Technical Papers
Sep 11, 2020

Multicriteria Decision-Making Approach to Enhance Automated Anchor Pixel Selection Algorithm for Arid and Semi-Arid Regions

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 11

Abstract

Finding the precise value of pixel-scale evapotranspiration (ET) for an entire basin is a major challenge to hydrologists. Many efforts have been made to conquer this challenge, among which remote sensing methods are the most promising ones. The surface energy balance algorithm for land (SEBAL) is one of the several established remote sensing methods to estimate ET. The anchor pixel selection process (e.g., hot and cold pixels) is one of the critical steps in the SEBAL model that also determines the accuracy of the model outputs. Several researchers have improved anchor pixel selection by an automated fashion. In the current study, a new simple method has been proposed to seek the best anchor pixels. Then, the daily ET outputs were assessed using observed data from the Eddy covariance (EC) tower data at Santa Cruz River Watershed for 2014–2015. The results showed that the daily ET with measured data at the study site confirmed our automated anchor pixel selection method to be reliable in terms of selecting appropriate hot and cold pixels under dry conditions by producing ET maps with reasonable accuracies (R2=0.78 and RMSE=0.46  mmday1). Our study suggests that considerations of simple image-derived parameters, such as temperature difference between hot and cold pixels, distance from a representative station, and elevation differences could improve the automatic selection of anchor pixels and the implementation of the SEBAL model under dry conditions. The machine learning technique could be combined with the proposed automated algorithm to map ET in different climates (not only arid and semiarid) faster and with more accuracy.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

Our special thanks go to USGS, FLUXNET community and National Climatic Data Center for providing us with the Landsat 8 dataset, eddy covariance, and synoptic station data. Also, we thank Dr. Nishan Bhattarai University of Michigan for helping us to develop the algorithm.

