Case Studies
Oct 23, 2020

Projection of Reference Crop Evapotranspiration under Future Climate Change in Poyang Lake Watershed, China

Publication: Journal of Hydrologic Engineering
Volume 26, Issue 1

Abstract

Reference crop evapotranspiration (ET0) is of great importance in assessing the potential impacts of climate changes on hydrological cycles and the global energy balance. The spatiotemporal change of ET0 and the drought response over Poyang Lake watershed of China from 2011 to 2100 are the main concern in this work. Based on the meteorological data and the output of the general circulation model (GCM) from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we used the Penman–Monteith formula and downscaling model to calculate the history and future ET0 in Poyang Lake watershed, respectively. Major results are drawn as follows. First, the annual average ET0 decreased during 1961–2014 and the average ET0 of the basin is high in the north and south, but low in the middle. The ET0 was most dominated by sunshine duration in the spring, summer, and fall and by relative humidity in the winter. Second, the downscaling model has a good simulation effect, and the GCM data-downscaling simulation results are significantly improved after the deviation correction. Third, under the representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios, ET0 in the Poyang Lake watershed will increase over the next three periods, with the middle future (2041–2070) as the largest increase period. The spatial distribution of ET0 is generally high in the east and low in the west. Fourth, under the RCP 8.5 scenario, the drought index (DI) of the watershed showed an increasing trend, the seasonal distribution of DI is fall>summer>spring>winter, and the Ganjiang River subbasin will be the key prevention area for future drought risks. The results can provide basic data support for the optimal management of water resources and scientific response to the impact of climate change on agricultural production in the watershed for associated policymakers and stakeholders.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Data generated by the authors or analyzed during the study are available at the following: (1) historical meteorological data from 14 national meteorological observatory stations in Poyang Lake watershed from the China Meteorological Data Sharing Service Center for the period of 1961–2014 are available at http://data.cma.cn/; (2) daily NCEP reanalysis dataset is available at https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html; and (3) the CNRM-CM5 model, as introduced by the French Meteorological Research Center, is available at https://esgf-node.llnl.gov/search/cmip5/.

Acknowledgments

This work was funded by the National Key Research and Development Program (2017YFB0504103), the Frontier Project of Applied Foundation of Wuhan (2019020701011502), the Natural Science Foundation of Hubei Province (2019CFB736), Key Research and Development Program of Jiangxi Province (20201BBG71002), the Graduate Education Innovation Funding Project of Central China Normal University (2019CXZZ005), and the LIESMARS Special Research Funding.

