Case Studies
Jun 16, 2022

Enhancement of Satellite Precipitation Estimations with Bias Correction and Data-Merging Schemes for Flood Forecasting

Publication: Journal of Hydrologic Engineering
Volume 27, Issue 9

Abstract

This study investigates the capability of both quantile mapping (QM) bias correction and kriging merging techniques to improve precipitation accuracy of Tropical Rainfall Measuring Mission (TRMM) and Integrated Multisatellite Retrievals for the Global Precipitation Measurement (IMERG) satellite estimations over the Langat River Basin, an important river basin in Malaysia as it is the main source of potable water supply to Kuala Lumpur, in the 5-year period (2014–2018). This analysis also integrates both techniques to investigate whether the estimations can be further improved. Findings show that the estimations that undergo QM first followed by kriging merging (QK-TRMM and QK-IMERG) give significant improvement at almost all aspects of rainfall and streamflow comparison. At point-to-pixel rainfall comparison, around 50% improvement can be seen in both time series– and frequency-based statistics as well as an able to perform with a coefficient of correlation (CC) over 0.80 in terms of areal rainfall. The study performs streamflow simulation by employing the hydrological modeling system (HEC-HMS) to validate the performance of raw and enhanced satellite estimations for the 2014–2015 extreme flood events. Both QK-TRMM and QK-IMERG show a great improvement in the overall streamflow simulation with a Nash–Sutcliffe efficiency (NSE) of more than 0.70. The results reveal that the newly proposed bias correction method (merging of the QM and kriging methods) has significantly contributed to the improvement of precipitation estimation, which is crucial in water resources planning and flood forecasting.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code used during the study were provided by a third party (climate data such as rainfall, temperature, and streamflow). Direct requests for these materials may be made to the provider as indicated in the Acknowledgments.

Acknowledgments

The research was supported by the University of Malaya, Kuala Lumpur, Malaysia (Grant No. GPF042A-2018). The authors would like to take this opportunity to acknowledge the Department of Irrigation and Drainage (DID) Malaysia for providing the daily precipitation data as well as the developers of all SPPs for providing the downloadable data.

