Case Studies
Jun 9, 2020

Estimating Small Reservoir Evaporation Using Machine Learning Models for the Brazilian Savannah

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 8

Abstract

Small dams are infrastructures that regulate water supply for multiple users and play a key role in the agricultural development of the Brazilian savannah region known as the Cerrado. Evaporation is one of the major components of the hydrological cycle of small reservoirs, and should be better quantified. Studies based on machine learning techniques usually adjust models based on large datasets, which are frequently unavailable in developing countries. This study adjusted and evaluated the performance of different evaporation machine learning models that were regressed on a very small dataset and for restrictive scenarios. The performance of each model was assessed with five climatic input combinations. The performance of the random forest models was one of the better for the input combinations, and was considered to be one of the more robust machine learning techniques among those assessed for estimating evaporation from a small reservoir in the region. The Penman (benchmark) equation performed worse, as it overestimated evaporation by 14.7% on average. Strategies for improving the performance and applicability of models and overcoming data scarcity in remote areas are further discussed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data used and code generated during the study are available from the corresponding author by request.

Acknowledgments

This study was supported the Brazilian Agricultural Research Corporation (EMBRAPA Cerrados), the Federal University of Viçosa (UFV), and financed by the Federal District Research Support Foundation (FAP-DF) and the Coordination for the Improvement of Higher Education Personnel (CAPES–Finance Code 001).

