Case Studies
Dec 18, 2020

Comparison of Likelihood-Free Inference Approach and a Formal Bayesian Method in Parameter Uncertainty Assessment: Case Study with a Single-Event Rainfall–Runoff Model

Publication: Journal of Hydrologic Engineering
Volume 26, Issue 3

Abstract

In the present study, DREAM(ZS) and DREAM(ABC) (which stands for differential evolution adaptive metropolis) algorithms were applied to determine the parameters’ uncertainty in a single-event rainfall–runoff model, and rainfall multipliers were also used to correct rainfall forcing errors. Moreover, DREAM(ZS), based on the original DREAM algorithm, and the DREAM(ABC) algorithm, as a likelihood-free inference approach, were both used to explore the posterior parameters in high-dimensional inference problems. Before comparing DREAM(ZS) with DREAM(ABC), some underlying assumptions of residual distribution were analyzed and then fulfilled to obtain a suitable likelihood function and also to provide a more reliable estimation of the parameters. Despite the use of an acceptable likelihood function in the DREAM(ZS) algorithm, the results confirm the advantage of the DREAM(ABC) for assessing the uncertainty in a single-event model and high-dimensional parameter spaces. Moreover, an acceptable distance function used in DREAM(ABC) is suggested to assess the uncertainty in a single-event rainfall-runoff model (HEC-HMS). Occasional flash floods occur in this study region and in large parts of Iran. The results of this study can, therefore, be useful for achieving more accurate predictions and planning for flood control management.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used in the paper were obtained from the Iran Water Research Institute (IWRI) and Natural Resources and Watershed Management Administration of Golestan, Iran. Some or all data, models, or code generated or used during the study are available from the corresponding author upon reasonable request.

Acknowledgments

The author would like to thank Dr. Jasper A. Vrugt profusely for providing the code for the DREAM(ZS) and DREAM(ABC) algorithms. The author is grateful for the data and information received on the case study from Dr. Mohsen Pourreza-Bilondi.

References

Abbaspour, K. C. 2011. User manual for SWAT-CUP4, SWAT calibration and uncertainty programs. Duebendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology.
Abdessalem, A. B., N. Dervilis, D. Wagg, and K. Worden. 2018. “Model selection and parameter estimation in structural dynamics using approximate Bayesian computation.” Mech. Syst. Signal Process. 99 (Sep): 306–325. https://doi.org/10.1016/j.ymssp.2017.06.017.
Alazzy, A. A., H. Lü, and Y. Zhu. 2015. “Assessing the uncertainty of the Xinanjiang rainfall-runoff model: Effect of the likelihood function choice on the GLUE method.” J. Hydrol. Eng. 20 (10): 04015016. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001174.
Asgharpour, S. E., and B. Ajdari. 2011. “A case study on seasonal floods in Iran, watershed of Ghotour Chai Basin.” Procedia Social Behav. Sci. 19 (Jan): 556–566. https://doi.org/10.1016/j.sbspro.2011.05.169.
Bates, B. C., and E. P. Campbell. 2001. “A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling.” Water Resour. Res. 37 (4): 937–947. https://doi.org/10.1029/2000WR900363.
Beaumont, M. A. 2010. “Approximate Bayesian computation in evolution and ecology.” Annu. Rev. Ecol. Evol. Syst. 41 (Dec): 379–406. https://doi.org/10.1146/annurev-ecolsys-102209-144621.
Beaumont, M. A., J. M. Cornuet, J. M. Marin, and C. P. Robert. 2009. “Adaptive approximate Bayesian computation.” Biometrika 96 (4): 983–990. https://doi.org/10.1093/biomet/asp052.
Beven, K., P. Smith, I. Westerberg, and J. Freer. 2012. “Comment on: Pursuing the method of multiple working hypotheses for hydrological modeling.” Water Resour. Res. 48 (11): W11801. https://doi.org/10.1029/2012WR012282.
Beven, K., P. J. Smith, and A. Wood. 2011. “On the colour and spin of epistemic error (and what we might do about it).” Hydrol. Earth Syst. Sci. 15 (10): 3123. https://doi.org/10.5194/hess-15-3123-2011.
Beven, K. J. 2006. “A manifesto for the enquiringly thesis.” J. Hydrol. 320 (1): 18–36. https://doi.org/10.1016/j.jhydrol.2005.07.007.