References

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. “Crop evapotranspiration—Guidelines for computing crop water requirements-FAO irrigation and drainage paper 56.” FAO, Rome 300 (9): D05109.
Allen, S. K., G. Plattner, A. Nauels, Y. Xia, D. Qin, and T. F. Stocker. 2014. “Climate change 2013: The physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC).” In EGU General Assembly April 27, 2014 to May 2, 2014. Cambridge, UK: Cambridge University Press.
Anapalli, S. S., L. R. Ahuja, P. H. Gowda, L. Ma, G. Marek, S. R. Evett, and T. A. Howell. 2016. “Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters.” Agric. Water Manage. 177: 274–283. https://doi.org/10.1016/j.agwat.2016.08.009.
Arora, V. K. 2002. “The use of the aridity index to assess climate change effect on annual runoff.” J. Hydrol. 265 (1–4): 164–177. https://doi.org/10.1016/S0022-1694(02)00101-4.
Baguis, P., E. Roulin, P. Willems, and V. Ntegeka. 2010. “Climate change scenarios for precipitation and potential evapotranspiration over central Belgium.” Theor. Appl. Climatol. 99 (3–4): 273. https://doi.org/10.1007/s00704-009-0146-5.
Benestad, R. E. 2002. “Empirically downscaled temperature scenarios for northern Europe based on a multi-model ensemble.” Clim. Res. 21 (2): 105–125. https://doi.org/10.3354/cr021105.
Biazar, S. M., Y. Dinpashoh, and V. P. Singh. 2019. “Sensitivity analysis of the reference crop evapotranspiration in a humid region.” Environ. Sci. Pollut. Res. 26: 32517–32544. https://doi.org/10.1007/s11356-019-06419-w.
Budyko, M. I. 1961. “The heat balance of the earth’s surface.” Soviet Geogr. 2 (4): 3–13. https://doi.org/10.1080/00385417.1961.10770761.
Budyko, M. I., D. H. Miller, and D. H. Miller. 1974. Vol. 508 of Climate life. New York: Academic Press.
Cai, J., Y. Liu, T. Lei, and L. S. Pereira. 2007. “Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages.” Agric. For. Meteorol. 145 (1–2): 22–35. https://doi.org/10.1016/j.agrformet.2007.04.012.
Cannarozzo, M., L. V. Noto, and F. Viola. 2006. “Spatial distribution of rainfall trends in Sicily (1921–2000).” Phys. Chem. Earth Parts A/B/C 31 (18): 1201–1211. https://doi.org/10.1016/j.pce.2006.03.022.
Chattopadhyay, N., and M. Hulme. 1997. “Evaporation potential evapotranspiration in India under conditions of recent future climate change.” Agric. For. Meteorol. 87 (1): 55–73. https://doi.org/10.1016/S0168-1923(97)00006-3.
Chen, D., G. Gao, C. Y. Xu, J. Guo, and G. Ren. 2005. “Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China.” Clim. Res. 28 (2): 123–132. https://doi.org/10.3354/cr028123.
Chong, M., S. Pan, G. Wang, Y. Liao, and Y. P. Xu. 2016. “Changes in precipitation temperature in Xiangjiang river basin, China.” Theor. Appl. Climatol. 123 (3–4): 859–871. https://doi.org/10.1007/s00704-015-1386-1.
Chu, J. L., and P. S. Yu. 2010. “A study of the impact of climate change on local precipitation using statistical downscaling.” J. Geophys. Res. Atmos. 115: D10105. https://doi.org/10.1029/2009JD012357.
Chu, J. T., J. Xia, C. Y. Xu, and V. P. Singh. 2010. “Statistical downscaling of daily mean temperature, pan evaporation precipitation for climate change scenarios in Haihe river, China.” Theor. Appl. Climatol. 99 (1–2): 149–161. https://doi.org/10.1007/s00704-009-0129-6.
Coquard, J., P. B. Duffy, K. E. Taylor, and J. P. Iorio. 2004. “Present future surface climate in the western USA as simulated by 15 global climate models.” Clim. Dyn. 23 (5): 455–472. https://doi.org/10.1007/s00382-004-0437-6.
Coulibaly, P., M. Haché, V. Fortin, and B. Bobée. 2005. “Improving daily reservoir inflow forecasts with model combination.” J. Hydrol. Eng. 10 (2): 91–99. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:2(91).
