Abstract

Streamflow regionalization is a technique used in areas where hydrological data are scarce or nonexistent. Although numerous studies have been conducted with the aim of improving this technique, unsatisfactory results are still evident. This study, therefore, aims to propose and evaluate the performance of a new explanatory variable for regionalization, which represents the streamflow formation process and considers the actual evapotranspiration (ETR) obtained from remote sensing products. For this purpose, the regional regression method was used to estimate long-term mean streamflow and minimum flow with 90% of permanence in time. The explanatory variables were the precipitated volume (Peq), precipitated volume minus the empirical value of 750 mm (Peq750), water balance for each segment of the water course (WBeq), and water balance for each hydrologically homogenous region (WBeqM). These variables were obtained using a combination of drainage area, precipitation, and ETR. The ETR was estimated using two remote sensing products: MOD16 and Global Land Evaporation Amsterdam Model. The models of streamflow regionalization were evaluated by statistical, physical, and risk analyses. The study was applied for Grande River basin. All the variables, with the exception of Peq, presented good statistical performance, good representativeness of regionalized streamflows, and safe estimates for the planning and management of water resources. The WBeqG was the most recommended variable for streamflow regionalization in Grande River basin, because it considers variations in edaphoclimatic and vegetative conditions along the basin. This work contributes to improving the predictive capacity of the streamflow through a method that is potentially applicable to other areas of study, allows easy physical interpretation, utilizes easily obtained variables, and represents the streamflow formation process.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was partially financed by the National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES), CAPES–Financing Code 001.

References

AIBA (Associação de Agricultores e Irrigantes da Bahia). 2018. “Anuário Agropecuário Oeste da Bahia—Safra 2015/2016” [Western Bahia Agricultural Yearbook—Crop 2015/2016]. Accessed July 15, 2018. http://aiba.org.br/wpcontent/uploads/2018/06/anuario-16-17.pdf.
Andrade, A. C., L. R. Leal, and R. F. Guimarães. 2002. “Estudo dos Processos Erosivos na Bacia do Rio Grande (BA) como Subsídio ao Planejamento Agroecológico.” Boletim de Pesquisa e desenvolvimento 63: 26.
Arsenault, R., and F. P. Brissette. 2014. “Continuous streamflow prediction in ungauged basins: The effects of equifinality and parameter set selection on uncertainty in regionalization approaches.” Water Resour. Res. 50 (7): 6135–6153. https://doi.org/10.1002/2013WR014898.
Baik, J., and M. Choi. 2015. “Evaluation of geostationary satellite (COMS) based Priestley–Taylor evapotranspiration.” Agric. Water Manage. 159 (Sep): 77–91. https://doi.org/10.1016/j.agwat.2015.05.017.
Bao, Z., J. Zhang, J. Liu, G. Fu, G. Wang, R. He, X. Yan, J. Jin, and H. Liu. 2012. “Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions.” J. Hydrol. 466–467 (Oct): 37–46. https://doi.org/10.1016/j.jhydrol.2012.07.048.
Blöschl, G., M. Sivapalan, T. Wagener, H. Savenije, and A. Viglione. 2013. Runoff prediction in ungauged Basins: Synthesis across processes, places and scales. Cambridge, UK: Cambridge University Press.
Calegario, A. T., F. F. Pruski, R. B. Ribeiro, M. C. A. Ramos, and F. S. Rego. 2020. “Physical analysis of regionalized flow as an aid in the identification of hydrologically homogeneous regions.” Eng. Agríc. 40 (Jul): 334–343. https://doi.org/10.1590/1809-4430-eng.agric.v40n3p334-343/2020.
Dembélé, M., M. Hrachowitz, H. H. G. Savenije, G. Mariéthoz, and B. Schaefli. 2020. “Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets.” Water Resour. Res. 56 (1): e2019WR026085. https://doi.org/10.1029/2019WR026085.
Engeland, K., and H. Hisdal. 2009. “A comparison of low flow estimates in ungauged catchments using regional regression and the HBV-model.” Water Resour. Manage. 23 (12): 2567–2586. https://doi.org/10.1007/s11269-008-9397-7.