Blasone, R. S. 2007. “Parameter estimation and uncertainty assessment in hydrological modelling.” Ph.D. thesis. Institute of Environment and Resources, Technical Univ. of Denmark.
Blasone, R. S., J. A. Vrugt, H. Madsen, D. Rosbjerg, B. A. Robinson, and G. A. Zyvoloski. 2008. “Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling.” Adv. Water Resour. 31 (4): 630–648. https://doi.org/10.1016/j.advwatres.2007.12.003.
Box, G., and D. Cox. 1964. “An analysis of transformations.” J. R. Stat. Soc. B 26 (2): 211–252. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
Burr, T., and A. Skurikhin. 2013. “Selecting summary statistics in approximate Bayesian computation for calibrating stochastic models.” Biomed. Res. Int. 2013 (Jan): 1–10. https://doi.org/10.1155/2013/210646.
Camargos, C., S. Julich, T. Houska, M. Bach, and L. Breuer. 2018. “Effects of input data content on the uncertainty of simulating water resources.” Water 10 (5): 621. https://doi.org/10.3390/w10050621.
Chen, X., T. Yang, X. Wang, C. Xu, and Z. Yu. 2013. “Uncertainty intercomparison of different hydrological models in simulating extreme flows.” Water Resour. Manage. 27 (5): 1393–1409. https://doi.org/10.1007/s11269-012-0244-5.
Cheng, Q. B., X. Chen, C. Y. Xu, C. Reinhardt-Imjela, and A. Schulte. 2014. “Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme.” J. Hydrol. 519 (Nov): 2202–2214. https://doi.org/10.1016/j.jhydrol.2014.10.008.
Chiachio, M., J. L. Beck, J. Chiachio, and G. Rus. 2014. “Approximate Bayesian computation by subset simulation.” J. Sci. Comput. 36 (3): 1339–1358. https://doi.org/10.1137/130932831.
Clark, M. P., and J. A. Vrugt. 2006. “Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters.” Geophys. Res. Lett. 33 (6): L06406. https://doi.org/10.1029/2005GL025604.
Corzo, G., and D. Solomatine. 2007. “Baseflow separation techniques for modular artificial neural network modelling in flow forecasting.” Hydrol. Sci. J. 52 (3): 491–507. https://doi.org/10.1623/hysj.52.3.491.
Csilléry, K., M. Blum, O. Gaggiotti, and O. François. 2010. “Approximate Bayesian computation (ABC) in practice.” Trends Ecol. Evol. 25 (7): 410–418. https://doi.org/10.1016/j.tree.2010.04.001.
Cunderlik, J. M., and S. P. Simonovic. 2004. Calibration, verification, and sensitivity analysis of the HEC-HMS hydrologic model. London, ON: Western Univ.
Dawson, C. W., R. J. Abrahart, and L. M. See. 2007. “HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts.” Environ. Modell. Software 22 (7): 1034–1052. https://doi.org/10.1016/j.envsoft.2006.06.008.
D-maps. 2020. “Iran map, boundaries, provinces.” Accessed April 28, 2016. https://d-maps.com/carte.php?num_car=5494&lang=en.
Engeland, K., C. Y. Xu, and L. Gottschalk. 2005. “Assessing uncertainties in a conceptual water balance model using Bayesian methodology.” Hydrol. Sci. J. 50 (1): 45–63. https://doi.org/10.1623/hysj.50.1.45.56334.
Fenicia, F., D. Kavetski, P. Reichert, and C. Albert. 2018. “Signature-domain calibration of hydrological models using approximate Bayesian computation: Empirical analysis of fundamental properties.” Water Resour. Res. 54: (6): 3958–3987. https://doi.org/10.1002/2017WR021616.
Foll, M., M. A. Beaumont, and O. Gaggiotti. 2008. “An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure.” Genetics 179 (2): 927–939. https://doi.org/10.1534/genetics.107.084541.
Fu, Y. X., and W. H. Li. 1997. “Estimating the age of the common ancestor of a sample of DNA sequences.” Mol. Biol. Evol. 14 (2): 195–199. https://doi.org/10.1093/oxfordjournals.molbev.a025753.
Gelman, A., and D. B. Rubin. 1992. “Inference from iterative simulation using multiple sequences.” Stat. Sci. 7 (4): 457–472. https://doi.org/10.1214/ss/1177011136.
