State-of-the-Art Reviews
Jul 2, 2020

Compound Events under Global Warming: A Dependence Perspective

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 9

Abstract

Due to enhanced impacts of compound events, the importance of assessing climate change impacts on extremes from a multivariate perspective has recently been receiving considerable attention. This study provides a state-of-the-art review of compound events from the perspective of the dependence of multiple contributing variables, based on both synthetic data sets and observations. The cause of dependence, the relationship between dependence and likelihoods of compound events, and changes in risks associated with dependence changes are reviewed, with the illustration of two typical examples of compound dry–hot events and compound flooding events. Also discussed are related topics, including impacts of sample sizes, multivariate bias correction of dependence, and separating driving factors of compound event changes. Insights provided by this study will be useful for building resilience to cope with compound extremes under changing climate.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the submitted article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, No. 41601014). Precipitation and temperature observations were obtained from the Climatic Research Unit (CRU TS v. 3.25) of the University of East Anglia (http://www.cru.uea.ac.uk/data). Monthly precipitation and runoff were obtained from NOAA Climate Prediction Center (CPC) website (ftp://ftp.cpc.ncep.noaa.gov/wd51yf/us). Historical precipitation and temperature simulations from Coupled Model Intercomparison Project (CMIP5) were obtained from https://esgf-node.llnl.gov/projects/cmip5/.

References

Adler, R. F., G. Gu, J. J. Wang, G. J. Huffman, S. Curtis, and D. Bolvin. 2008. “Relationships between global precipitation and surface temperature on inter annual and longer timescales (1979–2006).” J. Geophys. Res. Atmos. 113 (22): D22104. https://doi.org/10.1029/2008JD010536.
AghaKouchak, A., L. Cheng, O. Mazdiyasni, and A. Farahmand. 2014. “Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought.” Geophys. Res. Lett. 41 (24): 8847–8852. https://doi.org/10.1002/2014GL062308.
Alexander, L. V. 2016. “Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond.” Weather Clim. Extremes 11 (Mar): 4–16. https://doi.org/10.1016/j.wace.2015.10.007.
Bender, J., T. Wahl, and J. Jensen. 2014. “Multivariate design in the presence of non-stationarity.” J. Hydrol. 514 (Jun): 123–130. https://doi.org/10.1016/j.jhydrol.2014.04.017.
Bengtsson, L. 2016. “Probability of combined high sea levels and large rains in Malmö, Sweden, Southern Öresund.” Hydrol. Proccess 30 (18): 3172–3183. https://doi.org/10.1002/hyp.10815.
Beniston, M. 2009. “Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100.” Geophys. Res. Lett. 36 (7): L07707. https://doi.org/10.1029/2008GL037119.
Berg, A., et al. 2015. “Inter annual coupling between summertime surface temperature and precipitation over land: Processes and implications for climate change.” J. Climate 28 (3): 1308–1328. https://doi.org/10.1175/JCLI-D-14-00324.1.
Berg, A., K. Findell, B. Lintner, A. Giannini, S. I. Seneviratne, B. Van Den Hurk, R. Lorenz, A. Pitman, S. Hagemann, and A. Meier. 2016. “Land-atmosphere feedbacks amplify aridity increase over land under global warming.” Nat. Clim. Change 6 (9): 869–874. https://doi.org/10.1038/nclimate3029.
Bevacqua, E., D. Maraun, I. Hobæk Haff, M. Widmann, and M. Vrac. 2017. “Multivariate statistical modeling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy).” Hydrol. Earth Syst. Sci. 21 (6): 2701–2723. https://doi.org/10.5194/hess-21-2701-2017.
Bevacqua, E., D. Maraun, M. I. Vousdoukas, E. Voukouvalas, M. Vrac, L. Mentaschi, and M. Widmann. 2019. “Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change.” Sci. Adv. 5 (9): 5531. https://doi.org/10.1126/sciadv.aaw5531.
Bray, S. N., and R. H. McCuen. 2014. “Importance of the assumption of independence or dependence among multiple flood sources.” J. Hydrol. Eng. 19 (6): 1194–1202. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000901.
Brouillet, A., and S. Joussaume. 2019. “Investigating the role of the relative humidity in the co-occurrence of temperature and heat stress extremes in CMIP5 projections.” Geophys. Res. Lett. 46 (20): 11435–11443. https://doi.org/10.1029/2019GL084156.
Cannon, A. J. 2016. “Multivariate bias correction of climate model output: Matching marginal distributions and inter variable dependence structure.” J. Clim. 29 (19): 7045–7064. https://doi.org/10.1175/JCLI-D-15-0679.1.
Cannon, A. J. 2018. “Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables.” Clim. Dyn. 50 (1): 31–49. https://doi.org/10.1007/s00382-017-3580-6.