Da Silva, V. D. P. R. 2004. “On climate variability in northeast of Brazil.” J. Arid. Environ. 58 (4): 575–596. https://doi.org/10.1016/j.jaridenv.2003.12.002.
Diaz-Nieto, J., and R. L. Wilby. 2005. “A comparison of statistical downscaling climate change factor methods: Impacts on low flows in the River Thames, United Kingdom.” Clim. Change 69 (2–3): 245–268. https://doi.org/10.1007/s10584-005-1157-6.
Dibike, Y. B., and P. Coulibaly. 2005. “Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods hydrologic models.” J. Hydrol. 307 (1–4): 145–163. https://doi.org/10.1016/j.jhydrol.2004.10.012.
Dinpashoh, Y., D. Jhajharia, A. Fakheri-Fard, V. P. Singh, and E. Kahya. 2011. “Trends in reference crop evapotranspiration over Iran.” J. Hydrol. 399 (3–4): 422–433. https://doi.org/10.1016/j.jhydrol.2011.01.021.
Fan, Z. X., and A. Thomas. 2018. “Decadal changes of reference crop evapotranspiration attribution: Spatial temporal variability over China 1960–2011.” J. Hydrol. 560 (May): 461–470. https://doi.org/10.1016/j.jhydrol.2018.02.080.
Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka. 2013. “Evaluating adjusted forcing model spread for historical future scenarios in the CMIP5 generation of climate models.” J. Geophys. Res. Atmos. 118 (3): 1139–1150. https://doi.org/10.1002/jgrd.50174.
Fowler, H. J., S. Blenkinsop, and C. Tebaldi. 2007. “Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modeling.” Int. J. Climatol. J. R. Meteorol. Soc. 27 (12): 1547–1578. https://doi.org/10.1002/joc.1556.
Fowler, H. J., and R. L. Wilby. 2007. “Beyond the downscaling comparison study.” Int. J. Climatol. J. R. Meteorol. Soc. 27 (12): 1543–1545. https://doi.org/10.1002/joc.1616.
Giorgi, F., and L. O. Mearns. 2002. “Calculation of average, uncertainty range, reliability of regional climate changes from AOGCM simulations via the ‘reliability ensemble averaging’ (REA) method.” J. Clim. 15 (10): 1141–1158. https://doi.org/10.1175/1520-0442(2002)015%3C1141:COAURA%3E2.0.CO;2.
Gong, L., C. Y. Xu, D. Chen, S. Halldin, and Y. D. Chen. 2006. “Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze river) basin.” J. Hydrol. 239 (3–4): 620–629. https://doi.org/10.1016/j.jhydrol.2006.03.027.
Hellström, C., and D. Chen. 2003. “Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden.” Adv. Atmos. Sci. 20 (6): 951–958. https://doi.org/10.1007/BF02915518.
Homsi, R., M. S. Shiru, S. Shahid, T. Ismail, S. B. Harun, N. Al-Ansari, K. W. Chau, and Z. M. Yaseen. 2020. “Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria.” J. Eng. Appl. Comput. Fluid Mech. 14 (1): 90–106. https://doi.org/10.1080/19942060.2019.1683076.
Hu, Y., S. Maskey, and S. Uhlenbrook. 2013. “Downscaling daily precipitation over the Yellow river source region in China: A comparison of three statistical downscaling methods.” Theor. Appl. Climatol. 112 (3–4): 447–460. https://doi.org/10.1007/s00704-012-0745-4.
IPCC (Intergovernmental Panel on Climate Change). 2014. Climate change 2014: Impacts, adaptation, vulnerability. Cambridge, UK: Cambridge University Press.
Jacob, D., et al. 2007. “An inter-comparison of regional climate models for Europe: Model performance in present-day climate.” Supplement, Clim. Change 81 (S1): 31–52. https://doi.org/10.1007/s10584-006-9213-4.
Kendall, M. G. 1948. Rank correlation methods. London: Charles Griffin.
Khan, M. S., P. Coulibaly, and Y. Dibike. 2006. “Uncertainty analysis of statistical downscaling methods.” J. Hydrol. 319 (1–4): 357–382. https://doi.org/10.1016/j.jhydrol.2005.06.035.
Kousari, M. R., and H. Ahani. 2012. “An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran.” Int. J. Climatol. 32 (15): 2387–2402. https://doi.org/10.1002/joc.3404.
Kristensen, K. J., and S. E. Jensen. 1975. “A model for estimating actual evapotranspiration from potential evapotranspiration.” Hydrol. Res. 6 (3): 170–188. https://doi.org/10.2166/nh.1975.0012.
