Case Studies
Jun 25, 2020

Bivariate Modeling of Hydroclimatic Variables in Humid Tropical Coastal Region Using Archimedean Copulas

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 9

Abstract

The present study focuses on the dependence modeling of hydroclimatic variables such as the El Niño–Southern Oscillation (ENSO) index, precipitation, tidal height, and groundwater level (GWL) in humid tropical coastal region of India. The rank-based correlation coefficient was used to determine the dependence between the pairs of cumulative monsoon precipitation of June–July–August–September (P_JJAS) and the postmonsoon groundwater level (PMGWL), ENSO–P_JJAS, ENSO–PMGWL, and GWL–tidal height. The results indicated that P_JJAS–PMGWL, ENSO–PMGWL, and GWL–tidal height had significant dependence, whereas P_JJAS–ENSO had no significant dependence. The best fit distributions for P_JJAS, PMGWL, and tidal height were found to be lognormal, extreme value, and generalized extreme value distributions, respectively, whereas for the ENSO index, it was the normal kernel-density function. The Archimedean families of copulas were used for dependence modeling, and it was observed that the ENSO–PMGWL was best modeled by the Frank copula, the P_JJAS–PMGWL by the Gumbel-Hougaard copula, and the GWL–tidal height by the Frank copula. The copula-based conditional probability for the Gumbel-Hougaard and Frank copulas for GWL were obtained to understand the risk associated with other hydroclimatic variables. Thus, copula-based dependence modeling could be useful for understanding the risk among hydroclimatic variables including groundwater.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

1.
Some or all data, models, or code generated or used during the study are available in a repository or online in accordance with funder data retention policies.
a.
IMD gridded precipitation data from Pune, India (http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html#.)
b.
Tidal height data.
Permanent Service for Mean Sea Level (https://www.psmsl.org/)
2.
Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.
a.
MATLAB Code.
3.
Some or all data, models, or code generated or used during the study are proprietary or confidential in nature and may only be provided with restrictions (e.g., anonymized data).
a.
GWL data from the Mines and Geology Department, Government of Karnataka, India.

Acknowledgments

This research work was partially funded by the Ministry of Human Resource Development, Government of India, which is gratefully acknowledged.