Ferreira, R. G., D. D. da Silva, A. A. A. Elesbon, E. I. Fernandes-Filho, G. V. Veloso, M. de Souza Fraga, and L. B. Ferreira. 2021. “Machine learning models for streamflow regionalization in a tropical watershed.” J. Environ. Manage. 280 (Feb): 111713. https://doi.org/10.1016/j.jenvman.2020.111713.
Guo, Y., Y. Zhang, L. Zhang, and Z. Wang. 2021. “Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review.” WIREs Water 8 (1): e1487. https://doi.org/10.1002/wat2.1487.
Hamilton, P., and J. Campbell. 2013. “Measuring the flow: The importance of streamgages.” Accessed September 7, 2017. https://archive.usgs.gov/archive/sites/www.usgs.gov/blogs/features/usgs_top_story/mea.
Hosking, J. R. M., and J. R. Wallis. 1997. “Regional frequency analysis: An approach based on L-moments. Cambridge, UK: Cambridge University Press.
IGAM and GPRH/UFV (Instituto Mineiro de Gestão das Águas and Grupo de Pesquisa em Recursos Hídricos da Universidade Federal de Viçosa). 2012. Estudo de regionalização de vazão para o aprimoramento do processo de outorga no Estado de Minas Gerais. [Streamflow regionalization study to improve the granting process in the State of Minas Gerais]. Belo Horizonte, Brazil: IGAM.
Kim, H. W., K. Hwang, Q. Mu, S. O. Lee, and M. Choi. 2012. “Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia.” KSCE J. Civ. Eng. 16 (2): 229–238. https://doi.org/10.1007/s12205-012-0006-1.
Knoben, W. J. M., J. E. Freer, and R. A. Woods. 2019. “Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores.” Hydrol. Earth Syst. Sci. 23 (10): 4323–4331. https://doi.org/10.5194/hess-23-4323-2019.
Krause, P., D. P. Boyle, and F. Bäse. 2005. “Comparison of different efficiency criteria for hydrological model assessment.” Adv. Geosci. 5 (Dec): 89–97. https://doi.org/10.5194/adgeo-5-89-2005.
Kult, J. M., L. M. Fry, A. D. Gronewold, and W. Choi. 2014. “Regionalization of hydrologic response in the Great Lakes basin: Considerations of temporal scales of analysis. J. Hydrol. 519 (Nov): 2224–2237. https://doi.org/10.1016/j.jhydrol.2014.09.083.
Kunnath-Poovakka, A., D. Ryu, L. J. Renzullo, and B. George. 2016. “The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction.” J. Hydrol. 535 (Apr): 509–524. https://doi.org/10.1016/j.jhydrol.2016.02.018.
Laaha, G., and G. Blöschl. 2006. “A comparison of low flow regionalisation methods—Catchment grouping.” J. Hydrol. 323 (1–4): 193–214. https://doi.org/10.1016/j.jhydrol.2005.09.001.
Lee, Y. 2019. “Impact of climate change and human activities on streamflow variations based on the Budyko framework.” Water 11 (10): 2001. https://doi.org/10.3390/w11102001.
Liew, M. W. V., and A. R. Mittelstet. 2018. “Comparison of three regionalization techniques for predicting streamflow in ungaged watersheds in Nebraska, USA using SWAT mode.” Int. J. Agric. Biol. Eng. 11 (35): 110–119. https://doi.org/10.25165/j.ijabe.20181103.3528.
Long, D., L. Longuevergne, and B. R. Scanlon. 2014. “Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites.” Water Resour. Res. 50 (Sep): 1131–1151. https://doi.org/10.1002/2013WR014581.
Malekinezhad, H., H. P. Nachtnebel, and A. Klik. 2011. “Comparing the index-flood and multiple-regression methods using L-moments.” Phys. Chem. Earth 36 (Jan): 54–60. https://doi.org/10.1016/j.pce.2010.07.013.