Chen, L., X. Chen, L. Cheng, P. Zhou, and Z. Liu. 2019. “Compound hot droughts over China: Identification, risk patterns and variations.” Atmos. Res. 227 (Oct): 210–219. https://doi.org/10.1016/j.atmosres.2019.05.009.
Chen, Y., W. Moufouma-Okia, V. Masson-Delmotte, P. Zhai, and A. Pirani. 2018. “Recent progress and emerging topics on weather and climate extremes since the fifth assessment report of the Intergovernmental Panel on Climate Change.” Annu. Rev. Environ. Resour. 43 (1): 35–59. https://doi.org/10.1146/annurev-environ-102017-030052.
Cheng, L., A. AghaKouchak, E. Gilleland, and R. W. Katz. 2014. “Non-stationary extreme value analysis in a changing climate.” Clim. Change 127 (2): 353–369. https://doi.org/10.1007/s10584-014-1254-5.
Cheng, L., M. Hoerling, Z. Liu, and J. Eischeid. 2019. “Physical understanding of human-induced changes in US hot droughts using equilibrium climate simulations.” J. Climate 32 (14): 4431–4443. https://doi.org/10.1175/JCLI-D-18-0611.1.
Couasnon, A., D. Eilander, S. Muis, T. I. E. Veldkamp, I. D. Haigh, T. Wahl, H. C. Winsemius, and P. J. Ward. 2020. “Measuring compound flood potential from river discharge and storm surge extremes at the global scale.” Nat. Hazards Earth Syst. Sci. 20 (2): 489–504. https://doi.org/10.5194/nhess-20-489-2020.
Coumou, D., and A. Robinson. 2013. “Historic and future increase in the global land area affected by monthly heat extremes.” Environ. Res. Lett. 8 (3): 034018. https://doi.org/10.1088/1748-9326/8/3/034018.
Crhová, L., and E. Holtanová. 2018. “Simulated relationship between air temperature and precipitation over Europe: Sensitivity to the choice of RCM and GCM.” Int. J. Climatol. 38 (3): 1595–1604. https://doi.org/10.1002/joc.5256.
Dee, D. P., et al. 2011. “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system.” Q. J. R. Meteorol. 137 (656): 553–597. https://doi.org/10.1002/qj.828.
Déry, S. J., and E. F. Wood. 2005. “Observed twentieth century land surface air temperature and precipitation co variability.” Geophys. Res. Lett. 32 (21): L21414. https://doi.org/10.1029/2005GL024234.
Diffenbaugh, N. S., D. Singh, J. S. Mankin, D. E. Horton, D. L. Swain, D. Touma, A. Charland, Y. Liu, M. Haugen, M. Tsiang, and B. Rajaratnam. 2017. “Quantifying the influence of global warming on unprecedented extreme climate events.” Proc. Nat. Acad. Sci. 114 (19): 4881–4886. https://doi.org/10.1073/pnas.1618082114.
Diffenbaugh, N. S., D. L. Swain, and D. Touma. 2015. “Anthropogenic warming has increased drought risk in California.” Proc. Nat. Acad. Sci. 112 (13): 3931–3936. https://doi.org/10.1073/pnas.1422385112.
Dirmeyer, P. A. 2011. “The terrestrial segment of soil moisture—Climate coupling.” Geophys. Res. Lett. 38 (16): L16702. https://doi.org/10.1029/2011GL048268.
Estrella, N., and A. Menzel. 2013. “Recent and future climate extremes arising from changes to the bivariate distribution of temperature and precipitation in Bavaria, Germany.” Int. J. Climatol. 33 (7): 1687–1695. https://doi.org/10.1002/joc.3542.
Feng, S., and Z. Hao. 2020. “Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale.” Sci. Total Environ. 704 (Feb): 135250. https://doi.org/10.1016/j.scitotenv.2019.135250.
Feng, S., Z. Hao, X. Zhang, and F. Hao. 2019. “Probabilistic evaluation of the impact of compound dry–hot events on global maize yields.” Sci. Total Environ. 689 (Nov): 1228–1234. https://doi.org/10.1016/j.scitotenv.2019.06.373.
Fenicia, F., H. H. G. Savenije, and Y. Avdeeva. 2009. “Anomaly in the rainfall-runoff behavior of the Meuse catchment: Climate, land-use, or land-use management?” Hydrol. Earth Syst. Sci. 13 (9): 1727–1737. https://doi.org/10.5194/hess-13-1727-2009.
Fernández-Montes, S., J. J. Gómez-Navarro, F. S. Rodrigo, J. A. García-Valero, and J. P. Montávez. 2017. “Co variability of seasonal temperature and precipitation over the Iberian Peninsula in high-resolution regional climate simulations (1001–2099).” Glob. Planet. Change 151 (Apr): 122–133. https://doi.org/10.1016/j.gloplacha.2016.09.007.
Field, C., V. Barros, T. Stocker, D. Qin, D. Dokken, K. Ebi, M. Mastrandrea, K. Mach, G. Plattner, and S. Allen. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation Cambridge, UK: Cambridge University Press.