Li, Z., X. Xu, B. Yu, and K. Wang. 2016. “Quantifying the impacts of climate human activities on water sediment discharge in a karst region of southwest China.” J. Hydrol. 542 (Nov): 836–849. https://doi.org/10.1016/j.jhydrol.2016.09.049.
Liang, D., J. Lu, X. Chen, C. Liu, and J. Lin. 2020. “An investigation of the hydrological influence on the distribution transition of wetland cover in a complex lake-floodplain system using time-series remote sensing hydrodynamic simulation.” J. Hydrol. 587 (Aug): 125038. https://doi.org/10.1016/j.jhydrol.2020.125038.
Liu, Q., Z. Yang, B. Cui, and T. Sun. 2010. “The temporal trends of reference evapotranspiration its sensitivity to key meteorological variables in the Yellow river basin, China.” Hydrol. Processes 24 (15): 2171–2181. https://doi.org/10.1002/hyp.7649.
Liu, Y., and K. Fan. 2013. “A new statistical downscaling model for autumn precipitation in China.” Int. J. Climatol. 33 (6): 1321–1336. https://doi.org/10.1002/joc.3514.
Liu, Z., J. Lu, J. Huang, X. Chen, L. Zhang, and Y. Sheng. 2019. “Prediction trend of future reference crop evapotranspiration in the Poyang lake basin based on CMIP5 models.” J. Lake Sci. 31 (6): 1685–1697. https://doi.org/10.18307/2019.0608.
Lu, J., X. Chen, L. Zhang, S. Sauvage, and J. M. Sánchez-Pérez. 2017. “Evaluation of hydrological response to extreme climate variability using SWAT model: Application to the Fuhe basin of Poyang lake watershed, China.” Hydrol. Res. 48 (6): 1730–1744. https://doi.org/10.2166/nh.2016.115.
Lu, J., X. Chen, L. Zhang, S. Sauvage, and J. M. Sánchez-Pérez. 2018. “Water balance assessment of an ungauged area in Poyang lake watershed using a spatially distributed runoff coefficient model.” J. Hydroinf. 20 (5): 1009–1024. https://doi.org/10.2166/hydro.2018.017.
Lu, J., H. Li, X. Chen, and D. Liang. 2019. “Numerical study of remote sensed dredging impacts on the suspended sediment transport in China’s largest freshwater lake.” Water 11 (12): 2449. https://doi.org/10.3390/w11122449.
Maraun, D., et al. 2010. “Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user.” Rev. Geophys. 48 (3): RG3003. https://doi.org/10.1029/2009RG000314.
McVicar, T. R., T. G. Van Niel, L. Li, M. F. Hutchinson, X. Mu, and Z. Liu. 2007. “Spatially distributing monthly reference evapotranspiration pan evaporation considering topographic influences.” J. Hydrol. 338 (3–4): 196–220. https://doi.org/10.1016/j.jhydrol.2007.02.018.
Moss, R. H., et al. 2010. “The next generation of scenarios for climate change research assessment.” Nature 463 (7282): 747. https://doi.org/10.1038/nature08823.
Murphy, J. 2000. “Predictions of climate change over Europe using statistical and dynamical downscaling techniques.” Int. J. Climatol. J. R. Meteorol. Soc. 20 (5): 489–501. https://doi.org/10.1002/(SICI)1097-0088(200004)20:5%3C489::AID-JOC484%3E3.0.CO;2-6.
Oueslati, B., and G. Bellon. 2013. “Convective entrainment large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models.” J. Clim. 26 (9): 2931–2946. https://doi.org/10.1175/JCLI-D-12-00314.1.
Pachauri, R. K., et al. 2014. “Climate change 2014: Synthesis report.” In Proc., Contribution of Working Groups I, II III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151. Geneva: Intergovernmental Panel on Climate Change.
Peng, S., Y. Ding, Z. Wen, Y. Chen, Y. Cao, and J. Ren. 2017. “Spatiotemporal change trend analysis of potential evapotranspiration over the Loess plateau of China during 2011–2100.” Agric. For. Meteorol. 233 (Feb): 183–194. https://doi.org/10.1016/j.agrformet.2016.11.129.
