Technical Notes
Dec 28, 2020

Overland Flow Simulations in an Urban Catchment: A Straightforward Approach to Considering Culverts

Publication: Journal of Hydrologic Engineering
Volume 26, Issue 3

Abstract

Existing overland flow models tend to neglect culvert flow. The goal of the present study is to implement a straightforward and easily realizable representation of culvert flow into the overland flow module of the OpenGeoSys (OGS) multiphysics simulator. Culverts are represented as source and sink terms in the modified OGS model. As a simplification, the flow rate at the culvert is calculated based on water depth and hydraulic head at the inlet and outlet of the culverts with the Darcy-Weisbach equation for pipe and channel flow. For validation of the newly implemented culvert representation, model results of culvert flow have been compared with results from the pipe flow model HYSTEM-EXTRAN (HE). The results of this comparison agree well for fully filled pipes. However, if there is an increasing difference between water depth at the inlet and outlet of the culvert, the quality of the results is decreasing. This is due to the fact that the Darcy-Weisbach equation does not consider accelerated or delayed flow. The model has been tested on a real study area and provides reasonable results where culvert flow is qualitatively well represented. Analysis of results shows that the consideration of culverts as presented here satisfies mass conservation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

We want to thank the editorial coordinator and editor for handling the manuscript. We further want to thank the editor and three anonymous reviewers for taking their time to carry out such a thorough review. All raised points have improved the quality of the manuscript.

References

Beven, K. J. 2011. Rainfall-runoff modelling: The primer. Hoboken, NJ: Wiley.
Bollrich, G. 2013. Technische Hydromechanik 1—Grundlagen. Berlin: Beuth Verlag GmbH.
Chanson, H. 2004. Hydraulics of open channel flow. Amsterdam, Netherlands: Elsevier.
Chen, W. F., and J. R. Liew. 2002. The civil engineering handbook. Boca Raton, FL: CRC Press.
Costabile, P., C. Costanzo, and F. Macchione. 2012. “Comparative analysis of overland flow models using finite volume schemes.” J. Hydroinf. 14 (1): 122–135. https://doi.org/10.2166/hydro.2011.077.
Delfs, J.-O., W. Wang, T. Kalbacher, S. Ashok, and O. Kolditz. 2013. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow. Berlin: Springer.
de Saint-Venant, A. B. 1871. “Théorie et équations générales du mouvement non permanent des eaux courantes.” C. R. séances Acad. Sci. 17 (73): 147–154.
Di Baldassarre, G. 2012. Vol. 3 of Floods in a changing climate: Inundation modelling. Cambridge, UK: Cambridge University Press.
Duke, G. D., S. W. Kienzle, D. L. Johnson, and J. M. Byrne. 2005. “Incorporating ancillary data to refine anthropogenically modified overland flow paths.” Hydrol. Process. 20 (8): 1827–1843. https://doi.org/10.1002/hyp.5964.
Fernández-Pato, J., and P. García-Navarro. 2018. “Development of a new simulation tool coupling a 2D finite volume overland flow model and a drainage network model.” Geosciences 8 (8): 288. https://doi.org/10.3390/geosciences8080288.
Habibi, H., and D. J. Seo. 2018. “Simple and modular integrated modeling of storm drain network with gridded distributed hydrologic model via grid-rendering of storm drains for large urban areas.” J. Hydrol. 567 (Dec): 637–653. https://doi.org/10.1016/j.jhydrol.2018.10.037.
Helbig, H., S. Schmidt, and R. Köthe. 2015. Gefährdung von Autobahnen durch Wassererosion in Sachsen-Anhalt. Landesamt für Geologie und Bergwesen Sachsen-Anhalt. Köln, Deutschland: Forschungsgesellschaft für Straßen- und Verkehrswesen.
Henonin, J., B. Russo, O. Mark, and P. Gourbesville. 2013. “Real-time urban flood forecasting and modelling—A state of the art.” J. Hydroinf. 15 (3): 717. https://doi.org/10.2166/hydro.2013.132.
itwh (Institut für technisch-wissenschaftliche Hydrologie GmbH). 2010. Kanalnetzberechnung—Hydrodynamische Abfluss-Transport- und Schmutzfrachtberechnung: HYSTEM-EXTRAN 7 Modellbeschreibung. Hannover, Germany: itwh.
Jaeger, R., K. Tondera, S. Pather, M. Porter, C. Jacobs, and N. Tindale. 2019. “Flow control in culverts: A performance comparison between inlet and outlet control.” Water 11 (7): 1408. https://doi.org/10.3390/w11071408.
James, C. S. 2020. “Culverts.” In Hydraulic structures, 169–181. Cham, Switzerland: Springer.
Jeppson, R. 2010. Open channel flow: Numerical methods and computer applications. Boca Raton, FL: CRC Press.
Jeskulke, M., H. Hoppe, C. Massing, A. Stokman, M. Koch, K. Behnken, D. Gatke, K. Thielking, and J. Wurthmann. 2017. “Flood risks in urban areas—Data analysis, communication and mitigation.” In Proc., FIG Working Week 2017 Surveying the World of Tomorrow—From Digitalisation to Augmented Reality. Stuttgart, Germany: Bundesministerium für Bildung und Forschung.
Kolditz, O., et al. 2012. “OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media.” Environ. Earth Sci. 67 (2): 589–599. https://doi.org/10.1007/s12665-012-1546-x.
Kundzewicz, Z. W., et al. 2014. “Flood risk and climate change: Global and regional perspectives.” Hydrol. Sci. J. 59 (1): 1–28. https://doi.org/10.1080/02626667.2013.857411.
Lecher, K., H. P. Lühr, and U. Zanke. 2015. Taschenbuch der Wasserwirtschaft—Grundlagen Maßnahmen, Plannung. Wiesbaden, Germany: Springer.
Maksimovic, C., D. Prodanovic, S. Boonya-Aroonnet, J. P. Leitão, S. Djordjević, and R. Allitt. 2009. “Overland flow and pathway analysis for modelling of urban pluvial flooding.” J. Hydraul. Res. 47 (4): 512–523. https://doi.org/10.1080/00221686.2009.9522027.
Maxwell, R. M., et al. 2014. “Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks.” Water Resour. Res. 50 (2): 1531–1549. https://doi.org/10.1002/2013WR013725.
National Research Council. 2009. Urban stormwater management in the United States. Washington, DC: National Academies Press.
NLWKN (Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz). 2017. Globaler Klimawandel—Wasserwirtschaftliche Folgenschätzung für das Binnenland (KliBiw). Bundesland, Niedersachsen: NLWKN.
Peche, A., T. Graf, L. Fuchs, and I. Neuweiler. 2017. “A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil.” J. Hydrol. 555 (Dec): 569–585. https://doi.org/10.1016/j.jhydrol.2017.10.050.
Reynolds, O. 1883. “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channel.” J. Philos. Trans. 174 (Dec). https://doi.org/10.1098/rstl.1883.0029.
Schmitt, T. G., M. Illgen, and I. Kaufmann. 2006. “Klimawandel—Konsequenzen für die Siedlungsentwässerung?” Korrespondenz Abwasser Abfall 53 (8): 756–759.
Stefan, M., and T. Telegdy. 2015. “Einsatzbereiche verschiedener Methoden zur Darstellung des oberflächlichen Abflusses im Siedlungsraum.” Österreichische Wasser Abfallwirtsch. 67 (5–6): 197–202. https://doi.org/10.1007/s00506-015-0236-9.
Wang, W., T. Schnicke, and O. Kolditz. 2011. “Parallel finite element method and time stepping control for non-isothermal poro-elastic problems.” Comput. Mater. Continua 21 (3): 217. https://doi.org/10.3970/cmc.2011.021.217.
Zanke, U. 2013. Hydraulik für den Wasserbau. Garbsen, Germany: Springer.
Zhang, L., and E. Damisse. 2016. “CFD applications to flow rating development.” In Proc., World Environmental and Water Resources Congress 2016, edited by C. S. Pathak and D. Reinhart, 68–76. Reston, VA: ASCE. https://doi.org/10.1061/9780784479872.008.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 3March 2021