Fink, A., U. Ulbrich, and H. Engel. 1996. “Aspects of the January 1995 flood in Germany.” Weather 51 (2): 34–39. https://doi.org/10.1002/j.1477-8696.1996.tb06182.x.
Fischer, E., and R. Knutti. 2012. “Robust projections of combined humidity and temperature extremes.” Nat. Clim. Change 3 (Feb): 126–130. https://doi.org/10.1038/nclimate1682.
Gallina, V., S. Torresan, A. Critto, A. Sperotto, T. Glade, and A. Marcomini. 2016. “A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment.” J. Environ. Manage. 168 (Mar): 123–132. https://doi.org/10.1016/j.jenvman.2015.11.011.
Ganguli, P., and B. Merz. 2019a. “Extreme coastal water levels exacerbate fluvial flood hazards in northwestern Europe.” Sci. Rep. 9 (1): 13165. https://doi.org/10.1038/s41598-019-49822-6.
Ganguli, P., and B. Merz. 2019b. “Trends in compound flooding in northwestern Europe during 1901–2014.” Geophys. Res. Lett. 46 (19): 10810–10820. https://doi.org/10.1029/2019GL084220.
Genest, C., and A.-C. Favre. 2007. “Everything you always wanted to know about copula modeling but were afraid to ask.” J. Hydrol. Eng. 12 (4): 347–368. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347).
Gori, A., N. Lin, and J. Smith. 2020. “Assessing compound flooding from land falling tropical cyclones on the North Carolina coast.” Water Resour. Res. 56 (4): e2019WR026788. https://doi.org/10.1029/2019WR026788.
Hao, Z., A. AghaKouchak, and T. J. Phillips. 2013. “Changes in concurrent monthly precipitation and temperature extremes.” Environ. Res. Lett. 8 (3): 034014. https://doi.org/10.1088/1748-9326/8/3/034014.
Hao, Z., F. Hao, V. P. Singh, and W. Ouyang. 2017. “Quantitative risk assessment of the effects of drought on extreme temperature in eastern China.” J. Geophys. Res. Atmos. 122 (17): 9050–9059. https://doi.org/10.1002/2017JD027030.
Hao, Z., F. Hao, V. P. Singh, Y. Xia, C. Shi, and X. Zhang. 2018a. “A multivariate approaches for statistical assessments of compound extremes.” J. Hydrol. 565 (Oct): 87–94. https://doi.org/10.1016/j.jhydrol.2018.08.025.
Hao, Z., F. Hao, V. P. Singh, and X. Zhang. 2018b. “Quantifying the relationship between compound dry and hot events and El Niño–Southern Oscillation (ENSO) at the global scale.” J. Hydrol. 567 (Dec): 332–338. https://doi.org/10.1016/j.jhydrol.2018.10.022.
Hao, Z., F. Hao, Y. Xia, V. Singh, and X. Zhang. 2019a. “A monitoring and prediction system for compound dry and hot events.” Environ. Res. Lett. 14 (11): 114034. https://doi.org/10.1088/1748-9326/ab4df5.
Hao, Z., W. Li, V. P. Singh, Y. Xia, X. Zhang, and F. Hao. 2020. “Impact of dependence changes on the likelihood of hot extremes under drought conditions in the United States.” J. Hydrol. 581 (Feb): 124410. https://doi.org/10.1016/j.jhydrol.2019.124410.
Hao, Z., T. J. Phillips, F. Hao, and X. Wu. 2019b. “Changes in the dependence between global precipitation and temperature from observations and model simulations.” Int. J. Climatol. 39 (12): 4895–4906. https://doi.org/10.1002/joc.6111.
Hao, Z., V. Singh, and F. Hao. 2018c. “Compound extremes in hydro climatology: A review.” Water 10 (6): 718. https://doi.org/10.3390/w10060718.
Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister. 2014. “Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset.” Int. J. Climatol. 34 (3): 623–642. https://doi.org/10.1002/joc.3711.
Hawkes, P. J., D. Gonzalez-Marco, A. Sánchez-Arcilla, and P. Prinos. 2008. “Best practice for the estimation of extremes: A review.” J. Hydraul. Res. 46 (2): 324–332. https://doi.org/10.1080/00221686.2008.9521965.
Hendry, A., I. D. Haigh, R. J. Nicholls, H. Winter, R. Neal, T. Wahl, A. Joly-Laugel, and S. E. Darby. 2019. “Assessing the characteristics and drivers of compound flooding events around the UK coast.” Hydrol. Earth Syst. Sci. 23 (7): 3117–3139. https://doi.org/10.5194/hess-23-3117-2019.
Horton, R. M., J. S. Mankin, C. Lesk, E. Coffel, and C. Raymond. 2016. “A review of recent advances in research on extreme heat events.” Curr. Clim. Change Rep. 2 (4): 242–259. https://doi.org/10.1007/s40641-016-0042-x.