References

Aslam, R. A., S. Shrestha, and V. P. Pandey. 2018. “Groundwater vulnerability to climate change: A review of the assessment methodology.” Sci. Total Environ. 612 (Jan): 853–875. https://doi.org/10.1016/j.scitotenv.2017.08.237.
Asoka, A., Y. Wada, R. Fishman, and V. Mishra. 2018. “Strong linkage between precipitation intensity and monsoon season groundwater recharge in India.” Geophys. Res. Lett. 45 (11): 5536–5544. https://doi.org/10.1029/2018GL078466.
Bárdossy, A., and J. Li. 2008. “Geostatistical interpolation using copulas.” Water Resour. Res. 44 (7): W07412. https://doi.org/10.1029/2007WR006115.
Bárdossy, A., and G. G. S. Pegram. 2009. “Copula based multisite model for daily precipitation simulation.” Hydrol. Earth Syst. Sci. 13 (12): 2299–2314. https://doi.org/10.5194/hess-13-2299-2009.
Batista, L. V., D. Gastmans, R. Sánchez-Murillo, B. S. Farinha, S. M. R. Santos, and C. H. Kiang. 2018. “Groundwater and surface water connectivity within the recharge area of Guarani aquifer system during El Niño 2014–2016.” Hydrol. Process. 32 (16): 2483–2495. https://doi.org/10.1002/hyp.13211.
Bhanja, S. N., and A. Mukherjee. 2019. “In situ and satellite-based estimates of usable groundwater storage across India: Implications for drinking water supply and food security.” Adv. Water Resour. 126 (Apr): 15–23. https://doi.org/10.1016/j.advwatres.2019.02.001.
Biswas, S. 2003. “Groundwater flow direction and long term trend of water level of Nadia District, West Bengal: A statistical analysis.” J. Geol. Soc. India 61 (1): 22–36.
Cao, G., and C. Zheng. 2015. “Signals of short-term climatic periodicities detected in the groundwater of North China Plain.” Hydrol. Process. 30 (4): 515–533. https://doi.org/10.1002/HYP.10631.
Census of India. 2011. “Dakshina Kannada District: Census 2011–2019 data.” Accessed April 5, 2019. https://www.census2011.co.in/census/district/252-dakshina-kannada.html.
CGWB (Central Ground Water Board). 2009. Ground water information booklet of Dakshina Kannada district. Bengaluru, India: CGWB.
Chen, Z., S. E. Grasby, and K. G. Osadetz. 2004. “Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada.” J. Hydrol. 290 (1–2): 43–62. https://doi.org/10.1016/j.jhydrol.2003.11.029.
Corona, C. R., J. J. Gurdak, J. E. Dickinson, T. P. A. Ferré, and E. P. Maurer. 2018. “Climate variability and vadose zone controls on damping of transient recharge.” J. Hydrol. 561 (Jun): 1094–1104. https://doi.org/10.1016/j.jhydrol.2017.08.028.
CPC (Climate Prediction Center). 2018. “Climate prediction center.” Accessed September 11, 2019. https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml.
Debbarma, J., and D. Nibedita. 2019. “A spatio-temporal study on fluctuation in pre-monsoon and post-monsoon groundwater level in Tripura, North-East India.” Int. J. Adv. Sci. Res. Manage. 4 (2): 39–48.
Dung, N. V., B. Merz, A. Bárdossy, and H. Apel. 2015. “Handling uncertainty in bivariate quantile estimation—An application to flood hazard analysis in the Mekong Delta.” J. Hydrol. 527 (Aug): 704–717. https://doi.org/10.1016/j.jhydrol.2015.05.033.
Dupuis, D. J. 2007. “Using copulas in hydrology: Benefits, cautions, and issues.” J. Hydrol. Eng. 12 (4): 381–393. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(381).
Erskine, A. D. 1991. “The effect of tidal fluctuation on a coastal aquifer in the UK.” Ground Water 29 (4): 556–562. https://doi.org/10.1111/j.1745-6584.1991.tb00547.x.
Favre, A.-C., S. Adlouni, L. El Perreault, N. Thiémonge, and B. Bobée. 2004. “Multivariate hydrological frequency analysis using copulas.” Water Resour. Res. 40 (1): W01101. https://doi.org/10.1029/2003WR002456.
Fleming, S. W., and E. J. Quilty. 2006. “Aquifer responses to El Niño-Southern oscillation, Southwest British Columbia.” Ground Water 44 (4): 595–599. https://doi.org/10.1111/j.1745-6584.2006.00187.x.
Ganguli, P., and A. R. Ganguli. 2016. “Space-time trends in U.S. meteorological droughts.” J. Hydrol. Reg. Stud. 8 (Dec): 235–259. https://doi.org/10.1016/j.ejrh.2016.09.004.
Ganguli, P., and M. J. Reddy. 2012a. “Probablistic assessment of flood risks using trivariate copulas.” Theor. Appl. Climatol. 111 (1–2): 341–360.
Ganguli, P., and M. J. Reddy. 2012b. “Risk assessment of droughts in Gujarat using bivariate copulas.” Water Resour. Manage. 26 (11): 3301–3327. https://doi.org/10.1007/s11269-012-0073-6.