Martens, B., D. G. Miralles, H. Lievens, R. van der Schalie, R. A. M. de Jeu, D. Fernández-Prieto, H. E. Beck, W. A. Dorigo, and N. E. C. Verhoest. 2017. “GLEAM v3: Satellite-based land evaporation and root-zone soil moisture.” Geosci. Model Dev. 10 (2): 1903–1925. https://doi.org/10.5194/gmd-10-1903-2017.
Masih, I., S. Uhlenbrook, S. Maskey, and M. D. Ahmad. 2010. “Regionalization of a conceptual rainfall–runoff model based on similarity of the flow duration curve: A case study from the semi-arid Karkheh basin, Iran.” J. Hydrol. 391 (7): 188–201. https://doi.org/10.1016/j.jhydrol.2010.07.018.
Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman. 2010. “Global land-surface evaporation estimated from satellite-based observations.” Hydrol. Earth Syst. Sci. Discuss. 7 (10): 8479–8519. https://doi.org/10.5194/hessd-7-8479-2010.
Moreira, A. A., D. S. Adamatti, and A. L. Ruhoff. 2018. “Avaliação dos produtos de evapotranspiração baseados em sensoriamento remoto MOD16 e GLEAM em sítios de fluxos turbulentos do Programa LBA” [Evaluation of evapotranspiration products based on MOD16 and GLEAM remote sensing at turbulent flow sites of the LBA Program]. Ciencia e natura 40: 112–118.
Moriasi, D. N., J. G. Arnold, V. M. W. Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running. 2007. “Development of a global evapotranspiration algorithm based on MODIS and global meteorology data.” Remote Sens. Environ. 111 (4): 519–536. https://doi.org/10.1016/j.rse.2007.04.015.
Mu, Q., M. Zhao, and S. W. Running. 2011. “Improvements to a MODIS global terrestrial evapotranspiration algorithm.” Remote Sens. Environ. 115 (2): 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019.
Nguyen, V. T., J. Dietrich, and B. Uniyal. 2020. “Modeling interbasin groundwater flow in karst areas: Model development, application, and calibration strategy.” Environ. Modell. Software 124 (3): 104606. https://doi.org/10.1016/j.envsoft.2019.104606.
Nourani, V., N. Behfar, S. Uzelaltinbulat, and F. Sadikoglu. 2020. “Spatiotemporal precipitation modeling by artificial intelligence-based ensemble approach.” Environ. Earth Sci. 79 (5): 6. https://doi.org/10.1007/s12665-019-8755-5.
Novaes, L. F. 2005. “Modelo para a quantificação da disponibilidade hídrica na bacia do Paracatu.” Dissertation, Dept. of Agricultural Engineering, Universidade Federal de Viçosa.
Nruthya, K., and V. V. Srinivas. 2015. “Evaluating methods to predict streamflow at ungauged sites using regional flow duration curves: A case study.” Aquat. Procedia 4 (2): 641–648. https://doi.org/10.1016/j.aqpro.2015.02.083.
Pereira, S. B., F. F. Pruski, D. D. Silva, and M. M. Ramos. 2007. “Estudo do comportamento hidrológico do Rio São Francisco e seus principais afluentes.” Rev. Bras. Eng. Agríc. Ambient. 11 (4): 615–622. https://doi.org/10.1590/S1415-43662007000600010.
Pruski, F. F., A. Nunes, P. L. Pruski, R. Rodriguez, and G. del. 2013. “Improved regionalization of streamflow by use of the streamflow equivalent of precipitation as an explanatory variable.” J. Hydrol. 476 (10): 52–71. https://doi.org/10.1016/j.jhydrol.2012.10.005.
Pruski, F. F., A. Nunes, F. S. Rego, and M. F. de Souza. 2012. “Extrapolação de equações de regionalização de vazões mínimas: Alternativas para atenuar os riscos” [Extrapolation of Minimum Flow Regionalization Equations: Alternatives to Mitigate Risks]. Water Resour. Irrig. Manage. 1 (1): 51–59.