Katz, R. W. 2010. “Statistics of extremes in climate change.” Clim. Change 100 (1): 71–76. https://doi.org/10.1007/s10584-010-9834-5.
Kay, J. E., et al. 2015. “The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability.” Bull. Am. Meteor. Soc. 96 (8): 1333–1349. https://doi.org/10.1175/bams-d-13-00255.1.
Kew, S. F., F. M. Selten, G. Lenderink, and W. Hazeleger. 2013. “The simultaneous occurrence of surge and discharge extremes for the Rhine Delta.” Nat. Hazards Earth Syst. Sci. 13 (8): 2017–2029. https://doi.org/10.5194/nhess-13-2017-2013.
Khanal, S., N. Ridder, H. de Vries, W. Terink, and B. van den Hurk. 2019. “Storm surge and extreme river discharge: A compound event analysis using ensemble impact modeling.” Front. Earth Sci. 7 (224): 1–15. https://doi.org/10.3389/feart.2019.00224.
Kirono, D. G. C., K. J. Hennessy, and M. Grose. 2017. “Increasing risk of months with low rainfall and high temperature in southeast Australia for the past 150 years.” Clim. Risk Manage. 16 (2017): 10–21. https://doi.org/10.1016/j.crm.2017.04.001.
Klerk, W. J., H. C. Winsemius, W. J. V. Verseveld, A. M. R. Bakker, and F. L. M. Diermanse. 2015. “The co-incidence of storm surges and extreme discharges within the Rhine–Meuse Delta.” Environ. Res. Lett. 10 (3): 035005. https://doi.org/10.1088/1748-9326/10/3/035005.
Kopp, R., D. R. Easterling, T. Hall, K. Hayhoe, R. Horton, K. Kunkel, and A. LeGrande. 2017. “Potential surprises—Compound extremes and tipping elements.” In Climate science special report: Fourth national climate assessment. Washington, DC: US Global Change Research Program.
Kulp, S. A., and B. H. Strauss. 2019. “New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding.” Nat. Commun. 10 (1): 4844. https://doi.org/10.1038/s41467-019-12808-z.
Leonard, M., et al. 2014. “A compound event framework for understanding extreme impacts.” Wiley Interdiscip. Rev. Clim. Change 5 (1): 113–128. https://doi.org/10.1002/wcc.252.
Li, C., E. Sinha, D. E. Horton, N. S. Diffenbaugh, and A. M. Michalak. 2014. “Joint bias correction of temperature and precipitation in climate model simulations.” J. Geophys. Res. Atmos. 119 (23): 153–162. https://doi.org/10.1002/2014JD022514.
Lian, J. J., K. Xu, and C. Ma. 2013. “Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: A case study of Fuzhou City, China.” Hydrol. Earth Syst. Sci. 17 (2): 679–689. https://doi.org/10.5194/hess-17-679-2013.
Liu, Z., L. Cheng, Z. Hao, J. Li, A. Thorstensen, and H. Gao. 2018. “A framework for exploring joint effects of conditional factors on compound floods.” Water Resour. Res. 54 (4): 2681–2696. https://doi.org/10.1002/2017WR021662.
López-Moreno, J. I., S. M. Vicente-Serrano, E. Morán-Tejeda, J. Lorenzo-Lacruz, A. Kenawy, and M. Beniston. 2011. “Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century.” Global Planet. Change 77 (1–2): 62–76. https://doi.org/10.1016/j.gloplacha.2011.03.003.
Lorenz, R., et al. 2016. “Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble.” J. Geophys. Res. Atmos. 121 (2): 607–623. https://doi.org/10.1002/2015JD024053.
Mahony, C. R., and A. J. Cannon. 2018. “Wetter summers can intensify departures from natural variability in a warming climate.” Nat. Commun. 9 (1): 783. https://doi.org/10.1038/s41467-018-03132-z.
Manning, C., M. Widmann, E. Bevacqua, A. F. Van Loon, D. Maraun, and M. Vrac. 2018. “Soil moisture drought in Europe: A compound event of precipitation and potential evapotranspiration on multiple time scales.” J. Hydrometeorol. 19 (8): 1255–1271. https://doi.org/10.1175/JHM-D-18-0017.1.
Manning, C., M. Widmann, E. Bevacqua, A. F. Van Loon, D. Maraun, and M. Vrac. 2019. “Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013).” Environ. Res. Lett. 14 (9): 094006. https://doi.org/10.1088/1748-9326/ab23bf.
Marcos, M., J. Rohmer, M. I. Vousdoukas, L. Mentaschi, G. Le Cozannet, and A. Amores. 2019. “Increased extreme coastal water levels due to the combined action of storm surges and wind waves.” Geophys. Res. Lett. 46 (8): 4356–4364. https://doi.org/10.1029/2019GL082599.
Martius, O., S. Pfahl, and C. Chevalier. 2016. “A global quantification of compound precipitation and wind extremes.” Geophys. Res. Lett. 43 (14): 7709–7717. https://doi.org/10.1002/2016GL070017.