Genest, C., and A.-C. Favre. 2007. “Everything you always wanted to know about copula modeling but were afraid to ask.” J. Hydrol. Eng. 12 (4): 347–368. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347).
Gonneea, M. E., A. E. Mulligan, and M. A. Charette. 2013. “Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge.” Geophys. Res. Lett. 40 (11): 2701–2706. https://doi.org/10.1002/grl.50192.
Gonzales Amaya, A., M. Villazon, and P. Willems. 2018. “Assessment of rainfall variability and its relationship to ENSO in a Sub-Andean Watershed in Central Bolivia.” Water 10 (6): 701. https://doi.org/10.3390/w10060701.
Gräler, B., M. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. Verhoest. 2013. “Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation.” Hydrol. Earth Syst. Sci. 17 (4): 1281–1296. https://doi.org/10.5194/hess-17-1281-2013.
Gurdak, J. J., R. T. Hanson, P. B. McMahon, B. W. Bruce, J. E. McCray, G. D. Thyne, and R. C. Reedy. 2007. “Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA.” Vadose Zone J. 6 (3): 533. https://doi.org/10.2136/vzj2006.0087.
Hanson, R. T., M. D. Dettinger, and M. W. Newhouse. 2006. “Relations between climatic variability and hydrologic time series from four alluvial basins across the southwestern United States.” Hydrogeol. J. 14 (7): 1122–1146. https://doi.org/10.1007/s10040-006-0067-7.
Hartmann, A., T. Gleeson, Y. Wada, and T. Wagener. 2017. “Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity.” Proc. Natl. Acad. Sci. U.S.A. 114 (11): 2842–2847. https://doi.org/10.1073/pnas.1614941114.
Holman, I. P., M. Rivas-Casado, J. P. Bloomfield, and J. J. Gurdak. 2011. “Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence.” Hydrogeol. J. 19 (6): 1269–1278. https://doi.org/10.1007/s10040-011-0755-9.
Jones, I. C., and J. L. Banner. 2003. “Hydrogeologic and climatic influences on spatial and interannual variation of recharge to a tropical karst island aquifer.” Water Resour. Res. 39 (9): 1–10. https://doi.org/10.1029/2002WR001543.
Kim, K. Y., C. M. Chon, K. H. Park, Y. S. Park, and N. C. Woo. 2008. “Multi-depth monitoring of electrical conductivity and temperature of groundwater at a multilayered coastal aquifer: Jeju Island, Korea.” Hydrol Process. 22 (18): 3724–3733. https://doi.org/10.1002/hyp.6976.
Krishan, G., A. K. Lohani, M. S. Rao, S. Kumar, and K. S. Takshi. 2015. “Spatiotemporal variability analysis of groundwater level for water resources development and management in Northern Punjab, India.” J. Environ. Anal. Toxicol. 5 (4): 279. https://doi.org/10.4172/2161-0525.1000279.
Kuss, A. J. M., and J. J. Gurdak. 2014. “Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO.” J. Hydrol. 519 (Part B): 1939–1952. https://doi.org/10.1016/j.jhydrol.2014.09.069.
Lathashri, U. A., and A. Mahesha. 2016. “Predictive simulation of seawater intrusion in a tropical coastal aquifer.” J. Environ. Eng. 142 (12): D4015001. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001037.
Laux, P., S. Vogl, W. Qiu, H. R. Knoche, and H. Kunstmann. 2011. “Copula-based statistical refinement of precipitation in RCM simulations over complex terrain.” Hydrol. Earth Syst. Sci. 15 (7): 2401–2419. https://doi.org/10.5194/hess-15-2401-2011.
Liesch, T., and A. Wunsch. 2019. “Aquifer responses to long-term climatic periodicities.” J. Hydrol. 572 (May): 226–242. https://doi.org/10.1016/j.jhydrol.2019.02.060.
MacDonald, A., et al. 2016. “Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations.” Nat. Geosci. 9 (10): 762–766. https://doi.org/10.1038/ngeo2791.
Machiwal, D., P. K. Singh, and K. K. Yadav. 2017. “Estimating aquifer properties and distributed groundwater recharge in a hard-rock catchment of Udaipur, India.” Appl. Water Sci. 7 (6): 3157–3172. https://doi.org/10.1007/s13201-016-0462-8.
McGregor, G. 2017. “Hydroclimatology, modes of climatic variability and stream flow, lake and groundwater level variability.” Prog. Phys. Geogr. Earth Environ. 41 (4): 496–512. https://doi.org/10.1177/0309133317726537.
Mukherjee, A., D. Saha, C. F. Harvey, R. G. Taylor, K. M. Ahmed, and S. N. Bhanja. 2015. “Groundwater systems of the Indian sub-continent.” J. Hydrol. Reg. Stud. 4 (Part A): 1–14. https://doi.org/10.1016/j.ejrh.2015.03.005.
