the applicability of the SWAP-ANIMO model for simulating nutrient loading of surface water in a peat land area; Calibration, validation, and system and scenario analysis for an experimental site in the Vlietpolder.” Accessed July 25, 2020. https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-333736323036.
Hendriks, R. F. A., R. Wollewinkel, and J. J. H. van den Akker. 2007. “Predicting soil subsidence and greenhouse gas emission in peat soils depending on water management with the SWAP-ANIMO model.” In Proc., 1st Int. Symp. on Carbon in Peatlands, Wageningen, The Netherlands, 15-18 April 2007, edited by B. Robroek, G. Schaeoman-Strub, J. Limpens, F. Berendse, and A. Breeuwer, 583–586. Wageningen, Netherlands: Wageningen Univ.
Holzworth, D. P., V. Snow, S. Janssen, I. N. Athanasiadis, M. Donatelli, G. Hoogenboom, J. W. White, and P. Thorburn. 2015. “Agricultural production systems modelling and software: Current status and future prospects.” Environ. Modell. Software 72 (Oct): 276–286. https://doi.org/10.1016/j.envsoft.2014.12.013.
Hu, Y., W. Wu, D. Xu, and H. Liu. 2018. “Impact of long-term reclaimed water irrigation on trace elements contents in agricultural soils in Beijing, China.” Water 10 (12): 1716. https://doi.org/10.3390/w10121716.
IAO (Ilam Agriculture Organization). 2019. Statistical year book of Ilam province agriculture. [In Persian.] Ilam, Iran: IAO.
IRWC (Ilam Reginal Water Company). 2010. Dashtabbas irigation and drainage network study. [In Persian.] Ilam, Iran: IRWC.
IRWC (Ilam Reginal Water Company). 2018. Dashtabbas water logging and soil salinity problem solution. [In Persian.] Ilam, Iran: IRWC.
Islam, M. S., S. M. Ullah, T. H. Khan, and S. M. I. Huq. 2008. “Retention of nitrate and phosphate in soil and their subsequent uptake by plants.” Bangladesh J. Sci. Ind. Res. 43 (1): 67–76. https://doi.org/10.3329/bjsir.v43i1.858.
Jamieson, P. D., J. R. Porter, and D. R. Wilson. 1991. “A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand.” Field Crops Res. 27 (4): 337–350. https://doi.org/10.1016/0378-4290(91)90040-3.
Jiang, J., S. Feng, Z. Huo, Z. Zhao, and B. Jia. 2011. “Application of the SWAP model to simulate water–salt transport under deficit irrigation with saline water.” Math. Comput. Modell. 54 (3–4): 902–911. https://doi.org/10.1016/j.mcm.2010.11.014.
Jiang, Y., X. Xu, Q. Huang, Z. Huo, and G. Huang. 2015. “Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model.” Agric. Water Manage. 147 (Jan): 67–81. https://doi.org/10.1016/j.agwat.2014.08.003.
Karami, E., H. Karimi, M. Tavakoli, and G. Banparvari. 2015. “Investigating the effects of water transfer from Karkheh Dam on the physico-chemical properties of soil in Dasht-E Abbas plain, Ilam.” Geopersia 5 (2): 151–160.
Karimi, H., and S. Alimoradi. 2018. “Impacts of water transfer from Karkheh Dam on rising of groundwater in Dasht-E Abbas plain, Ilam province.” Res. Earth Sci. 8 (32): 33–44.
Karimi, P., A. S. Qureshi, R. Bahramloo, and D. Molden. 2012. “Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran.” Agric. Water Manage. 108 (May): 52–60. https://doi.org/10.1016/j.agwat.2011.09.001.
Kaufmann, V., A. Pinheiro, and N. M. dos Reis Castro. 2014. “Simulating transport of nitrogen and phosphorus in a Cambisol after natural and simulated intense rainfall.” J. Contam. Hydrol. 160 (May): 53–64. https://doi.org/10.1016/j.jconhyd.2014.02.005.
Kersebaum, K. C., J. M. Hecker, W. Mirschel, and M. Wegehenkel. 2007. “Modelling water and nutrient dynamics in soil–crop systems: A comparison of simulation models applied on common data sets.” In Proc., Modelling Water and Nutrient Dynamics in Soil–Crop Systems, 1–17. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-1-4020-4479-3_1.
Kistner, I., G. Ollesch, R. Meissner, and M. Rode. 2013. “Spatial-temporal dynamics of water soluble phosphorus in the topsoil of a low mountain range catchment.” Agric. Ecosyst. Environ. 176 (Aug): 24–38. https://doi.org/10.1016/j.agee.2013.05.016.