Mazas, F., and L. Hamm. 2017. “An event-based approach for extreme joint probabilities of waves and sea levels.” Coastal Eng. 122 (Apr): 44–59. https://doi.org/10.1016/j.coastaleng.2017.02.003.
Mazdiyasni, O., and A. AghaKouchak. 2015. “Substantial increase in concurrent droughts and heat waves in the United States.” Proc. Nat. Acad. Sci. 112 (37): 11484–11489. https://doi.org/10.1073/pnas.1422945112.
McNeil, A. J., R. Frey, and P. Embrechts. 2015. Quantitative risk management: Concepts, techniques and tools. Princeton, NJ: Princeton University Press.
Mehrotra, R., and A. Sharma. 2016. “A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: Implications for downscaling.” J. Clim. 29 (10): 3519–3539. https://doi.org/10.1175/JCLI-D-15-0356.1.
Milly, P., J. Betancourt, M. Falkenmark, R. Hirsch, Z. Kundzewicz, D. Lettenmaier, and R. Stouffer. 2008. “Stationarity is dead: Whither water management?” Science 319 (5863): 573–574. https://doi.org/10.1126/science.1151915.
Miralles, D. G., P. Gentine, S. Seneviratne, and A. J. Teuling. 2019. “Land–atmospheric feedbacks during droughts and heat waves: State of the science and current challenges.” Ann. N.Y. Acad. Sci. 1436 (1): 19–35. https://doi.org/10.1111/nyas.13912.
Mishra, V., K. Thirumalai, D. Singh, and S. Aadhar. 2020. “Future exacerbation of hot and dry summer monsoon extremes in India.” NPJ Clim. Atmos. Sci. 3 (1): 10. https://doi.org/10.1038/s41612-020-0113-5.
Mo, K. C., and D. P. Lettenmaier. 2015. “Heat wave flash droughts in decline.” Geophys. Res. Lett. 42 (8): 2823–2829. https://doi.org/10.1002/2015GL064018.
Moftakhari, H. R., G. Salvadori, A. AghaKouchak, B. F. Sanders, and R. A. Matthew. 2017. “Compounding effects of sea level rise and fluvial flooding.” Proc. Nat. Acad. Sci. 114 (37): 9785–9790. https://doi.org/10.1073/pnas.1620325114.
Mueller, B., and S. I. Seneviratne. 2012. “Hot days induced by precipitation deficits at the global scale.” Proc. Natl. Acad. Sci. 109 (31): 12398–12403. https://doi.org/10.1073/pnas.1204330109.
Muis, S., M. Verlaan, H. C. Winsemius, J. C. Aerts, and P. J. Ward. 2016. “A global reanalysis of storm surges and extreme sea levels.” Nat. Commun. 7 (1): 11969. https://doi.org/10.1038/ncomms11969.
Nelsen, R. B. 2006. An introduction to copulas. New York: Springer.
Pathiraja, S., S. Westra, and A. Sharma. 2012. “Why continuous simulation? The role of antecedent moisture in design flood estimation.” Water Resour. Res. 48 (6): W06534. https://doi.org/10.1029/2011WR010997.
Perkins, S. E. 2015. “A review on the scientific understanding of heat waves—Their measurement, driving mechanisms, and changes at the global scale.” Atmos. Res. 164 (Oct): 242–267. https://doi.org/10.1016/j.atmosres.2015.05.014.
Petroliagkis, T. I. 2018. “Estimations of statistical dependence as joint return period modulator of compound events—Part 1: Storm surge and wave height.” Nat. Hazards Earth Syst. Sci. 18 (7): 1937–1955. https://doi.org/10.5194/nhess-18-1937-2018.
Piani, C., and J. Haerter. 2012. “Two dimensional bias correction of temperature and precipitation copulas in climate models.” Geophys. Res. Lett. 39 (20): L20401. https://doi.org/10.1029/2012GL053839.
Rahmstorf, S., and D. Coumou. 2011. “Increase of extreme events in a warming world.” Proc. Nat. Acad. Sci. 108 (44): 17905–17909. https://doi.org/10.1073/pnas.1101766108.
Rehfeld, K., and T. Laepple. 2016. “Warmer and wetter or warmer and dryer? Observed versus simulated co variability of Holocene temperature and rainfall in Asia.” Earth Planet Sci. Lett. 436 (Feb): 1–9. https://doi.org/10.1016/j.epsl.2015.12.020.
Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka. 2017. “Land surface precipitation in MERRA-2.” J. Climate 30 (5): 1643–1664. https://doi.org/10.1175/JCLI-D-16-0570.1.
Ridder, N., H. de Vries, and S. Drijfhout. 2018. “The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast.” Nat. Hazards Earth Syst. Sci. 18 (12): 3311–3326. https://doi.org/10.5194/nhess-18-3311-2018.