References

Allen, R. G., et al. 2007. “Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications.” J. Irrig. Drain. Eng. 133 (4): 395–406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395).
Allen, R. G., B. Burnett, W. Kramber, J. Huntington, J. Kjaersgaard, A. Kilic, C. Kelly, and R. Trezza. 2013. “Automated calibration of the METRIC-Landsat evapotranspiration process.” J. Am. Water Resour. Assoc. 49 (3): 563–576. https://doi.org/10.1111/jawr.12056.
Allen, R. G., L. S. Pereira, T. A. Howell, and M. E. Jensen. 2011. “Agricultural water management evapotranspiration information reporting. I: Factors governing measurement accuracy.” Agric. Water Manage. 98 (6): 899–920. https://doi.org/10.1016/j.agwat.2010.12.015.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. “Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.” Fao, Rome 300 (9): D05109.
Allen, R. G., M. Tasumi, R. Trezza, R. Waters, and W. Bastiaanssen. 2002a. Surface energy balance algorithm for land (SEBAL)—Advanced training and users manual. Kimberly, South Africa: Idaho Implementation.
Allen, R. G., R. Trezza, and M. Tasumi. 2002b. Surface energy balance algorithms for land. Advance training and users manual, version 1.0. Moscow, ID: Univ. of Idaho.
Aoki, M., I. Horiguchi, C. Itoh, G. Q. Yang, T. Harada, and T. Yakuwa. 1992. “Development of an aseptic plant tissue culture vessel system enabling ventilation, air composition control, and addition of nutrient solutions.” J. Agric. Meteorol. 48 (1): 29–37. https://doi.org/10.2480/agrmet.48.29.
Bannayan, M., S. S. Lotfabadi, S. Sanjani, A. Mohamadian, and M. Aghaalikhani. 2011. “Effects of precipitation and temperature on crop production variability in northeast Iran.” Int. J. Biometeorol. 55 (3): 387–401. https://doi.org/10.1007/s00484-010-0348-7.
Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag. 1998a. “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation.” J. Hydrol. 212 (Dec): 198–212. https://doi.org/10.1016/S0022-1694(98)00253-4.
Bastiaanssen, W. G. M., H. Pelgrum, J. Wang, Y. Ma, J. F. Moreno, G. J. Roerink, and T. Van der Wal. 1998b. “A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation.” J. Hydrol. 212 (Dec): 213–229. https://doi.org/10.1016/S0022-1694(98)00254-6.
Bhattarai, N., and T. Liu. 2019. “LandMOD ET mapper: A new Matlab-based graphical user interface (GUI) for automated implementation of SEBAL and METRIC models in thermal imagery.” Environ. Modell. Software 118 (Aug): 76–82. https://doi.org/10.1016/j.envsoft.2019.04.007.
Bhattarai, N., K. Mallick, J. Stuart, B. D. Vishwakarma, R. Niraula, S. Sen, and M. Jain. 2019. “An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data.” Remote Sens. Environ. 229 (Aug): 69–92. https://doi.org/10.1016/j.rse.2019.04.026.
Bhattarai, N., L. J. Quackenbush, J. Im, and S. B. Shaw. 2017. “A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models.” Remote Sens. Environ. 196 (Jul): 178–192. https://doi.org/10.1016/j.rse.2017.05.009.
Bhattarai, N., S. B. Shaw, L. J. Quackenbush, J. Im, and R. Niraula. 2016. “Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate.” Int. J. Appl. Earth Obs. Geoinf. 49 (Jul): 75–86. https://doi.org/10.1016/j.jag.2016.01.010.
Courault, D., B. Seguin, and A. Olioso. 2005. “Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches.” Irrig. Drain. Syst. 19 (3–4): 223–249. https://doi.org/10.1007/s10795-005-5186-0.
Cunha, J., T. E. Pereira, E. Pereira, I. Rufino, C. Galvão, F. Valente, and F. Brasileiro. 2020. “A high-throughput shared service to estimate evapotranspiration using Landsat imagery.” Comput. Geosci. 134 (Apr): 104341. https://doi.org/10.1016/j.cageo.2019.104341.
de Bruin, H. A. R., I. F. Trigo, F. C. Bosveld, and J. F. Meirink. 2016. “A Thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application.” J. Hydrometeorol. 17 (5): 1373–1382. https://doi.org/10.1175/JHM-D-15-0006.1.
Doorenbos, J., and W. O. Pruitt. 1977. Guidelines for predicting crop water requirements, FAO-ONU., 144. Rome: Food and Agriculture Organization of the United Nations.
Eslami, Z., S. Janatrostami, A. Ashrafzadeh, and Y. Poumohamad. 2020. “Water, energy, food nexus approach impact on integrated water resources management in sefid-rud irrigation and drainage network.” J. Water Soil 34 (1): 11–25. https://doi.org/10.22067/jsw.v34i1.81897.
Fetter, C. W. 2001. Applied hydrogeology. Long Grove, IL: Waveland Press.
Gebremichael, M., J. Wang, and T. W. Sammis. 2010. “Dependence of remote sensing evapotranspiration algorithm on spatial resolution.” Atmos. Res. 96 (4): 489–495. https://doi.org/10.1016/j.atmosres.2009.12.003.