Gharibreza, M. 2019. “Huge inundation (March 2019) of Golestan Province, Iran, lessons that we learned.” OAJESS 4 (3): 507–510.
Gourieroux, C., A. Monfort, and E. Renault. 1993. “Indirect inference.” J. Appl. Econ. 8 (1): 85–118. https://doi.org/10.1002/jae.3950080507.
Green, I. R. A., and D. Stephenson. 1986. “Criteria for comparison of single event models.” Hydrol. Sci. J. 31 (3): 395–411. https://doi.org/10.1080/02626668609491056.
Gupta, H. V., K. J. Beven, and T. Wagener. 2005. “Model calibration and uncertainty estimation.” In Encyclopedia of hydrological sciences. Hoboken, NJ: Wiley.
Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez. 2009. “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling.” J. Hydrol. 377 (1): 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1998. “Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information.” Water Resour. Res. 34 (4): 751–763. https://doi.org/10.1029/97WR03495.
Gupta, H. V., T. Wagener, and Y. Liu. 2008. “Reconciling theory with observations: Elements of a diagnostic approach to model evaluation.” Hydrol. Process. 22 (18): 3802–3813. https://doi.org/10.1002/hyp.6989.
Jacobs, J. H., and R. Srinivasan. 2005. “Effects of curve number modification on runoff estimation using WSR-88D rainfall data in Texas watersheds.” J. Soil Water Conserv. 60 (5): 274–278.
Jin, X. L., C. Y. Xu, Q. Zhang, and V. P. Singh. 2010. “Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model.” J. Hydrol. 383 (3–4): 147–155. https://doi.org/10.1016/j.jhydrol.2009.12.028.
Kamali, B., and S. J. Mousavi. 2014. “Automatic calibration of HEC-HMS model using multi-objective fuzzy optimal models.” Civ. Eng. Infrastruct. J. 47 (1): 1–12.
Kamali, B., S. J. Mousavi, and K. C. Abbaspour. 2013. “Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms.” Hydrol. Process. 27 (26): 4028–4042. https://doi.org/10.1002/hyp.9510.
Kavetski, D., G. Kuczera, and S. W. Franks. 2006a. “Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory.” Water Resour. Res. 42 (3):W03407. https://doi.org/10.1029/2005WR004368.
Kavetski, D., G. Kuczera, and S. W. Franks. 2006b. “Bayesian analysis of input uncertainty in hydrological modeling: 2. Application.” Water Resour. Res. 42 (4): W03408. https://doi.org/10.1029/2005WR004376.
Koskela, J. J., B. W. F. Croke, H. Koivusalo, A. J. Jakeman, and T. Kokkonen. 2012. “Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment.” Water Resour. Res. 48 (11): W11513. https://doi.org/10.1029/2011WR011773.
Laloy, E., D. Fasbender, and C. L. Bielders. 2010. “Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach.” J. Hydrol. 380 (1): 82–93. https://doi.org/10.1016/j.jhydrol.2009.10.025.
Laloy, E., and J. A. Vrugt. 2012. “High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing.” Water Resour. Res. 48 (1): W01526. https://doi.org/10.1029/2011WR010608.
Li, L., J. Xia, C. Y. Xu, and V. P. Singh. 2010. “Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models.” J. Hydrol. 390 (3–4): 210–221. https://doi.org/10.1016/j.jhydrol.2010.06.044.
Li, L., C. Y. Xu, J. Xia, K. Engeland, and P. Reggiani. 2011. “Uncertainty estimates by Bayesian method with likelihood of AR (1) & normal model and AR (1) & multinormal model in different time-scales hydrological models.” J. Hydrol. 406 (1–2): 54–65. https://doi.org/10.1016/j.jhydrol.2011.05.052.
Lintusaari, J., M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander. 2017. “Fundamentals and recent developments in approximate Bayesian computation.” Syst. Biol. 66 (1): 66–82. https://doi.org/10.1093/sysbio/syw077.
Lu, D., M. Ye, P. D. Meyer, G. P. Curtis, X. Shi, X. F. Niu, and S. B. Yabusaki. 2013. “Effects of error covariance structure on estimation of model averaging weights and predictive performance.” Water Resour. Res. 49 (9): 6029–6047. https://doi.org/10.1002/wrcr.20441.
Marjoram, P., J. Molitor, V. Plagnol, and S. Tavare. 2003. “Markov chain Monte Carlo without likelihoods.” Proc. National Acad. Sci. 100 (26): 15324–15328. https://doi.org/10.1073/pnas.0306899100.