Ndehedehe, C. E., J. L. Awange, M. Kuhn, N. O. Agutu, and Y. Fukuda. 2017. “Climate teleconnections influence on West Africa’s terrestrial water storage.” Hydrol. Process. 31 (18): 3206–3224. https://doi.org/10.1002/hyp.11237.
Nelson, R. B. 2006. “An Introduction to Copulas: Series in Statistics. New York: Springer.
Nema, S., M. K. Awasthi, and R. K. Nema. 2017. “Spatial and temporal groundwater responses to seasonal rainfall replenishment in alluvial aquifer.” Biosci. Biotech. Res. Comm. 10 (3): 431–437. https://doi.org/10.21786/bbrc/10.3/16.
Neves, M. C., S. Jerez, and R. M. Trigo. 2019. “The response of piezometric levels in Portugal to NAO, EA, and SCAND climate patterns.” J. Hydrol. 568 (Jan): 1105–1117. https://doi.org/10.1016/j.jhydrol.2018.11.054.
Oki, T., and S. Kanae. 2006. “Global hydrological cycles and world water resources.” Science 313 (5790): 1068–1072. https://doi.org/10.1126/science.1128845.
Panda, D. K., A. Mishra, and A. Kumar. 2012. “Quantification of trends in groundwater levels of Gujarat in western India.” Hydrol. Sci. J. 57 (7): 1325–1336. https://doi.org/10.1080/02626667.2012.705845.
Philip, J. R. 1973. “Periodic nonlinear diffusion: An integral relation and its physical consequences.” Aust. J. Phys. 26 (4): 513–519. https://doi.org/10.1071/PH730513.
PSMSL (Permanent Service for Mean Sea Level). 2019. “Overview of the data sets of sea level from the global network of tide gauges.” Accessed December 1, 2019. https://www.psmsl.org.
Reddy, M., and P. Ganguli. 2012. “Risk assessment of hydroclimatic variability on groundwater levels in the Manjara Basin Aquifer in India using Archimedean copulas.” J. Hydrol. Eng. 17 (12): 1345–1357. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000564.
Robinson, C. E., P. Xin, I. R. Santos, M. A. Charette, L. Li, and D. A. Barry. 2018. “Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean.” Adv. Water Resour. 115 (May): 315–331. https://doi.org/10.1016/j.advwatres.2017.10.041.
Rodell, M., I. Velicogna, and J. S. Famiglietti. 2009. “Satellite-based estimates of groundwater depletion in India.” Nature 460 (7258): 999–1002. https://doi.org/10.1038/nature08238.
Rust, W., I. Holman, R. Corstanje, J. Bloomfield, and M. Cuthbert. 2018. “A conceptual model for climatic teleconnection signal control on groundwater variability in Europe.” Earth Science Rev. 177 (Feb): 164–174. https://doi.org/10.1016/j.earscirev.2017.09.017.
Salvadori, G., and C. De Michele. 2007. “On the use of copulas in hydrology: Theory and practice.” J. Hydrol. Eng. 12 (4): 369–380. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369).
Salvadori, G., F. Durante, and C. D. Michele. 2013. “Multivariate return period calculation via survival functions.” Water Resour. Res. 49 (4): 2308–2311. https://doi.org/10.1002/wrcr.20204.
Sharifi, E., B. Saghafian, and R. Steinacker. 2019. “Copula-based stochastic uncertainty analysis of satellite precipitation products.” J. Hydrol. 570 (Mar): 739–754. https://doi.org/10.1016/j.jhydrol.2019.01.035.
Shiau, J. T. 2006. “Fitting drought duration and severity with two-dimensional copulas.” Water Resour. Manag. 20 (5): 795–815. https://doi.org/10.1007/s11269-005-9008-9.
Shiau, J. T., and R. Modarres. 2009. “Copula-based drought severity-duration-frequency analysis in Iran.” Met Apps. 16 (4): 481–489. https://doi.org/10.1002/met.145.
Shiau, J.-T., H.-Y. Wang, and C.-T. Tsai. 2006. “Bivariate frequency analysis of floods using copulas.” J. Am. Water Resour. Assoc. 42 (6): 1549–1564. https://doi.org/10.1111/j.1752-1688.2006.tb06020.x.
Siebert, S., J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann. 2010. “Groundwater use for irrigation—A global inventory.” Hydrol. Earth Syst. Sci. 14 (10): 1863–1880. https://doi.org/10.5194/hess-14-1863-2010.
Singaraja, C., S. Chidambaram, and N. Jacob. 2018. “A study on the influence of tides on the water table conditions of the shallow coastal aquifers.” Appl. Water Sci. 8 (1): 11. https://doi.org/10.1007/s13201-018-0654-5.
Singh, V. P., and L. Zhang. 2007. “IDF curves using the Frank Archimedean copula.” J. Hydrol. Eng. 12 (6): 651–662. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(651).
Sishodiaa, R. P., S. Shuklaa, W. D. Graham, S. P. Wani, and K. K. Garg. 2016. “Bi-decadal groundwater level trends in a semi-arid south Indian region: Declines, causes and management.” J. Hydrol: Reg. Stud. 8 (Dec): 43–58. https://doi.org/10.1016/j.ejrh.2016.09.005.
Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges. Paris: Publications de l’Institut Statistique de l’Université de Paris.
Soman, M. K., and J. M. Slingo. 1997. “Sensitivity of the Asian summer monsoon to aspects of the sea surface temperature anomalies in the tropical Pacific Ocean.” Q. J. R. Meteorolog. Soc. 123 (538): 309–336. https://doi.org/10.1002/qj.49712353804.
Tawde, S. A., and C. Singh. 2015. “Investigation of orographic features influencing spatial distribution of rainfall over the Western Ghats of India using satellite data.” Int. J. Climatol. 35 (9): 2280–2293. https://doi.org/10.1002/joc.4146.
Tiwari, V. M., J. Wahr, and S. Swenson. 2009. “Dwindling groundwater resources in northern India, from satellite gravity observations.” Geophys. Res. Lett. 36 (18): 1–5. https://doi.org/10.1029/2009GL039401.
Tripathi, S. S., and R. K. Isaac. 2016. “Rainfall pattern and groundwater fluctuation in ramganga river basin at bareilly district, Uttar Pradesh, India.” Int. J. Adv. Eng. Manage. Sci. 2 (6): 576–587.
Varikoden, H., J. V. Revadekar, Y. Choudhary, and B. Preethi. 2015. “Droughts of Indian summer monsoon associated with El Niño and Non-El Niño years.” Int. J. Climatol. 35 (8): 1916–1925. https://doi.org/10.1002/joc.4097.
Villarini, G., F. Serinaldi, and W. F. Krajewski. 2008. “Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches.” Adv. Water Resour. 31 (12): 1674–1686. https://doi.org/10.1016/j.advwatres.2008.08.002.
Vorosmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers. 2000. “Global water resources: Vulnerability from climate change and population growth.” Science 289 (5477): 284–288. https://doi.org/10.1126/science.289.5477.284.
Wable, P. S., and M. K. Jha. 2018. “Application of Archimedean copulas to the impact assessment of hydro-climatic variables in semi-arid aquifers of western India.” Hydrogeol. J. 26 (1): 89–108. https://doi.org/10.1007/s10040-017-1636-7.
Wada, Y., et al. 2017. “Human–water interface in hydrological modelling: Current status and future directions.” Hydrol. Earth Syst. Sci. 21 (8): 4169–4193. https://doi.org/10.5194/hess-21-4169-2017.
Ward, P. J., A. Couasnon, D. Eilander, I. Haigh, A. Hendry, S. Muis, T. I. E. Veldkamp, H. Winsemius, and T. Wahl. 2018. “Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries.” Environ. Res. Lett. 13 (8): 084012. https://doi.org/10.1088/1748-9326/aad400.
Whelan, N. 2004. “Sampling from Archimedean copulas.” Quant. Finance 4 (3): 339–352. https://doi.org/10.1088/1469-7688/4/3/009.
Yi, S., W. Sun, W. Feng, and J. Chen. 2016. “Anthropogenic and climate-driven water depletion in Asia.” Geophys. Res. Lett. 43 (17): 9061–9069. https://doi.org/10.1002/2016GL069985.
Yu, X., P. Xin, S. S. J. Wang, C. Shen, and L. Li. 2019. “Effects of multi-constituent tides on a subterranean estuary.” Adv. Water Resour. 124 (Feb): 53–67. https://doi.org/10.1016/j.advwatres.2018.12.006.
Zscheischler, J., and S. I. Seneviratne. 2017. “Dependence of drivers affects risks associated with compound events.” Sci. Adv. 3 (6): e1700263. https://doi.org/10.1126/sciadv.1700263.
Zscheischler, J., S. Westra, B. J. Hurk, S. I. Seneviratne, P. J. Ward, A. Pitman, A. AghaKouchak, D. N. Bresch, M. Leonard, and T. Wahl. 2018. “Future climate risk from compound events.” Nat. Clim. Change, 8 (6): 469–477. https://doi.org/10.1038/s41558-018-0156-3.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 9September 2020

History

Received: Jun 5, 2019
Accepted: Apr 22, 2020
Published online: Jun 25, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 25, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Scholar, Dept. of Applied Mechanincs and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India (corresponding author). ORCID: https://orcid.org/0000-0003-3619-0021. Email: [email protected]
Research Scholar, Dept. of Applied Mechanincs and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India. ORCID: https://orcid.org/0000-0003-0849-3033. Email: [email protected]
Professor, Dept. of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India. ORCID: https://orcid.org/0000-0002-5903-7276. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share