History

Received: Mar 18, 2020
Accepted: Sep 25, 2020
Published online: Dec 28, 2020
Published in print: Mar 1, 2021
Discussion open until: May 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Raoul Jankowski [email protected]
bpi Hannover–Beratende Ingenieure, Mengendamm 16D, 30177 Hanover, Germany; Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz Universität Hannover, Appelstrasse 9a, 30167 Hannover, Germany (corresponding author). Email: [email protected]
Markus Wallner, Ph.D. [email protected]
Professor, bpi Hannover–Beratende Ingenieure, Mengendamm 16D, 30177 Hanover, Germany; Faculty of Civil and Environmental Engineering, Ostfalia Univ. of Applied Sciences, Herbert-Meyer-St. 7, 29556 Suderburg, Germany; infra2structure, Mengendamm 16D, 30177 Hanover, Germany. Email: [email protected]
Aaron Peche, Ph.D. [email protected]
bpi Hannover–Beratende Ingenieure, Mengendamm 16D, 30177 Hanover, Germany; Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz Universität Hannover, Appelstrasse 9a, 30167 Hannover, Germany. Email: [email protected]
Thomas Graf, Ph.D. [email protected]
Professor, Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz Universität Hannover, Appelstrasse 9a, 30167 Hannover, Germany. Email: [email protected]
Alexander Verworn, Ph.D. [email protected]
bpi Hannover–Beratende Ingenieure, Mengendamm 16D, 30177 Hanover, Germany; infra2structure, Mengendamm 16D, 30177 Hanover, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share