Marjoram, P., and S. Tavare. 2006. “Modern computational approaches for analysing molecular genetic variation data.” Nat. Rev. Genet. 7 (10): 759–770. https://doi.org/10.1038/nrg1961.
Massey, F. J. 1951. “The Kolmogorov–Smirnov test for goodness of fit.” J. Am. Stat. Assoc. 46 (253): 68–78. https://doi.org/10.1080/01621459.1951.10500769.
McMillan, H., B. Jackson, M. Clark, D. Kavetski, and R. Woods. 2011. “Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models.” J. Hydrol. 400 (1–2): 83–94. https://doi.org/10.1016/j.jhydrol.2011.01.026.
Minasny, B., J. A. Vrugt, and A. B. McBratney. 2011. “Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation.” Geoderma 163 (3–4): 150–162. https://doi.org/10.1016/j.geoderma.2011.03.011.
Mishra, S. K., and V. P. Singh. 1999. “Another look at SCS-CN method.” J. Hydrol. Eng. 4 (3): 257–264. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:3(257).
Montanari, A., and D. Koutsoyiannis. 2012. “A blueprint for process-based modeling of uncertain hydrological systems.” Water Resour. Res. 48 (9): W09555. https://doi.org/10.1029/2011WR011412.
Moradkhani, H., and S. Sorooshian. 2009. “General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis.” In Hydrological modelling and the water cycle. Berlin: Springer.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through the conceptual model. Part 1: A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Nott, D. J., L. Marshall, and J. Brown. 2012. “Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What’s the connection?” Water Resour. Res. 48 (12): W12602. https://doi.org/10.1029/2011WR011128.
Nourali, M., B. Ghahraman, M. Pourreza-Bilondi, and K. Davary. 2016. “Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model.” J. Hydrol. 540 (Sep): 549–564. https://doi.org/10.1016/j.jhydrol.2016.06.022.
Olson, B., and W. Kleiber. 2017. “Approximate Bayesian computation methods for daily spatiotemporal precipitation occurrence simulation.” Water Resour. Res. 53 (4): 3352–3372. https://doi.org/10.1002/2016WR019741.
Paudel, M., E. J. Nelson, and W. Scharffenberg. 2009. “Comparison of lumped and quasi-distributed Clark runoff models using the SCS curve number equation.” J. Hydrol. Eng. 14 (10): 1098–1106. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000100.
Ponce, V. M., and R. H. Hawkins. 1996. “Runoff curve number: Has it reached maturity?” J. Hydrol. Eng. 1 (1): 11–19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11).
Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun, and M. T. Feldman. 1999. “Population growth of human Y chromosomes: A study of Y chromosome microsatellites.” Mol. Biol. Evol. 16 (12): 1791–1798. https://doi.org/10.1093/oxfordjournals.molbev.a026091.
Ratmann, O., C. Andrieu, C. Wiuf, and S. Richardson. 2009. “Model criticism based on likelihood-free inference, with an application to protein network evolution.” Proc. National Acad. Sci. 106 (26): 10576–10581. https://doi.org/10.1073/pnas.0807882106.
Reichert, P., and J. Mieleitner. 2009. “Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters.” Water Resour. Res. 45 (2): W10402. https://doi.org/10.1029/2009WR007814.
Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. W. Franks. 2010. “Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors.” Water Resour. Res. 46 (5): W05521. https://doi.org/10.1029/2009WR008328.
Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S. W. Franks. 2011. “Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation.” Water Resour. Res. 47 (11):W11516. https://doi.org/10.1029/2011WR010643.
Romero-Cuellar, J., A. Abbruzzo, G. Adelfio, and F. Francés. 2019. “Hydrological postprocessing based on approximate Bayesian computation (ABC).” Stochastic Environ. Res. Risk Assess. 33 (7): 1361–1373. https://doi.org/10.1007/s00477-019-01694-y.
Sadegh, M., and J. A. Vrugt. 2013. “Bridging the gap between GLUE and formal statistical approaches: Approximate Bayesian computation.” Hydrol. Earth Syst. Sci. 17 (12): 4831–4850. https://doi.org/10.5194/hess-17-4831-2013.
Sadegh, M., and J. A. Vrugt. 2014. “Approximate Bayesian computation using Markov chain monte Carlo simulation: DREAM(ABC).” Water Resour. Res. 50 (8): 6767–6787. https://doi.org/10.1002/2014WR015386.