References

Abera, W., L. Brocca, and R. Rigon. 2016. “Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin.” Atmos. Res. 178–179 (Sep): 471–483. https://doi.org/10.1016/j.atmosres.2016.04.017.
Ajaaj, A. A., A. K. Mishra, and A. A. Khan. 2016. “Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate.” Stochastic Environ. Res. Risk Assess. 30 (6): 1659–1675. https://doi.org/10.1007/s00477-015-1155-9.
Akasah, Z. A., and S. V. Doraisamy. 2015. “2014 Malaysia flood: Impacts & factors contributing towards the restoration of damages.” J. Sci. Res. Dev. 2 (14): 53–59.
Bitew, M. M., and M. Gebremichael. 2011. “Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model.” Water Resour. Res. 47 (6). https://doi.org/10.1029/2010WR009917.
Boushaki, F. I., K.-L. Hsu, S. Sorooshian, G.-H. Park, S. Mahani, and W. Shi. 2009. “Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the Southwestern United States.” J. Hydrometeorol. 10 (5): 1231–1242. https://doi.org/10.1175/2009JHM1099.1.
Buytaert, W., R. Celleri, P. Willems, B. D. Bièvre, and G. Wyseure. 2006. “Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes.” J. Hydrol. 329 (3–4): 413–421. https://doi.org/10.1016/j.jhydrol.2006.02.031.
Chen, J., F. P. Brissette, D. Chaumont, and M. Braun. 2013. “Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America.” Water Resour. Res. 49 (7): 4187–4205. https://doi.org/10.1002/wrcr.20331.
Dembélé, M., and S. J. Zwart. 2016. “Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa.” Int. J. Remote Sens. 37 (17): 3995–4014. https://doi.org/10.1080/01431161.2016.1207258.
Ehret, U. 2003. “Rainfall and flood nowcasting in small catchments using weather radar.” Accessed June 1, 2019. https://books.google.com.my/books?id=-y6CAAAACAAJ.
Fang, G. H., J. Yang, Y. N. Chen, and C. Zammit. 2015. “Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China.” Hydrol. Earth Syst. Sci. 19 (6): 2547–2559. https://doi.org/10.5194/hess-19-2547-2015.
Gottschalck, J., J. Meng, M. Rodell, and P. Houser. 2005. “Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states.” J. Hydrometeorol. 6 (5): 573–598. https://doi.org/10.1175/JHM437.1.
Grimes, D. I. F., E. Pardo-Igúzquiza, and R. Bonifacio. 1999. “Optimal areal rainfall estimation using raingauges and satellite data.” J. Hydrol. 222 (1–4): 93–108. https://doi.org/10.1016/S0022-1694(99)00092-X.
Gumindoga, W., T. H. M. Rientjes, A. T. Haile, H. Makurira, and P. Reggiani. 2016. “Bias correction schemes for CMORPH satellite rainfall estimates in the Zambezi River Basin.” Hydrology and earth system sciences discussions, 1–36. Munich, Germany: European Geosciences Union. https://doi.org/10.5194/hess-2016-33.
Habib, E., A. Haile, N. Sazib, Y. Zhang, and T. Rientjes. 2014. “Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile.” Remote Sens. 6 (7): 6688. https://doi.org/10.3390/rs6076688.
Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie, and S.-H. Yoo. 2015. “NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG).” In Algorithm theoretical basis document. Washington, DC: National Aeronautics and Space Administration.
Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker. 2007. “The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales.” J. Hydrometeorol. 8 (1): 38–55. https://doi.org/10.1175/JHM560.1.
Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan. 2019. “GPM IMERG final precipitation L3 1 day 0.1 degree x 0.1 degree V06 (GPM_3IMERGDF).” Accessed November 1, 2018. https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary.
Islam, M. R., W. Z. W. Jaafar, L. S. Hin, N. Osman, and M. R. Karim. 2020. “Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE.” Appl. Water Sci. 10 (7): 165. https://doi.org/10.1007/s13201-020-01185-4.
Jewell, S. A., and N. Gaussiat. 2015. “An assessment of kriging-based rain-gauge–radar merging techniques.” Q. J. R. Meteorol. Soc. 141 (691): 2300–2313. https://doi.org/10.1002/qj.2522.
Jurczyk, A., K. Osródka, S. Moszkowicz, C. Mazzetti, and J. Szturc. 2004. “Precipitation field estimation based on radar and raingauge data.” In Proc., 6th Int. Symp. on Hydrological Applications of Weather Radar. Parkes, Australia: National Library of Australia.
Krajewski, W. F. 1987. “Cokriging radar-rainfall and rain gage data.” Atmospheres 92 (D8): 9571–9580. https://doi.org/10.1029/JD092iD08p09571.
Leander, R., and T. A. Buishand. 2007. “Resampling of regional climate model output for the simulation of extreme river flows.” J. Hydrol. 332 (3): 487–496. https://doi.org/10.1016/j.jhydrol.2006.08.006.
Lenderink, G., A. Buishand, and W. van Deursen. 2007. “Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach.” Hydrol. Earth Syst. Sci. 11 (3): 1145–1159. https://doi.org/10.5194/hess-11-1145-2007.