Rodrigo, F. 2015. “On the co variability of seasonal temperature and precipitation in Spain, 1956–2005.” Int. J. Climatol. 35 (11): 3362–3370. https://doi.org/10.1002/joc.4214.
Rummukainen, M. 2012. “Changes in climate and weather extremes in the 21st century.” Wiley Interdiscip. Rev. Clim. Change 3 (2): 115–129. https://doi.org/10.1002/wcc.160.
Salas, J. D., and J. Obeysekera. 2014. “Revisiting the concepts of return period and risk for non stationary hydrologic extreme events.” J. Hydrol. Eng. 19 (3): 554–568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820.
Salvadori, G., and C. De Michele. 2007. “On the use of copulas in hydrology: Theory and practice.” J. Hydrol. Eng. 12 (4): 369–380. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369).
Santiago-Collazo, F. L., M. V. Bilskie, and S. C. Hagen. 2019. “A comprehensive review of compound inundation models in low-gradient coastal watersheds.” Environ. Modell. Software 119 (Sep): 166–181. https://doi.org/10.1016/j.envsoft.2019.06.002.
Sarhadi, A., M. C. Ausín, M. P. Wiper, D. Touma, and N. S. Diffenbaugh. 2018. “Multidimensional risk in a non stationary climate: Joint probability of increasingly severe warm and dry conditions.” Sci. Adv. 4 (11): eaau3487. https://doi.org/10.1126/sciadv.aau3487.
Schnell, J. L., and M. J. Prather. 2017. “Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America.” Proc. Natl. Acad. Sci. 114 (11): 2854–2859. https://doi.org/10.1073/pnas.1614453114.
Schumacher, D. L., J. Keune, C. C. van Heerwaarden, J. Vilà-Guerau de Arellano, A. J. Teuling, and D. G. Miralles. 2019. “Amplification of mega-heat waves through heat torrents fuelled by upwind drought.” Nat. Geosci. 12 (9): 712–717. https://doi.org/10.1038/s41561-019-0431-6.
Sebastian, A., E. J. C. Dupuits, and O. Morales-Nápoles. 2017. “Applying a Bayesian network based on Gaussian copulas to model the hydraulic boundary conditions for hurricane flood risk analysis in a coastal watershed.” Coast. Eng. 125 (Jul): 42–50. https://doi.org/10.1016/j.coastaleng.2017.03.008.
Sedlmeier, K., H. Feldmann, and G. Schädler. 2018. “Compound summer temperature and precipitation extremes over central Europe.” Theor. Appl. Climatol. 131 (3): 1493–1501. https://doi.org/10.1007/s00704-017-2061-5.
Sedlmeier, K., S. Mieruch, G. Schädler, and C. Kottmeier. 2016. “Compound extremes in a changing climate—A Markov chain approach.” Nonlinear Processes Geophys. 23 (Nov): 375–390. https://doi.org/10.5194/npg-23-375-2016.
Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling. 2010. “Investigating soil moisture—Climate interactions in a changing climate: A review.” Earth Sci. Rev. 99 (3–4): 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004.
Seneviratne, S. I., N. Nicholls, D. Easterling, C. M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, and M. Rahimi. 2012. “Changes in climate extremes and their impacts on the natural physical environment.” In Managing the risks of extreme events and disasters to advance climate change adaptation, Cambridge, UK: Cambridge University Press.
Serafin, K. A., P. Ruggiero, K. Parker, and D. F. Hill. 2019. “What’s stream flow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels.” Nat. Hazards Earth Syst. Sci. 19 (7): 1415–1431. https://doi.org/10.5194/nhess-19-1415-2019.
Serinaldi, F. 2016. “Can we tell more than we can know? The limits of bivariate drought analyses in the United States.” Stochastic Environ. Res. Risk Assess. 30 (6): 1691–1704. https://doi.org/10.1007/s00477-015-1124-3.
Sharma, S., and P. Mujumdar. 2017. “Increasing frequency and spatial extent of concurrent meteorological droughts and heat waves in India.” Sci. Rep. 7 (1): 15582. https://doi.org/10.1038/s41598-017-15896-3.
Sheffield, J., G. Goteti, and E. F. Wood. 2006. “Development of a 50-year high-resolution global dataset of meteorological forcing for land surface modeling.” J. Climate 19 (13): 3088–3111. https://doi.org/10.1175/JCLI3790.1.
Sinh, H. N., F. T. Lombardo, C. W. Letchford, and D. V. Rosowsky. 2016. “Characterization of joint wind and ice hazard in Midwestern United States.” Nat. Hazards Rev. 17 (3): 04016004. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000221.
Sippel, S., M. Reichstein, X. Ma, M. D. Mahecha, H. Lange, M. Flach, and D. Frank. 2018. “Drought, heat, and the carbon cycle: A review.” Curr. Clim. Change Rep. 4 (3): 266–286. https://doi.org/10.1007/s40641-018-0103-4.
Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu. 2018. “A review of global precipitation data sets: Data sources, estimation, and inter comparisons.” Rev. Geophys. 56 (1): 79–107. https://doi.org/10.1002/2017RG000574.
Sutanto, S. J., C. Vitolo, C. Di Napoli, M. D’Andrea, and H. A. J. Van Lanen. 2020. “Heat waves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale.” Environ. Int. 134 (Jan): 105276. https://doi.org/10.1016/j.envint.2019.105276.
Svensson, C., and D. A. Jones. 2004. “Dependence between sea surge, river flow and precipitation in south and west Britain.” Hydrol. Earth Syst. Sci. 8 (5): 973–992. https://doi.org/10.5194/hess-8-973-2004.
Tan, K.-S., F. H. S. Chiew, and R. B. Grayson. 2008. “Stochastic event-based approach to generate concurrent hourly mean sea level pressure and wind sequences for estuarine flood risk assessment.” J. Hydrol. Eng. 13 (6): 449–460. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(449).
Tencer, B., M. L. Bettolli, and M. Rusticucci. 2016. “Compound temperature and precipitation extreme events in southern South America: Associated atmospheric circulation, and simulations by a multi-RCM ensemble.” Climate Res. 68 (2–3): 183–199. https://doi.org/10.3354/cr01396.
Tilloy, A., B. D. Malamud, H. Winter, and A. Joly-Laugel. 2019. “A review of quantification methodologies for multi-hazard interrelationships.” Earth-sci. Rev. 196 (Sep): 102881. https://doi.org/10.1016/j.earscirev.2019.102881.
Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield. 2014. “Global warming and changes in drought.” Nat. Clim. Change 4 (1): 17–22. https://doi.org/10.1038/nclimate2067.
Trenberth, K. E., and D. J. Shea. 2005. “Relationships between precipitation and surface temperature.” Geophys. Res. Lett. 32 (14): L14703. https://doi.org/10.1029/2005GL022760.
Tu, X., Y. Du, V. P. Singh, and X. Chen. 2018. “Joint distribution of design precipitation and tide and impact of sampling in a coastal area.” Int. J. Climatol. 38 (1): 290–302. https://doi.org/10.1002/joc.5368.
van den Hurk, B., E. van Meijgaard, P. de Valk, K.-J. van Heeringen, and J. Gooijer. 2015. “Analysis of a compounding surge and precipitation event in the Netherlands.” Environ. Res. Lett. 10 (3): 035001. https://doi.org/10.1088/1748-9326/10/3/035001.
Vogel, M. M., J. Zscheischler, and S. I. Seneviratne. 2018. “Varying soil moisture—Atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe.” Earth Syst. Dyn. 9 (3): 1107–1125. https://doi.org/10.5194/esd-9-1107-2018.
Vogel, M. M., J. Zscheischler, R. Wartenburger, D. Dee, and S. I. Seneviratne. 2019. “Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change.” Earth’s Future 7 (7): 692–703. https://doi.org/10.1029/2019EF001189.
Wahl, T., S. Jain, J. Bender, S. D. Meyers, and M. E. Luther. 2015. “Increasing risk of compound flooding from storm surge and rainfall for major US cities.” Nat. Clim. Change 5 (12): 1093–1097. https://doi.org/10.1038/nclimate2736.
Ward, P. J., A. Couasnon, D. Eilander, I. D. Haigh, A. Hendry, S. Muis, T. I. E. Veldkamp, H. C. Winsemius, and T. Wahl. 2018. “Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries.” Environ. Res. Lett. 13 (8): 084012. https://doi.org/10.1088/1748-9326/aad400.
Wilby, R. L. 2019. “A global hydrology research agenda fit for the 2030s.” Hydrol. Res. 50 (6): 1464–1480. https://doi.org/10.2166/nh.2019.100.
Wong, G., M. F. Lambert, M. Leonard, and A. V. Metcalfe. 2010. “Drought analysis using trivariate copulas conditional on climatic states.” J. Hydrol. Eng. 15 (2): 129–141. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000169.
Wu, W., K. McInnes, J. O’Grady, R. Hoeke, M. Leonard, and S. Westra. 2018. “Mapping dependence between extreme rainfall and storm surge.” J. Geophys. Res. Oceans 123 (4): 2461–2474. https://doi.org/10.1002/2017JC013472.
Wu, X., Z. Hao, F. Hao, and X. Zhang. 2019. “Variations of compound precipitation and temperature extremes in China during 1961–2014.” Sci. Total Environ. 663 (May): 731–737. https://doi.org/10.1016/j.scitotenv.2019.01.366.
Wu, X., Z. Hao, X. Zhang, C. Li, and F. Hao. 2020. “Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach.” J. Hydrol. 583 (Apr): 124580. https://doi.org/10.1016/j.jhydrol.2020.124580.