Qamar, M. U., D. Ganora, and P. Claps. 2015. “Monthly runoff regime regionalization through dissimilarity-based methods.” Water Resour. Manage. 29 (13): 4735–4751. https://doi.org/10.1007/s11269-015-1087-7.
Ramoelo, A., N. Majozi, R. Mathieu, N. Jovanovic, A. Nickless, and S. Dzikiti. 2014. “Validation of global evapotranspiration product (MOD16) using flux tower data in the African Savanna, South Africa.” Remote Sens. 6 (9): 7406–7423. https://doi.org/10.3390/rs6087406.
Rao, R. A., and V. V. Srinivas. 2006. “Regionalization of watersheds by hybrid-cluster analysis.” J. Hydrol. 318 (1–4): 57–79. https://doi.org/10.1016/j.jhydrol.2005.06.004.
Razavi, T., and P. Coulibaly. 2013. “Streamflow prediction in ungauged basins: Review of regionalization methods.” J. Hydrol. Eng. 18 (8): 958–975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690.
Rego, F. S. 2013. Regionalização de vazões considerando a evapotranspiração real em seu processo de formação (Dissertação) [Regionalization of streamflows considering the real evapotranspiration in its formation process]. Viçosa, Brazil: Universidade Federal de Viçosa.
Ribeiro, C. B., F. Marques, and D. D. Silva. 2005. “Estimativa e regionalização de vazões mínimas de referência para a bacia do rio Doce” [Estimation and regionalization of minimum reference flows for the Doce river basin]. Engenharia na Agricultura. 103–117.
Samuel, J., P. Coulibaly, and R. A. Metcalfe. 2011. “Estimation of continuous streamflow in Ontario Ungauged basins: Comparison of regionalization methods.” J. Hydrol. Eng. 16 (5): 447–459. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000338.
Serrano, L. O., R. B. Ribeiro, A. C. Borges, and F. F. Pruski. 2020. “Low-flow seasonality and effects on water availability throughout the river network.” Water Resour. Manage. 34 (4): 1289–1304. https://doi.org/10.1007/s11269-020-02499-3.
Singh, J., H. V. Knapp, M. Demissie. 2020. “Hydrologic modeling of the Iroquois river watershed using HSPF and SWAT.” Accessed February 2, 2020. https://swat.tamu.edu/media/90101/singh.pdf.
Sivapalan, M. 2003. “Prediction in ungauged basins: A grand challenge for theoretical hydrology.” Hydrol. Process. 17 (5): 3163–3170. https://doi.org/10.1002/hyp.5155.
Smith, T., L. Marshall, and A. Sharma. 2014. “Predicting hydrologic response through a hierarchical catchment knowledgebase: A Bayes empirical Bayes approach.” Water Resour. Res. 50 (2): 1189–1204. https://doi.org/10.1002/2013WR015079.
Sousa, J. R. C. 2017. Hydrology Plus: Sistema computacional para estudos meteorológicos e hidrológicos. Viçosa, Brazil: Universidade Federal de Viçosa.
Swain, J. B., and K. C. Patra. 2017. “Streamflow estimation in ungauged catchments using regionalization techniques.” J. Hydrol. 554 (Nov): 420–433. https://doi.org/10.1016/j.jhydrol.2017.08.054.
Tarek, M., R. Arsenault, F. Brissette, and J. L. Martel. 2021. “Daily streamflow prediction in ungauged basins: An analysis of common regionalization methods over the African continent.” Hydrol. Sci. J. 66 (11): 1695–1711. https://doi.org/10.1080/02626667.2021.1948046.
Tobin, K., and M. Bennett. 2019. “Improving alpine summertime streamflow simulations by the incorporation of evapotranspiration data.” Water 11 (1) 112. https://doi.org/10.3390/w11010112.
Vasquez, N., and X. Vargas. 2017. “Streamflow estimation in ungauged basins using remote sensed hydrological data.” In Vol. 19 of Proc., Geophysical Research Abstracts. Munich, Germany: European Geosciences Union.