Li, M., and Q. Shao. 2010. “An improved statistical approach to merge satellite rainfall estimates and raingauge data.” J. Hydrol. 385 (1): 51–64. https://doi.org/10.1016/j.jhydrol.2010.01.023.
Maggioni, V., and C. Massari. 2018. “On the performance of satellite precipitation products in riverine flood modeling: A review.” J. Hydrol. 558 (Mar): 214–224. https://doi.org/10.1016/j.jhydrol.2018.01.039.
Mei, Y., E. N. Anagnostou, E. I. Nikolopoulos, and M. Borga. 2014. “Error analysis of satellite precipitation products in mountainous basins.” J. Hydrometeorol. 15 (5): 1778–1793. https://doi.org/10.1175/jhm-d-13-0194.1.
Mohd Zad, S. N., Z. Zulkafli, and F. M. Muharram. 2018. “Satellite rainfall (TRMM 3B42-V7) performance assessment and adjustment over Pahang River Basin, Malaysia.” Remote Sens. 10 (3): 388. https://doi.org/10.3390/rs10030388.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Nie, S., T. Wu, Y. Luo, X. Deng, X. Shi, Z. Wang, X. Liu, and J. Huang. 2016. “A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions.” Adv. Atmos. Sci. 33 (7): 889–904. https://doi.org/10.1007/s00376-016-5223-y.
Pan, X., D. Yang, Y. Li, A. Barr, W. Helgason, M. Hayashi, P. Marsh, J. Pomeroy, and R. J. Janowicz. 2016. “Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada.” The Cryosphere 10 (5): 2347–2360. https://doi.org/10.5194/tc-10-2347-2016.
Pan, Y., Y. Shen, J. Yu, and A. Xiong. 2015. “An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method.” Acta Meteorol. Sin. 73 (1): 177–186. https://doi.org/10.11676/qxxb2015.010.
Pereira Filho, A. J. 2004. “Integrating gauge, radar and satellite rainfall.” In Proc., WWRP Int. Precipitation Working Group Workshop. Brasília, Brazil: National Council for Scientific and Technological Development.
Piani, C., G. P. Weedon, M. Best, S. M. Gomes, P. Viterbo, S. Hagemann, and J. O. Haerter. 2010. “Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models.” J. Hydrol. 395 (3): 199–215. https://doi.org/10.1016/j.jhydrol.2010.10.024.
Ringard, J., F. Seyler, and L. Linguet. 2017. “A quantile mapping bias correction method based on hydroclimatic classification of the guiana shield.” Sensors 17 (6): 1413. https://doi.org/10.3390/s17061413.
Rozante, J. R., D. S. Moreira, L. G. G. D. Goncalves, and D. A. Vila. 2010. “Combining TRMM and surface observations of precipitation: Technique and validation over South America.” Weather Forecasting 25 (3): 885–894. https://doi.org/10.1175/2010waf2222325.1.
Schmidli, J., C. Frei, and P. L. Vidale. 2006. “Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods.” Int. J. Climatol. 26 (5): 679–689. https://doi.org/10.1002/joc.1287.
Semire, F. A., and R. Mohd-Mokhtar. 2016. “Evaluation of satellite retrieval algorithm to ground rainfall estimates over Malaysia.” MAPAN 31 (3): 177–187. https://doi.org/10.1007/s12647-016-0171-7.
Shen, Y., P. Zhao, Y. Pan, and J. Yu. 2014. “A high spatiotemporal gauge-satellite merged precipitation analysis over China.” Atmospheres 119 (6): 3063–3075. https://doi.org/10.1002/2013jd020686.
Sinclair, S., and G. Pegram. 2005a. “Combining radar and rain gauge rainfall estimates using conditional merging.” Atmos. Sci. Lett. 6 (1): 19–22. https://doi.org/10.1002/asl.85.
Sinclair, S., and G. G. S. Pegram. 2005b. “Empirical mode decomposition in 2-D space and time: A tool for space-time rainfall analysis and nowcasting.” Hydrol. Earth Syst. Sci. 9 (3): 127–137. https://doi.org/10.5194/hess-9-127-2005.
Soo, E. Z. X., W. Z. W. Jaafar, S. H. Lai, T. Islam, and P. Srivastava. 2018. “Evaluation of satellite precipitation products for extreme flood events: Case study in Peninsular Malaysia.” J. Water Clim. Change 10 (4): 871–892. https://doi.org/10.2166/wcc.2018.159.
Soo, E. Z. X., W. Z. W. Jaafar, S. H. Lai, F. Othman, A. Elshafie, T. Islam, P. Srivastava, and H. S. Othman Hadi. 2020. “Precision of raw and bias-adjusted satellite precipitation estimations (TRMM, IMERG, CMORPH, and PERSIANN) over extreme flood events: Case study in Langat River Basin, Malaysia.” Supplement, J. Water Clim. Change 11 (S1): 322–342. https://doi.org/10.2166/wcc.2020.180.
Stampoulis, D., and E. N. Anagnostou. 2012. “Evaluation of global satellite rainfall products over continental Europe.” J. Hydrometeorol. 13 (2): 588–603. https://doi.org/10.1175/JHM-D-11-086.1.
Tan, M. L., A. L. Ibrahim, Z. Duan, A. P. Cracknell, and V. Chaplot. 2015. “Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia.” Remote Sens. 7 (2): 1504–1528. https://doi.org/10.3390/rs70201504.
Tan, M. L., and H. Santo. 2018. “Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia.” Atmos. Res. 202 (Apr): 63–76. https://doi.org/10.1016/j.atmosres.2017.11.006.