Sadegh, M., J. A. Vrugt, C. Xu, and E. Volpi. 2015. “The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM(ABC).” Water Resour. Res. 51 (11): 9207–9231. https://doi.org/10.1002/2014WR016805.
Safaripour, M., M. Monavari, M. Zare, Z. Abedi, and A. Gharagozlou. 2012. “Flood risk assessment using GIS (Case study: Golestan Province, Iran).” Pol. J. Environ. Stud. 21 (6): 1817–1824.
Salamon, P., and L. Feyen. 2009. “Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter.” J. Hydrol. 376 (3–4): 428–442. https://doi.org/10.1016/j.jhydrol.2009.07.051.
Schoups, G., and J. A. Vrugt. 2010. “A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors.” Water Resour. Res. 46 (10): W10531. https://doi.org/10.1029/2009WR008933.
Shafiei, M., B. Ghahraman, B. Saghafian, K. Davary, S. Pande, and M. Vazifedoust. 2014. “Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region.” Agric. Water Manage. 146 (1): 324–334. https://doi.org/10.1016/j.agwat.2014.09.008.
Shamir, E., B. Imam, E. Morin, H. V. Gupta, and S. Sorooshian. 2005. “The role of hydrograph indices in parameter estimation of rainfall–runoff models.” Hydrol. Process. 19 (11): 2187–2207. https://doi.org/10.1002/hyp.5676.
Sharifi, F., V. Samadi, and C. A. M. E. Wilson. 2012. “Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran.” Nat. Hazards 61 (2): 533–550. https://doi.org/10.1007/s11069-011-9934-1.
Sikorska, A. E. 2012. “Interactive comment on Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models.” Hydrol. Earth Syst. Sci. Discuss. 16 (4): 6284–6310. https://doi.org/10.5194/hess-16-1221-2012.
Smith, T., L. Marshall, and A. Sharma. 2015. “Modeling residual hydrologic errors with Bayesian inference.” J. Hydrol. 528 (Sep): 29–37. https://doi.org/10.1016/j.jhydrol.2015.05.051.
Smith, T. J., and L. A. Marshall. 2008. “Bayesian methods in hydrology: A study of recent advancements in Markov chain Monte Carlo techniques.” Water Resour. Res. 44 (12): W00B05. https://doi.org/10.1029/2007WR006705.
Szcześniak, M., and M. Piniewski. 2015. “Improvement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchments.” Water 7 (12): 747–779. https://doi.org/10.3390/w7020747.
Tavaré, S., D. J. Balding, R. C. Griffiths, and P. Donnelly. 1997. “Inferring coalescence times from DNA sequence data.” Genetics 145 (2): 505–518.
Taye, M. T., V. Ntegeka, N. P. Ogiramoi, and P. Willems. 2011. “Assessment of climate change impact on hydrological extremes in two source regions of the Nile River basin.” Hydrol. Earth Syst. Sci. 15 (1): 209–222. https://doi.org/10.5194/hess-15-209-2011.
ter Braak, C. J. F., and J. A. Vrugt. 2008. “Differential evolution Markov chain with snooker updater and fewer chains.” Stat. Comput. 18 (4): 435–446. https://doi.org/10.1007/s11222-008-9104-9.
Tewolde, M. H. 2005. “Flood routing in ungauged catchments using Muskingum methods.” M.Sc. dissertation. School of Bioresources Engineering and Environmental Hydrology, Univ. of KwaZulu-Natal.
Tian, F., Y. Sun, H. Hu, and H. Li. 2016. “Searching for an optimized single-objective function matching multiple objectives with automatic calibration of hydrological models.” Hydrol. Earth Syst. Sci. Discuss. 29 (6): 934–948. https://doi.org/10.5194/hess-2016-88.
Turner, B. M., and P. B. Sederberg. 2012. “Approximate Bayesian computation with differential evolution.” J. Math. Psychol. 56 (5): 375–385. https://doi.org/10.1016/j.jmp.2012.06.004.
Turner, B. M., and T. Van Zandt. 2012. “A tutorial on approximate Bayesian computation.” J. Math. Psychol. 56 (2): 69–85. https://doi.org/10.1016/j.jmp.2012.02.005.
USACE. 2000. HEC-HMS technical reference manual. Davis, CA: USACE.