Glenn, E. P., A. R. Huete, P. L. Nagler, K. K. Hirschboeck, and P. Brown. 2007. “Integrating remote sensing and ground methods to estimate evapotranspiration.” Crit. Rev. Plant Sci. 26 (3): 139–168. https://doi.org/10.1080/07352680701402503.
He, R., Y. Jin, M. M. Kandelous, D. Zaccaria, B. L. Sanden, R. L. Snyder, J. Jiang, and J. W. Hopmans. 2017. “Evapotranspiration estimate over an almond orchard using Landsat satellite observations.” Remote Sens. 9 (5): 436. https://doi.org/10.3390/rs9050436.
Hodgson, M. E., X. Li, and Y. Cheng. 2004. “A parameterization model for transportation feature extraction.” Photogramm. Eng. Remote Sens. 70 (12): 1399–1404. https://doi.org/10.14358/PERS.70.12.1399.
Im, J., and M. E. Hodgson. 2009. “Characteristics of search spaces for identifying optimum thresholds in change detection studies.” GISci. Remote Sens. 46 (3): 249–272. https://doi.org/10.2747/1548-1603.46.3.249.
Im, J., J. R. Jensen, and M. E. Hodgson. 2008. “Optimizing the binary discriminant function in change detection applications.” Remote Sens. Environ. 112 (6): 2761–2776. https://doi.org/10.1016/j.rse.2008.01.007.
Im, J., J. Rhee, J. R. Jensen, and M. E. Hodgson. 2007. “An automated binary change detection model using a calibration approach.” Remote Sens. Environ. 106 (1): 89–105. https://doi.org/10.1016/j.rse.2006.07.019.
Irmak, S., E. Istanbulluoglu, and A. Irmak. 2008. “An evaluation of evapotranspiration model complexity against performance in comparison with Bowen ratio energy balance measurements.” Trans. ASABE Am. Soc. Agri. Biol. Eng. 51 (4): 1295–1310. https://doi.org/10.13031/2013.25246.
Jaafar, H. H., and F. A. Ahmad. 2019. “Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon.” Remote Sens. Environ. 238 (Mar): 111034. https://doi.org/10.1016/j.rse.2018.12.033.
Jiménez-Muñoz, J. C., and J. A. Sobrino. 2008. “Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors.” IEEE Geosci. Remote Sens. Lett. 5 (4): 806–809. https://doi.org/10.1109/LGRS.2008.2001636.
Kjaersgaard, J. H., R. G. Allen, M. Garcia, W. Kramber, and R. Trezza. 2009. Automated selection of anchor pixels for Landsat based evapotranspiration estimation., 1–11. Reston, VA: ASCE.
Kustas, W. P., J. M. Norman, M. C. Anderson, and A. N. French. 2003. “Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship.” Remote Sens. Environ. 85 (4): 429–440. https://doi.org/10.1016/S0034-4257(03)00036-1.
Liang, S. 2000. “Narrowband to broadband conversions of land surface albedo I: Algorithms.” Remote Sens. Environ. 76 (2): 213–238. https://doi.org/10.1016/S0034-4257(00)00205-4.
Long, D., and V. P. Singh. 2013. “Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation.” Water Resour. Res. 49 (5): 2601–2618. https://doi.org/10.1002/wrcr.20208.
Mianabadi, A., M. Coenders-Gerrits, P. Shirazi, B. Ghahraman, and A. Alizadeh. 2019. “A global Budyko model to partition evaporation into interception and transpiration.” Hydrol. Earth Syst. Sci. 23 (12): 4983–5000. https://doi.org/10.5194/hess-23-4983-2019.
Molina-Navarro, E., M. Hallack-Alegría, S. Martínez-Pérez, J. Ramírez-Hernández, A. Mungaray-Moctezuma, and A. Sastre-Merlín. 2016. “Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, Mexico.” Agric. Water Manage. 175 (Sep): 29–42. https://doi.org/10.1016/j.agwat.2015.10.029.
Mollaei, Z., K. Davary, S. Majid Hasheminia, A. Faridhosseini, and Y. Pourmohamad. 2017. “Enhancing flood hazard estimation methods on alluvial fans using an integrated hydraulic and geological and geomorphological approach.” Nat. Hazards Earth Syst. Sci. 18 (4): 1159–1171. https://doi.org/10.5194/nhess-18-1159-2018.
Narraway, R. 2011. Encyclopedia of soil science. 2nd ed. London: Taylor & Francis.
Overgaard, J., D. Rosbjerg, and M. B. Butts. 2005. “Land-surface modelling in hydrological perspective.” Biogeosci. Discuss. 2 (6): 1815–1848. https://doi.org/10.5194/bgd-2-1815-2005.
Paul, G., P. H. Gowda, P. V. V. Prasad, T. A. Howell, R. M. Aiken, and S. L. Hutchinson. 2013. Role of hot and cold pixel concept in remote sensing based single source surface energy balance algorithms., 103–117. Phoenix: US Committee on Irrigation and Drainage.
Pourmohamad, Y., A. Alizadeh, M. Mousavi Baygi, M. Gebremichael, A. N. Ziaei, and M. Bannayan. 2019. “Optimizing cropping area by proposing a combined water-energy productivity function for Neyshabur Basin, Iran.” Agric. Water Manage. 217 (Jul): 131–140. https://doi.org/10.1016/j.agwat.2019.02.040.