Xia, Y., Z. Hao, C. Shi, Y. Li, J. Meng, T. Xu, X. Wu, and B. Zhang. 2019. “Regional and global land data assimilation systems: Innovations, challenges, and prospects.” J. Meteorol. Res. 33 (2): 159–189. https://doi.org/10.1007/s13351-019-8172-4.
Xia, Y., K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. Alonge, H. Wei, and J. Meng. 2012. “Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System Project Phase 2 (NLDAS-2) 1: Inter comparison and application of model products.” J. Geophys. Res. Atmos. 117 (3): D03109. https://doi.org/10.1029/2011JD016048.
Yeh, S.-W., W. Cai, S.-K. Min, M. J. McPhaden, D. Dommenget, B. Dewitte, M. Collins, K. Ashok, S.-I. An, B.-Y. Yim, and J.-S. Kug. 2018. “ENSO atmospheric tele connections and their response to greenhouse gas forcing.” Rev. Geophys. 56 (1): 185–206. https://doi.org/10.1002/2017RG000568.
Yuan, X., L. Wang, P. Wu, P. Ji, J. Sheffield, and M. Zhang. 2019. “Anthropogenic shift towards higher risk of flash drought over China.” Nat. Commun. 10 (1): 4661. https://doi.org/10.1038/s41467-019-12692-7.
Zhang, L., and V. P. Singh. 2019. Copulas and their applications in water resources engineering. Cambridge, UK: Cambridge University Press.
Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers. 2011. “Indices for monitoring changes in extremes based on daily temperature and precipitation data.” Wiley Interdiscip. Rev. Clim. Change 2 (6): 851–870. https://doi.org/10.1002/wcc.147.
Zheng, F., M. Leonard, and S. Westra. 2017. “Application of the design variable method to estimate coastal flood risk.” J. Flood Risk Manage. 10 (4): 522–534. https://doi.org/10.1111/jfr3.12180.
Zheng, F., S. Westra, M. Leonard, and S. A. Sisson. 2014. “Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk.” Water Resour. Res. 50 (3): 2050–2071. https://doi.org/10.1002/2013WR014616.
Zheng, F., S. Westra, and S. A. Sisson. 2013. “Quantifying the dependence between extreme rainfall and storm surge in the coastal zone.” J. Hydrol. 505 (Nov): 172–187. https://doi.org/10.1016/j.jhydrol.2013.09.054.
Zhou, P., and Z. Liu. 2018. “Likelihood of concurrent climate extremes and variations over China.” Environ. Res. Lett. 13 (9): 094023. https://doi.org/10.1088/1748-9326/aade9e.
Zhou, S., A. P. Williams, A. M. Berg, B. I. Cook, Y. Zhang, S. Hagemann, R. Lorenz, S. I. Seneviratne, and P. Gentine. 2019a. “Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity.” Proc. Natl. Acad. Sci. 116 (38): 18848–18853. https://doi.org/10.1073/pnas.1904955116.
Zhou, S., Y. Zhang, A. Park Williams, and P. Gentine. 2019b. “Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events.” Sci. Adv. 5 (1): eaau5740. https://doi.org/10.1126/sciadv.aau5740.
Zscheischler, J., et al. 2018. “Future climate risk from compound events.” Nat. Clim. Change 8 (6): 469–477. https://doi.org/10.1038/s41558-018-0156-3.
Zscheischler, J., E. M. Fischer, and S. Lange. 2019. “The effect of univariate bias adjustment on multivariate hazard estimates.” Earth Syst. Dyn. 10 (1): 31–43. https://doi.org/10.5194/esd-10-31-2019.
Zscheischler, J., A. M. Michalak, C. Schwalm, M. D. Mahecha, D. N. Huntzinger, M. Reichstein, G. Berthier, P. Ciais, R. B. Cook, and B. El-Masri. 2014. “Impact of large-scale climate extremes on biosphere carbon fluxes: An inter comparison based on MsTMIP data.” Global Biogeochem. Cycles 28 (6): 585–600. https://doi.org/10.1002/2014GB004826.
Zscheischler, J., R. Orth, and S. I. Seneviratne. 2017. “Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields.” Biogeosciences 14 (13): 3309–3320. https://doi.org/10.5194/bg-14-3309-2017.
Zscheischler, J., and S. I. Seneviratne. 2017. “Dependence of drivers affects risks associated with compound events.” Sci. Adv. 3 (6): e1700263. https://doi.org/10.1126/sciadv.1700263.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 9September 2020

History

Published online: Jul 2, 2020
Published in print: Sep 1, 2020
Discussion open until: Dec 2, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Zengchao Hao [email protected]
Associate Professor, College of Water Sciences, Beijing Normal Univ., Beijing, 100875, China (corresponding author). Email: [email protected]
Vijay P. Singh, F.ASCE
Professor, Dept. of Biological and Agricultural Engineering and Zachry Dept. of Civil and Environmental Engineering, Texas A&M Univ., College Station, TX 77843-2117.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share