Vezza, P., C. Comoglio, M. Rosso, and A. Viglione. 2010. “Low flows regionalization in North-Western Italy.” Water Resour. Manage. 24 (3): 4049–4074. https://doi.org/10.1007/s11269-010-9647-3.
Ward, J. H. 1963. “Hierarchical grouping to optimize an objective function.” J. Am. Stat. Assoc. 58 (301): 236–244. https://doi.org/10.1080/01621459.1963.10500845.
Yang, X., J. Magnusson, S. Huang, S. Beldring, and C.-Y. Xu. 2020. “Dependence of regionalization methods on the complexity of hydrological models in multiple climatic regions.” J. Hydrol. 582 (Jun): 124357. https://doi.org/10.1016/j.jhydrol.2019.124357.
Young, A. R. 2006. “Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model.” J. Hydrol. 320 (7): 155–172. https://doi.org/10.1016/j.jhydrol.2005.07.017.
Zamoum, S., and D. Souag-Gamane. 2019. “Monthly streamflow estimation in ungauged catchments of northern Algeria using regionalization of conceptual model parameters.” Arab. J. Geosci. 12 (11): 342. https://doi.org/10.1007/s12517-019-4487-9.
Zhang, Y., F. H. Chiew, C. Liu, Q. Tang, J. Xia, J. Tian, and C. Li. 2020. “Can remotely sensed actual evapotranspiration facilitate hydrological prediction in ungauged regions without runoff calibration?” Water Resour. Res. 56 (1): e2019WR026236. https://doi.org/10.1029/2019WR026236.
Zhang, Y., F. H. Chiew, L. Zhang, and H. Li. 2009. “Use of remotely sensed actual evapotranspiration to improve rainfall–runoff modeling in Southeast Australia.” J. Hydrometeorol. 10 (4): 969–980. https://doi.org/10.1175/2009JHM1061.1.
Zou, L., C. Zhan, J. Xia, T. Wang, and C. J. Gippel. 2017. “Implementation of evapotranspiration data assimilation with catchment scale distributed hydrological model via an ensemble Kalman Filter.” J. Hydrol. 549 (Jun): 685–702. https://doi.org/10.1016/j.jhydrol.2017.04.036.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 27Issue 8August 2022

History

Received: Jun 21, 2021
Accepted: Mar 24, 2022
Published online: May 27, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Dept. of Agricultural Engineering, Federal Univ. of Viçosa, PH Rolfs, Viçosa, Minas Gerais 36570000, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-2590-2089. Email: [email protected]
Fernando Falco Pruski, Ph.D. [email protected]
Professor, Dept. of Agricultural Engineering, Federal Univ. of Viçosa, CNPq Scholarship 1A–Brazil, PH Rolfs, Viçosa, Minas Gerais 36570000, Brazil. Email: [email protected]
Professor, Institute of Agricultural Sciences, Federal Univ. of Viçosa, Rodovia LMG 818, km 06, s/n, Florestal, Minas Gerais 35690-000, Brazil. ORCID: https://orcid.org/0000-0003-4701-4074. Email: [email protected]
Dept. of Agricultural Engineering, Federal Univ. of Viçosa, PH Rolfs, Viçosa, Minas Gerais 36570000, Brazil. ORCID: https://orcid.org/0000-0002-0186-8907. Email: [email protected]
Dept. of Agricultural Engineering, Federal Univ. of Viçosa, PH Rolfs, Viçosa, Minas Gerais 36570000, Brazil. ORCID: https://orcid.org/0000-0001-5390-575X. Email: [email protected]
Professor, Engineering School, Federal Univ. of Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, Minas Gerais 31275-013, Brazil; Brazilian Geological Survey, Av. Brasil, 1731, Belo Horizonte, Minas Gerais 30140-007, Brazil. ORCID: https://orcid.org/0000-0002-4543-8829. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Coupled Data Analytics–SWAT Approach for Flow Generation and Analysis in Ungauged Tropical Watershed, Journal of Hydrologic Engineering, 10.1061/JHYEFF.HEENG-5964, 29, 4, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share