Pourmohamad, Y., M. Mousavi Baygi, A. Alizadeh, A. N. Ziaei, and M. Bannayan. 2017. “Estimating major crop water productivity at Neyshabour basin and optimize crop area.” J. Water and Soil 31 (1): 112–126. https://doi.org/10.22067/jsw.v31i1.58343.
Pourmohamad, Y., A. Shahnazari, A. R. Emadi, and M. Z. Ahmadi. 2011. “Effect of dredging of wetlands on variation of water allocation in Alborz dam watershed using WEAP model.” J. Watershed Manage. Res. 2 (4): 44–56.
rShamir, E., D. M. Meko, N. E. Graham, and K. P. Georgakakos. 2007. “Hydrologic model framework for water resources planning in the Santa Cruz River, Southern Arizona 1.” J. Am. Water Resour. Assoc. 43 (5): 1155–1170.
Ramón-Reinozo, M., D. Ballari, J. J. Cabrera, P. Crespo, and G. Carrillo-Rojas. 2019. “Altitudinal and temporal evapotranspiration dynamics via remote sensing and vegetation index-based modelling over a scarce-monitored, high-altitudinal Andean páramo ecosystem of southern Ecuador.” Environ. Earth Sci. 78 (11): 340. https://doi.org/10.1007/s12665-019-8337-6.
R Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: Citeseer.
Schmugge, T. J., W. P. Kustas, J. C. Ritchie, T. J. Jackson, and A. Rango. 2002. “Remote sensing in hydrology.” Adv. Water Resour. 25 (8–12): 1367–1385. https://doi.org/10.1016/S0309-1708(02)00065-9.
Scott, R. 2016. FLUXNET2015 US-Wkg Walnut Gulch Kendall Grasslands. Washington, DC: FluxNet, USDA. https://doi.org/10.18140/FLX/1440096.
Shafian, S., and S. J. Maas. 2015. “Index of soil moisture using raw Landsat image digital count data in Texas High Plains.” Remote Sens. 7 (3): 2352–2372. https://doi.org/10.3390/rs70302352.
Silva, A. M., R. M. da Silva, and C. A. G. Santos. 2019. “Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images.” Int. J. Appl. Earth Obs. Geoinf. 79 (Jul): 1–11. https://doi.org/10.1016/j.jag.2019.02.012.
Singh Rawat, K., S. Kumar Singh, A. Bala, and S. Szabó. 2019. “Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment.” Agric. W7ater Manage. 213 (Jun): 922–933. https://doi.org/10.1016/j.agwat.2018.12.002.
Smith, R. B. 2010. The heat budget of the earth’s surface deduced from space. New Haven, CT: Ronald B. Smith.
Trenberth, K. E., and D. J. Shea. 2005. “Relationships between precipitation and surface temperature.” Geophys. Res. Lett. 32 (14): 1–4. https://doi.org/10.1029/2005GL022760.
USGS. 2012. “USGS global visualization viewer.” Accessed December 5, 2019. http://glovis.usgs.gov/index.shtm%5Cnhttp://glovis.usgs.gov/.
Vidal, A., Y. Kerr, J. P. Lagouarde, and B. Seguin. 1987. “Remote sensing and water balance: combined use of an agro-meteorological model and thermal IR data from the NOAA-AVHRR satellite.” Agric. For. Meteorol. 39 (2–3): 155–175. https://doi.org/10.1016/0168-1923(87)90034-7.
Yu, X., X. Guo, and Z. Wu. 2014. “Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method.” Remote Sens. 6 (10): 9829–9852. https://doi.org/10.3390/rs6109829.
Zhang, K., J. S. Kimball, and S. W. Running. 2016. “A review of remote sensing based actual evapotranspiration estimation.” Wiley Interdiscip. Rev.: Water 3 (6): 834–853. https://doi.org/10.1002/wat2.1168.
Zhao, L., J. Xia, C. Xu, Z. Wang, L. Sobkowiak, and C. Long. 2013. “Evapotranspiration estimation methods in hydrological models.” J. Geog. Sci. 23 (2): 359–369. https://doi.org/10.1007/s11442-013-1015-9.
Zitouna-Chebbi, R., L. Prévot, A. Chakhar, M. Marniche-Ben Abdallah, and F. Jacob. 2018. “Observing actual evapotranspiration from flux tower eddy covariance measurements within a hilly watershed: Case study of the Kamech site, Cap Bon Peninsula, Tunisia.” Atmosphere 9 (2): 68. https://doi.org/10.3390/atmos90200680.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 11November 2020

History

Received: Sep 21, 2019
Accepted: Jun 16, 2020
Published online: Sep 11, 2020
Published in print: Nov 1, 2020
Discussion open until: Feb 11, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, Water and Environment Research Institute, Ferdowsi Univ. of Mashhad, Azadi Square-Mashhad-Razavi Khorasan 9177948974, Iran (corresponding author). ORCID: https://orcid.org/0000-0001-9925-8658. Email: [email protected]; [email protected]
Ahmad Ghandehari
Ph.D. Graduate, Dept. of Water Engineering and Sciences, Ferdowsi Univ. of Mashhad, Azadi Square-Mashhad-Razavi Khorasan 9177948974, Iran.
Professor, Water and Environment Research Institute, Ferdowsi Univ. of Mashhad, Azadi Square-Mashhad-Razavi Khorasan 9177948974, Iran. ORCID: https://orcid.org/0000-0001-9742-4712
Pooya Shirazi
Ph.D. Graduate, Dept. of Water Engineering and Sciences, Ferdowsi Univ. of Mashhad, Azadi Square-Mashhad-Razavi Khorasan 9177948974, Iran.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share