Kroes, J., and J. Roelsma. 2007. “Simulation of water and nitrogen flows on field scale; Application of the SWAP–ANIMO model for the Müncheberg data set.” In Proc., Modelling Water and Nutrient Dynamics in Soil–Crop Systems, 111–128. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-1-4020-4479-3_9.
Kroes, J. G., J. C. vanDam, R. P. Bartholomeus, P. Groenendijk, M. Heinen, R. F. A. Henriks, H. M. Muldar, I. Suipit, and P. E. V. van Walsum. 2017. SWAP version 4, theory description and user manual. Wageningen, Netherlands: Wageningen Environmental Research (Alterra).
Kumar, P., A. Sarangi, D. K. Singh, S. S. Parihar, and R. N. Sahoo. 2015. “Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model.” Agric. Water Manage. 148 (Jan): 72–83. https://doi.org/10.1016/j.agwat.2014.09.014.
Li, P., and L. Ren. 2019. “Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation.” J. Hydrol. 574 (Jul): 497–516. https://doi.org/10.1016/j.jhydrol.2019.04.053.
Li, Y. 2019. “Simulation surface fertigation practices of winter wheat–summer maize rotation in the North China plain with WinSRFR/SWAP.” M.Sc. thesis, Water Resources Management Group, Wageningen Univ. and Research.
Liang, H., K. Hu, W. D. Batchelor, Z. Qi, and B. Li. 2016. “An integrated soil-crop system model for water and nitrogen management in North China.” Sci. Rep. 6 (1): 25755. https://doi.org/10.1038/srep25755.
Liu, Z., Z. Huo, C. Wang, L. Zhang, X. Wang, G. Huang, X. Xu, and T. S. Steenhuis. 2020. “A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater.” Hydrol. Earth Syst. Sci. 24 (8): 4213–4237. https://doi.org/10.5194/hess-24-4213-2020.
Mao, W., Y. Zhu, H. Dai, M. Ye, J. Yang, and J. Wu. 2019. “A comprehensive quasi-3-D model for regional-scale unsaturated–saturated water flow.” Hydrol. Earth Syst. Sci. 23 (8): 3481–3502. https://doi.org/10.5194/hess-23-3481-2019.
Marcinkowski, P., M. Piniewski, I. Kardel, M. Giełczewski, and T. Okruszko. 2013. “Modelling of discharge, nitrate and phosphate loads from the Reda catchment to the Puck Lagoon using SWAT.” Ann. Warsaw Univ. Life Sci. SGGW Land Reclam. 45 (2): 125–141. https://doi.org/10.2478/sggw-2013-0011.
Marinov, D., E. Querner, and J. Roelsma. 2005. “Simulation of water flow and nitrogen transport for a Bulgarian experimental plot using SWAP and ANIMO models.” J. Contam. Hydrol. 77 (3): 145–164. https://doi.org/10.1016/j.jconhyd.2004.12.004.
McGechan, M. B., and P. S. Hooda. 2010. “Modelling water pollution by leached soluble phosphorus, Part 1: Calibration of the ANIMO model.” Biosyst. Eng. 106 (2): 138–146. https://doi.org/10.1016/j.biosystemseng.2010.02.007.
Mombeni, M., A. Karamshahi, P. Graee, F. Azadnia, and H. Khosravi. 2015. “Assessing current state of desertification based on water, climate and soil indicators using IMDPA model (case study: Dasht Abbas).” [In Persian.] Water Soil Sci. 19 (72): 349–359. https://doi.org/10.18869/acadpub.jstnar.19.72.29.
Mudaly, L., and M. van der Laan. 2020. “Interactions between irrigated agriculture and surface water quality with a focus on phosphate and nitrate in the Middle Olifants Catchment, South Africa.” Sustainability 12 (11): 4370. https://doi.org/10.3390/su12114370.
Nahvinia, M. J., B. Moaveni, and A. Shahidi. 2018. “Assessment of SWAP model in estimating the salinity and soil moisture content (case study: Birjand).” [In Persian.] Iran. J. Irrig. Drain. 12 (5): 1174–1188.
Nakagawa, K., H. Amano, M. Persson, and R. Berndtsson. 2021. “Spatiotemporal variation of nitrate concentrations in soil and groundwater of an intensely polluted agricultural area.” Sci. Rep. 11 (1): 2598. https://doi.org/10.1038/s41598-021-82188-2.
Noory, H., A. M. Liaghat, M. Parsinejad, and M. Vazifedoust. 2011a. “Evaluation of SWAP model in simulating yield of wheat and fodder maize in simultaneous condition of water and salinity limitations (case study: Voshmgir Network, Golestan Province).” [In Persian.] J. Water Soil 24 (6): 1124–1235.