Vaghefi, S. A., M. Keykhai, F. Jahanbakhshi, J. Sheikholeslami, A. Ahmadi, H. Yang, and K. C. Abbaspour. 2019. “The future of extreme climate in Iran.” Sci. Rep. 9 (1): 1464. https://doi.org/10.1038/s41598-018-38071-8.
Vrugt, J. A., and W. Bouten. 2002. “Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models.” Soil Sci. Soc. Am. J. 66 (6): 1740–1751. https://doi.org/10.2136/sssaj2002.1740.
Vrugt, J. A., C. G. H. Diks, W. Bouten, H. V. Gupta, and J. M. Verstraten. 2005. “Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation.” Water Resour. Res. 41 (1): W01017. https://doi.org/10.1029/2004WR003059.
Vrugt, J. A., and B. A. Robinson. 2007. “Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging.” Water Resour. Res. 43 (1): W01411. https://doi.org/10.1029/2005WR004838.
Vrugt, J. A., and M. Sadegh. 2013. “Toward diagnostic model calibration and evaluation: Approximate Bayesian computation.” Water Resour. Res. 49 (7): 4335–4345. https://doi.org/10.1002/wrcr.20354.
Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson. 2008. “Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation.” Water Resour. Res. 44 (12): W00B09. https://doi.org/10.1029/2007WR006720.
Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and D. Higdon. 2009a. “Accelerating Markov chain Monte Carlo simulation using self-adaptative differential evolution with randomized subspace sampling.” Int. J. Nonlinear Sci. Numer. Simul. 10 (3): 273–290. https://doi.org/10.1515/IJNSNS.2009.10.3.273.
Vrugt, J. A., C. J. F. ter Braak, H. V. Gupta, and B. A. Robinson. 2009b. “Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?” Stochastic Environ. Res. Risk Assess. 23 (7): 1011–1026. https://doi.org/10.1007/s00477-008-0274-y.
Wagener, T., and H. V. Gupta. 2005. “Model identification for hydrological forecasting under uncertainty.” Stochastic Environ. Res. Risk. Assess. 19 (6): 378–387. https://doi.org/10.1007/s00477-005-0006-5.
Wagener, T., K. V. Werkhoven, P. Reed, and Y. Tang. 2009. “Multiobjective sensitivity analysis to understand the information content in streamflow observations for distributed watershed modeling.” Water Resour. Res. 45 (2): W02501. https://doi.org/10.1029/2008WR007347.
Wang, X., X. He, J. R. Williams, and R. C. Izaurralde. 2005. “Sensitivity and uncertainty analyses of crop yields and soil organic carbon simulated with EPIC.” Trans. ASAE 48 (3): 1041–1054. https://doi.org/10.13031/2013.18515.
Wilkinson, R. D. 2013. “Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.” Stat. Appl. Genet. Mol. Biol. 12 (2): 129–141. https://doi.org/10.1515/sagmb-2013-0010.
Willems, P. 2012. “Model uncertainty analysis by variance decomposition.” Phys. Chem. Earth. 42 (Jan): 21–30. https://doi.org/10.1016/j.pce.2011.07.003.
Yang, J., A. Jakeman, G. Fang, and X. Chen. 2018. “Uncertainty analysis of a semi-distributed hydrologic model based on a Gaussian process emulator.” Environ. Modell. Software 101 (Mar): 289–300. https://doi.org/10.1016/j.envsoft.2017.11.037.
Yang, J., P. Reichert, and K. C. Abbaspour. 2007. “Bayesian uncertainty analysis in distributed hydrological modelling: A case study in the Thur River basin (Switzerland).” Water Resour. Res. 43 (10):W10401. https://doi.org/10.1029/2006WR005497.
Yang, J., P. Reichert, K. C. Abbaspour, J. Xia, and H. Yang. 2008. “Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China.” J. Hydrol. 358 (1–2): 1–23. https://doi.org/10.1016/j.jhydrol.2008.05.012.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 3March 2021

History

Received: Jul 16, 2020
Accepted: Oct 16, 2020
Published online: Dec 18, 2020
Published in print: Mar 1, 2021
Discussion open until: May 18, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher, Dept. of Water Engineering, Faculty of Agriculture, Ferdowsi Univ. of Mashhad, International Campus, Mashhad 9177948974, Iran. ORCID: https://orcid.org/0000-0002-1918-6058. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share