Penlap, E. K., C. Matulla, H. von Storch, and F. M. Kamga. 2004. “Downscaling of GCM scenarios to assess precipitation changes in the little rainy season (March–June) in Cameroon.” Clim. Res. 26 (2): 85–96. https://doi.org/10.3354/cr026085.
Ramírez, M. C., N. J. Ferreira, and H. F. C. Velho. 2006. “Linear nonlinear statistical downscaling for rainfall forecasting over southeastern Brazil.” Weather Forecasting 21 (6): 969–989. https://doi.org/10.1175/WAF981.1.
Reusch, D. B., and R. B. Alley. 2002. “Automatic weather stations artificial neural networks: Improving the instrumental record in west Antarctica.” Mon. Weather Rev. 130 (12): 3037–3053. https://doi.org/10.1175/1520-0493(2002)130%3C3037:AWSAAN%3E2.0.CO;2.
Roderick, M. L., and G. D. Farquhar. 2002. “The cause of decreased pan evaporation over the past 50 years.” Science 298 (5597): 1410–1411. https://doi.org/10.1126/science.1075390-a.
Roderick, M. L., and G. D. Farquhar. 2004. “Changes in Australian pan evaporation from 1970 to 2002.” Int. J. Climatol. J. Royal Meteorol. Soc. 24 (9): 1077–1090. https://doi.org/10.1002/joc.1061.
Sabziparvar, A. A., H. Tabari, A. Aeini, and M. Ghafouri. 2010. “Evaluation of class A pan coefficient models for estimation of reference crop evapotranspiration in cold semi-arid warm arid climates.” Water Resour. Manage. 24 (5): 909–920. https://doi.org/10.1007/s11269-009-9478-2.
Tang, J., X. Niu, S. Wang, H. Gao, X. Wang, and J. Wu. 2016. “Statistical downscaling dynamical downscaling of regional climate in China: Present climate evaluations future climate projections.” J. Geophys. Res. Atmos. 121 (5): 2110–2129. https://doi.org/10.1002/2015JD023977.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An overview of CMIP5 the experiment design.” Bull. Am. Meteorol. Soc. 93 (4): 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.
Terink, W., R. T. W. L. Hurkmans, P. J. J. F. Torfs, and R. Uijlenhoet. 2010. “Evaluation of a bias correction method applied to downscaled precipitation temperature reanalysis data for the Rhine basin.” Hydrol. Earth Syst. Sci. 14 (4): 687–703. https://doi.org/10.5194/hess-14-687-2010.
Thomas, A. 2000. “Spatial and temporal characteristics of potential evapotranspiration trends over China.” Int. J. Climatol. J. R. Meteorol. Soc. 20 (4): 381–396. https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4%3C381::AID-JOC477%3E3.0.CO;2-K.
Trenberth, K. E. 1997. “The use abuse of climate models.” Nature 386 (6621): 131–133. https://doi.org/10.1038/386131a0.
Voldoire, A., E. Sanchez-Gomez, D. S. y Mélia, and M. Déqué. 2013. “The CNRM-CM5.1 global climate model: Description basic evaluation.” Clim. Dyn. 40 (9–10): 2091–2121. https://doi.org/10.1007/s00382-011-1259-y.
Wang, W., W. Xing, and Q. Shao. 2015. “How large are uncertainties in future projection of reference evapotranspiration through different approaches?” J. Hydrol. 524 (May): 696–700. https://doi.org/10.1016/j.jhydrol.2015.03.033.
Wang, W., W. Xing, Q. Shao, Z. Yu, S. Peng, and V. P. Singh. 2013. “Changes in reference evapotranspiration across the Tibetan plateau: Observations future projections based on statistical downscaling.” J. Geophys. Res. Atmos. 118 (10): 4049–4068. https://doi.org/10.1002/jgrd.50393.
Wang, Y., G. Sivran, and J. M. Bielicki. 2018. “The stationarity of two statistical downscaling methods for precipitation under different choices of cross-validation periods.” Int. J. Climatol. 38 (s1): e330–e348. https://doi.org/10.1002/joc.5375.
Wilby, R. L., C. W. Dawson, and E. M. Barrow. 2002. “SDSM—A decision support tool for the assessment of regional climate change impacts.” Environ. Modell. Software 17 (2): 145–157. https://doi.org/10.1016/S1364-8152(01)00060-3.
Wilby, R. L., and T. M. L. Wigley. 1997. “Downscaling general circulation model output: A review of methods limitations.” Prog. Phys. Geogr. 21 (4): 530–548. https://doi.org/10.1177/030913339702100403.