Noory, H., S. E. A. T. M. van der Zee, A. M. Liaghat, M. Parsinejad, and J. C. van Dam. 2011b. “Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran.” Agric. Water Manage. 98 (6): 1062–1070. https://doi.org/10.1016/j.agwat.2011.01.013.
Parchami Araghi, F., F. Samipour, and A. Sadeghi Lari. 2020. “Application of SWAP model for modelling a sugarcane farming system with controlled subsurface drainage.” [In Persian.] Iran. J. Water Res. Agric. 34 (1): 51–64. https://doi.org/10.22092/jwra.2020.121915.
Parvaz, G., M. Rostaminya, and H. Alizadeh. 2018. “Optimization of the cropping pattern using AquaCrop-GIS (Case study: Dehloran Plain, Ilam Province).” [In Persian.] Iran. J. Soil Water Res. 49 (4): 865–877. https://doi.org/10.22059/ijswr.2017.242981.667770.
Patle, G. T., D. K. Singh, A. Sarangi, and M. Khanna. 2016. “Managing CO2 emission from groundwater pumping for irrigating major crops in trans indo-gangetic plains of India.” Clim. Change 136 (2): 265–279. https://doi.org/10.1007/s10584-016-1624-2.
Pinto, V. M., I. P. Bruno, Q. de Jong van Lier, D. Dourado-Neto, and K. Reichardt. 2017. “Environmental benefits of reducing N rates for coffee in the Cerrado.” Soil Tillage Res. 166 (Mar): 76–83. https://doi.org/10.1016/j.still.2016.10.006.
Santhi, C., R. Srinivasan, J. G. Arnold, and J. R. Williams. 2006. “A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas.” Environ. Modell. Software 21 (8): 1141–1157. https://doi.org/10.1016/j.envsoft.2005.05.013.
Saxton, K. E., and W. J. Rawls. 2006. “Soil water characteristic estimates by texture and organic matter for hydrologic solutions.” Soil Sci. Soc. Am. J. 70 (5): 1569–1578. https://doi.org/10.2136/sssaj2005.0117.
Schwarz, G. E., R. B. Alexander, R. A. Smith, and S. D. Preston. 2011. “The regionalization of national-scale SPARROW models for stream nutrients.” J. Am. Water Resour. Assoc. 47 (5): 22. https://doi.org/10.1111/j.1752-1688.2011.00581.x.
Serio, F., P. P. Miglietta, L. Lamastra, S. Ficocelli, F. Intini, F. De Leo, and A. De Donno. 2018. “Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy).” Sci. Total Environ. 645 (Dec): 1425–1431. https://doi.org/10.1016/j.scitotenv.2018.07.241.
Shafiei, M., B. Ghahreman, B. Saghafian, K. Davari, and M. Vazifeh Doost. 2018. “Global sensitivity analysis of WOFOST model parameters for maize and wheat yield simulation.” [In Persian.] Iran. J. Soil Water Res. 49 (4): 831–839. https://doi.org/10.22059/ijswr.2018.133882.667317.
Sigua, G. C., K. C. Stone, P. J. Bauer, A. A. Szogi, and P. D. Shumaker. 2017. “Impacts of irrigation scheduling on pore water nitrate and phosphate in coastal plain region of the United States.” Agric. Water Manage. 186 (May): 75–85. https://doi.org/10.1016/j.agwat.2017.02.016.
Singh, A., and M. Agrawal. 2012. “Effects of waste water irrigation on physical and biochemical characteristics of soil and metal partitioning in Beta vulgaris L.” Agric. Res. 1 (4): 379–391. https://doi.org/10.1007/s40003-012-0044-4.
Singh, R., R. K. Jhorar, J. C. van Dam, and R. A. Feddes. 2006. “Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa district, India II: Impact of viable water management scenarios.” J. Hydrol. 329 (Oct): 714–723. https://doi.org/10.1016/j.jhydrol.2006.03.016.
Stahn, P., S. Busch, T. Salzmann, B. Eichler-Löbermann, and K. Miegel. 2017. “Combining global sensitivity analysis and multiobjective optimisation to estimate soil hydraulic properties and representations of various sole and mixed crops for the agro-hydrological SWAP model.” Environ. Earth Sci. 76 (10): 1–19. https://doi.org/10.1007/s12665-017-6701-y.
Steduto, P., T. C. Hsiao, E. Fereres, and D. Raes. 2012. “Crop yield response to water.” Accessed April 24, 2020. http://www.fao.org/3/i2800e/i2800e00.htm.