Tesfagiorgis, K., S. E. Mahani, N. Y. Krakauer, and R. Khanbilvardi. 2011. “Bias correction of satellite rainfall estimates using a radar-gauge product—A case study in Oklahoma (USA).” Hydrol. Earth Syst. Sci. 15 (8): 2631–2647. https://doi.org/10.5194/hess-15-2631-2011.
Teutschbein, C., and J. Seibert. 2012. “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods.” J. Hydrol. 456–457 (Aug): 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052.
Teutschbein, C., and J. Seibert. 2013. “Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?” Hydrol. Earth Syst. Sci. 17 (12): 5061–5077. https://doi.org/10.5194/hess-17-5061-2013.
Themeßl, M. J., A. Gobiet, and A. Leuprecht. 2011. “Empirical-statistical downscaling and error correction of daily precipitation from regional climate models.” Int. J. Climatol. 31 (10): 1530–1544. https://doi.org/10.1002/joc.2168.
Thiemig, V., R. Rojas, M. Zambrano-Bigiarini, V. Levizzani, and A. De Roo. 2012. “Validation of satellite-based precipitation products over sparsely gauged African river basins.” J. Hydrometeorol. 13 (6): 1760–1783. https://doi.org/10.1175/JHM-D-12-032.1.
Tian, Y., and C. D. Peters-Lidard. 2010. “A global map of uncertainties in satellite-based precipitation measurements.” Geophys. Res. Lett. 37 (24): 1–6. https://doi.org/10.1029/2010GL046008.
Todini, E. 2001. “A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements.” Hydrol. Earth Syst. Sci. 5 (2): 187–199. https://doi.org/10.5194/hess-5-187-2001.
Toté, C., D. Patricio, H. Boogaard, R. Van der Wijngaart, E. Tarnavsky, and C. Funk. 2015. “Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique.” Remote Sens. 7 (2): 1758–1776. https://doi.org/10.3390/rs70201758.
Valdés-Pineda, R., E. M. C. Demaría, J. B. Valdés, S. Wi, and A. Serrat-Capdevilla. 2016. “Bias correction of daily satellite-based rainfall estimates for hydrologic forecasting in the Upper Zambezi, Africa.” In Hydrology and earth system sciences discussions, 1–28. Munich, Germany: European Geosciences Union. https://doi.org/10.5194/hess-2016-473.
Varikoden, H., A. A. Samah, and C. A. Babu. 2010. “Spatial and temporal characteristics of rain intensity in the peninsular Malaysia using TRMM rain rate.” J. Hydrol. 387 (3–4): 312–319. https://doi.org/10.1016/j.jhydrol.2010.04.023.
Vila, D. A., L. G. G. D. Goncalves, D. L. Toll, and J. R. Rozante. 2009. “Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America.” J. Hydrometeorol. 10 (2): 533–543. https://doi.org/10.1175/2008JHM1048.1.
Woldemeskel, F. M., B. Sivakumar, and A. Sharma. 2013. “Merging gauge and satellite rainfall with specification of associated uncertainty across Australia.” J. Hydrol. 499 (Aug): 167–176. https://doi.org/10.1016/j.jhydrol.2013.06.039.
Worqlul, A. W., E. K. Ayana, B. H. P. Maathuis, C. MacAlister, W. D. Philpot, J. M. Osorio Leyton, and T. S. Steenhuis. 2017. “Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the Upper Blue Nile Basin, Ethiopia.” J. Hydrol. 556 (Jan): 1182–1191. https://doi.org/10.1016/j.jhydrol.2017.01.058.
Xie, P., and A.-Y. Xiong. 2011. “A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses.” J. Geophys. Res.: Atmos. 116 (21): 1–14. https://doi.org/10.1029/2011JD016118.
Yang, Z., K. Hsu, S. Sorooshian, X. Xu, D. Braithwaite, and K. M. Verbist. 2016. “Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile.” J. Geophys. Res.: Atmos. 121 (8): 3790–3806. https://doi.org/10.1002/2015JD024540.
Zhang, X., and R. Srinivasan. 2009. “GIS-based spatial precipitation estimation: A comparison of geostatistical approaches.” JAWRA J. Am. Water Resour. Assoc. 45 (4): 894–906. https://doi.org/10.1111/j.1752-1688.2009.00335.x.
Zhao, T., J. C. Bennett, Q. J. Wang, A. Schepen, A. W. Wood, D. E. Robertson, and M.-H. Ramos. 2017. “How suitable is quantile mapping for postprocessing GCM precipitation forecasts?” J. Clim. 30 (9): 3185–3196. https://doi.org/10.1175/JCLI-D-16-0652.1.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 27Issue 9September 2022

History

Received: Dec 22, 2020
Accepted: Apr 19, 2022
Published online: Jun 16, 2022
Published in print: Sep 1, 2022
Discussion open until: Nov 16, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia. ORCID: https://orcid.org/0000-0003-1978-1110. Email: [email protected]
Wan Zurina Wan Jaafar [email protected]
Senior Lecturer, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia (corresponding author). Email: [email protected]
Sai Hin Lai [email protected]
Associate Professor, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia. Email: [email protected]
Professor, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia. ORCID: https://orcid.org/0000-0002-4952-3676. Email: [email protected]
Ahmed Elshafie [email protected]
Professor, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share