Wilby, R. L., and T. M. L. Wigley. 2000. “Precipitation predictors for downscaling: Observed general circulation model relationships.” Int. J. Climatol. J. R. Meteorol. Soc. 20 (6): 641–661. https://doi.org/10.1002/(SICI)1097-0088(200005)20:6%3C641::AID-JOC501%3E3.0.CO;2-1.
Xu, C. Y., L. Gong, T. Jiang, D. Chen, and V. P. Singh. 2006. “Analysis of spatial distribution temporal trend of reference evapotranspiration pan evaporation in Changjiang (Yangtze river) catchment.” J. Hydrol. 327 (1–2): 81–93. https://doi.org/10.1016/j.jhydrol.2005.11.029.
Xu, Y. P., S. Pan, G. Fu, Y. Tian, and X. Zhang. 2014. “Future potential evapotranspiration changes contribution analysis in Zhejiang province, east China.” J. Geophys. Res. Atmos. 119 (5): 2174–2192. https://doi.org/10.1002/2013JD021245.
Yang, C., N. Wang, S. Wang, and L. Zhou. 2018. “Performance comparison of three predictor selection methods for statistical downscaling of daily precipitation.” Theor. Appl. Climatol. 131 (1–2): 43–54. https://doi.org/10.1007/s00704-016-1956-x.
Yang, T., H. Li, W. Wang, C. Y. Xu, and Z. Yu. 2012. “Statistical downscaling of extreme daily precipitation, evaporation, temperature construction of future scenarios.” Hydrol. Process. 26 (23): 3510–3523. https://doi.org/10.1002/hyp.8427.
Ye, X., X. Li, J. Liu, C. Y. Xu, and Q. Zhang. 2014. “Variation of reference evapotranspiration its contributing climatic factors in the Poyang lake catchment, China.” Hydrol. Process. 28 (25): 6151–6162. https://doi.org/10.1002/hyp.10117.
Yin, Y., S. Wu, and D. Zhao. 2013. “Past future spatiotemporal changes in evapotranspiration effective moisture on the Tibetan plateau.” J. Geophys. Res. Atmos. 118 (19): 10–850. https://doi.org/10.1002/jgrd.50858.
Yue, S., P. Pilon, B. Phinney, and G. Cavadias. 2002. “The influence of autocorrelation on the ability to detect trend in hydrological series.” Hydrol. Process. 16 (9): 1807–1829. https://doi.org/10.1002/hyp.1095.
Zhang, L., X. Chen, J. Lu, X. Fu, Y. Zhang, D. Liang, and Q. Xu. 2019. “Precipitation projections using a spatiotemporally distributed method: A case study in the Poyang Lake watershed based on the MRI-CGCM3.” Hydrol. Earth Syst. Sci. 23 (3): 1649–1666. https://doi.org/10.5194/hess-23-1649-2019.
Zorita, E., and H. Von Storch. 1999. “The analog method as a simple statistical downscaling technique: Comparison with more complicated methods.” J. Clim. 12 (8): 2474–2489. https://doi.org/10.1175/1520-0442(1999)012%3C2474:TAMAAS%3E2.0.CO;2.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 1January 2021

History

Received: Nov 29, 2019
Accepted: Jul 13, 2020
Published online: Oct 23, 2020
Published in print: Jan 1, 2021
Discussion open until: Mar 23, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

MSc. Student, Key Laboratory of Geographic Process Analysis and Simulation of Hubei Province, Central China Normal Univ., Wuhan 430079, China. ORCID: https://orcid.org/0000-0001-8222-5163. Email: [email protected]
Jianzhong Lu, Ph.D. [email protected]
Associate Professor, State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan Univ., Wuhan 430079, China (corresponding author). Email: [email protected]
Jianwu Huang, Ph.D. [email protected]
Professor, Key Laboratory of Geographic Process Analysis and Simulation of Hubei Province, Central China Normal Univ., Wuhan 430079, China. Email: [email protected]
Xiaoling Chen, Ph.D. [email protected]
Professor, State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan Univ., Wuhan 430079, China. Email: [email protected]
Ling Zhang, Ph.D.
Ph.D. Candidate, State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan Univ., Wuhan 430079, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share