Stolk, P. C., R. F. A. Hendriks, C. M. J. Jacobs, J. Duyzer, E. J. Moors, J. W. van Groenigen, P. S. Kroon, A. P. Schrier-Uijl, E. M. Veenendaal, and P. Kabat. 2011. “Simulation of daily nitrous oxide emissions from managed peat soils.” Vadose Zone J. 10 (1): 156–168. https://doi.org/10.2136/vzj2010.0029.
Tenreiro, T. R., M. García-Vila, J. A. Gómez, J. A. Jimenez-Berni, and E. Fereres. 2020. “Water modelling approaches and opportunities to simulate spatial water variations at crop field level.” Agric. Water Manage. 240 (Oct): 106254. https://doi.org/10.1016/j.agwat.2020.106254.
USDA. 2021. “Soil quality indicator sheets.” Accessed April 14, 2021. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/health/assessment/?cid=stelprdb1237387.
van Dam, J. C., and R. S. Malik, eds. 2003. “Water productivity of irrigated crops in Sirsa district, India. Integration of remote sensing, crop and soil models and geographical information systems.” Accessed July 15, 2019. https://core.ac.uk/download/pdf/29291821.pdf.
Vogel, T., M. T. Van Genuchten, and M. Císlerová. 2000. “Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions.” Adv. Water Resour. 24 (2): 133–144. https://doi.org/10.1016/S0309-1708(00)00037-3.
Wang, H., X. Ju, Y. Wei, B. Li, L. Zhao, and K. Hu. 2010. “Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain.” Agric. Water Manage. 97 (10): 1646–1654. https://doi.org/10.1016/j.agwat.2010.05.022.
Wang, L., M. E. Stuart, M. A. Lewis, R. S. Ward, D. Skirvin, P. S. Naden, A. L. Collins, and M. J. Ascott. 2016. “The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150.” Sci. Total Environ. 542 (Jan): 694–705. https://doi.org/10.1016/j.scitotenv.2015.10.127.
Wang, X., and Y. Xing. 2016. “Effects of irrigation and nitrogen fertilizer input levels on soil NO3(-)-N content and vertical distribution in greenhouse tomato (Lycopersicum esculentum Mill.).” Scientifica 2016 (Aug): 5710915. https://doi.org/10.1155/2016/5710915.
Wei, X. 2019. “Improved assessment of nitrogen and phosphorus fate and transport for intensively irrigated stream-aquifer systems.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Colorado State Univ.
Wei, X., and R. T. Bailey. 2021. “Evaluating nitrate and phosphorus remediation in intensively irrigated stream-aquifer systems using a coupled flow and reactive transport model.” J. Hydrol. 598 (Jul): 126304. https://doi.org/10.1016/j.jhydrol.2021.126304.
Wolf, J., M. J. D. Hack-ten Broeke, and R. Rötter. 2005. “Simulation of nitrogen leaching in sandy soils in the Netherlands with the ANIMO model and the integrated modelling system STONE.” Agric. Ecosyst. Environ. 105 (3): 523–540. https://doi.org/10.1016/j.agee.2004.07.010.
Wu, L., and M. B. McGechan. 1998. “A review of carbon and nitrogen processes in four soil nitrogen dynamics models.” J. Agric. Eng. Res. 69 (4): 279–305. https://doi.org/10.1006/jaer.1997.0250.
Xu, X., G. Huang, H. Zhan, Z. Qu, and Q. Huang. 2012. “Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas.” J. Hydrol. 412–413 (Jan): 170–181. https://doi.org/10.1016/j.jhydrol.2011.07.002.
Xu, X., C. Sun, G. Huang, and B. P. Mohanty. 2016. “Global sensitivity analysis and calibration of parameters for a physically-based agro-hydrological model.” Environ. Modell. Software 83 (Sep): 88–102. https://doi.org/10.1016/j.envsoft.2016.05.013.
Xue, J., and L. Ren. 2017. “Assessing water productivity in the Hetao Irrigation District in Inner Mongolia by an agro-hydrological model.” Irrig. Sci. 35 (4): 357–382. https://doi.org/10.1007/s00271-017-0542-z.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 28Issue 1January 2023

History

Received: Jun 2, 2021
Accepted: Aug 16, 2022
Published online: Nov 8, 2022
Published in print: Jan 1, 2023
Discussion open until: Apr 8, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti Univ., P.O. Box 16765-1719, Bahar Blvd., Hakimieh, Tehran, Iran. ORCID: https://orcid.org/0000-0003-4611-898X. Email: [email protected]
Saeed Alimohammadi [email protected]
Associate Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti Univ., P.O. Box 16765-1719, Bahar Blvd., Hakimieh, Tehran, Iran (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Soil Salinity Weakening and Soil Quality Enhancement after Long-Term Reclamation of Different Croplands in the Yellow River Delta, Sustainability, 10.3390/su15021173, 15, 2, (1173), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share