References

Allawi, M. F., F. Binti Othman, H. A. Afan, A. N. Ahmed, M. S. Hossain, C. M. Fai, and A. El-Shafie. 2019. “Reservoir evaporation prediction modeling based on artificial intelligence methods.” Water 11 (6): 1226. https://doi.org/10.3390/w11061226.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration—Guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. Rome: Food and Agriculture Organization of the United Nations.
Althoff, D., L. N. Rodrigues, D. D. da Silva, and H. C. Bazame. 2019. “Improving methods for estimating small reservoir evaporation in the Brazilian Savanna.” Agric. Water Manage. 216 (May): 105–112. https://doi.org/10.1016/j.agwat.2019.01.028.
Antonopoulos, V. Z., S. K. Gianniou, and A. V. Antonopoulos. 2016. “Artificial neural networks and empirical equations to estimate daily evaporation: Application to Lake Vegoritis, Greece.” Hydrol. Sci. J. 61 (14): 2590–2599. https://doi.org/10.1080/02626667.2016.1142667.
Boudhar, A., B. Duchemin, L. Hanich, G. Boulet, and A. Chehbouni. 2011. “Spatial distribution of the air temperature in mountainous areas using satellite thermal infra-red data.” C.R. Geosci. 343 (1): 32–42. https://doi.org/10.1016/j.crte.2010.11.004.
Bray, M., and D. Han. 2004. “Identification of support vector machines for runoff modelling.” J. Hydroinf. 6 (4): 265–280. https://doi.org/10.2166/hydro.2004.0020.
Breiman, L. 2001. “Random Forests.” Mach. Learn. 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Chu, X., Z. Lin, M. T. Nasab, L. Zeng, K. Grimm, M. H. Bazrkar, N. Wang, X. Liu, X. Zhang, and H. Zheng. 2019. “Macro-scale grid-based and subbasin-based hydrologic modeling: Joint simulation and cross-calibration.” J. Hydroinf. 21 (1): 77–91. https://doi.org/10.2166/hydro.2018.026.
Coelho, C. D., D. D. da Silva, G. C. Sediyama, M. C. Moreira, S. B. Pereira, and Â. M. Q. Lana. 2017. “Comparison of the water footprint of two hydropower plants in the Tocantins River Basin of Brazil.” Supplement J. Cleaner Prod. 153 (SC): 164–175. https://doi.org/10.1016/j.jclepro.2017.03.088.
Dawson, C. W., N. J. Mount, R. J. Abrahart, and J. Louis. 2014. “Sensitivity analysis for comparison, validation and physical legitimacy of neural network-based hydrological models.” J. Hydroinf. 16 (2): 407–424. https://doi.org/10.2166/hydro.2013.222.
Dibike, Y. B., S. Velickov, D. Solomatine, and M. B. Abbott. 2001. “Model induction with support vector machines: Introduction and applications.” J. Comput. Civ. Eng. 15 (3): 208–216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208).
Ding, R., S. Kang, F. Li, Y. Zhang, L. Tong, and Q. Sun. 2010. “Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China.” Agric. Water Manage. 98 (1): 87–95. https://doi.org/10.1016/j.agwat.2010.08.001.
Dou, X., and Y. Yang. 2018. “Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems.” Comput. Electron. Agric. 148 (May): 95–106. https://doi.org/10.1016/j.compag.2018.03.010.
Eray, O., C. Mert, and O. Kisi. 2018. “Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation.” Hydrol. Res. 49 (4): 1221–1233. https://doi.org/10.2166/nh.2017.076.
Ferreira, L. B., F. F. da Cunha, R. A. de Oliveira, and E. I. Fernandes Filho. 2019. “Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM—A new approach.” J. Hydrol. 572 (May): 556–570. https://doi.org/10.1016/j.jhydrol.2019.03.028.
Filgueiras, R., D. A. P. Nicolete, T. M. de Carvalho, A. R. da Cunha, and C. R. L. Zimback. 2016. “Prediction of air temperature using orbital remote sensing.” Revista Brasileira de Cartografia 68 (8): 1485–1495.
Foresee, F. D., and M. T. Hagan. 1997. “Gauss-Newton approximation to Bayesian learning.”In Vol.3 of Proc., Int. Conf. on Neural Networks (ICNN’97), 1930–1935. Piscataway, NJ: IEEE.
Giongo, P. R., and C. A. Vettorazzi. 2014. “Albedo da superfície por meio de imagens TM-Landsat 5 e modelo numérico do terreno.” Rev. Bras. Eng. Agríc. Ambient. 18 (8): 833–838. https://doi.org/10.1590/1807-1929/agriambi.v18n08p833-838.
Goyal, M. K., B. Bharti, J. Quilty, J. Adamowski, and A. Pandey. 2014. “Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS.” Expert Syst. Appl. 41 (11): 5267–5276. https://doi.org/10.1016/j.eswa.2014.02.047.
Grömping, U. 2009. “Variable importance assessment in regression: Linear regression versus random forest.” Am. Stat. 63 (4): 308–319. https://doi.org/10.1198/tast.2009.08199.
Hargreaves, G. H., and Z. A. Samani. 1985. “Reference crop evapotranspiration from temperature.” Appl. Eng. Agric. 1 (2): 96–99. https://doi.org/10.13031/2013.26773.
Hassan, A., S. S. Ismail, A. Elmoustafa, and S. Khalaf. 2018. “Evaluating evaporation rate from high Aswan Dam Reservoir using RS and GIS techniques.” Egypt. J. Remote Sens. Space. Sci. 21 (3): 285–293. https://doi.org/10.1016/j.ejrs.2017.10.001.
Karatzoglou, A., A. Smola, K. Hornik, and A. Zeileis. 2004. “Kernlab—An S4 package for kernel methods in R.” J. Stat. Software 11 (9): 1–20. https://doi.org/10.18637/jss.v011.i09.
Kaya, S., S. Evren, and E. Daşcı. 2016. “Comparison of various equations for estimating class A pan evaporation in semi-arid climate conditions.” Uludag Üniv. Ziraat Fak. Derg. 30 (2): 1–9.
Keskin, M. E., and Ö. Terzi. 2006. “Artificial neural network models of daily pan evaporation.” J. Hydrol. Eng. 11 (1): 65–70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65).
Kisi, O., O. Genc, S. Dinc, and M. Zounemat-Kermani. 2016. “Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree.” Comput. Electron. Agric. 122 (Mar): 112–117. https://doi.org/10.1016/j.compag.2016.01.026.
Kuhn, M., et al. 2018a. Caret: Classification and regression training. Accessed May 27, 2020. https://cran.r-project.org/web/packages/caret/.
Kuhn, M., S. Weston, C. Keefer, and N. Coulter. 2018b. Cubist: Rule- and instance-based regression modeling. Accessed May 27, 2020. https://cran.r-project.org/web/packages/Cubist/index.html.
Li, S., S. Kang, L. Zhang, F. Li, Z. Zhu, and B. Zhang. 2008. “A comparison of three methods for determining vineyard evapotranspiration in the arid desert regions of northwest China.” Hydrol. Process. 22 (23): 4554–4564. https://doi.org/10.1002/hyp.7059.
Li, X.-L., H. Lü, R. Horton, T. An, and Z. Yu. 2014. “Real-time flood forecast using the coupling support vector machine and data assimilation method.” J. Hydroinf. 16 (5): 973–988. https://doi.org/10.2166/hydro.2013.075.
Liaw, A., and M. Wiener. 2002. “Classification and regression by randomForest.” R News 2 (3): 18–22.
Linacre, E. T., B. B. Hicks, G. R. Sainty, and G. Grauze. 1970. “The evaporation from a swamp.” J. Agric. Meteorol. 7: 375–386. https://doi.org/10.1016/0002-1571(70)90033-6.
Liu, X., J. Yu, P. Wang, Y. Zhang, and C. Du. 2016. “Lake evaporation in a hyper-arid environment, northwest of China—Measurement and estimation.” Water 8 (11): 527. https://doi.org/10.3390/w8110527.
Lu, X., Y. Ju, L. Wu, J. Fan, F. Zhang, and Z. Li. 2018. “Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models.” J. Hydrol. 566 (Nov): 668–684. https://doi.org/10.1016/j.jhydrol.2018.09.055.
MacKay, D. J. C. 1992. “A practical Bayesian framework for backpropagation networks.” Neural Comput. 4 (3): 448–472. https://doi.org/10.1162/neco.1992.4.3.448.
Masoner, J. R., and D. I. Stannard. 2010. “A comparison of methods for estimating open-water evaporation in small wetlands.” Wetlands 30 (3): 513. https://doi.org/10.1007/s13157-010-0041-y.
Mehrparvar, M., and K. Asghari. 2018. “Modular optimized data assimilation and support vector machine for hydrologic modeling.” J. Hydroinf. 20 (3): 728–738. https://doi.org/10.2166/hydro.2018.009.
Mohanty, S. P., D. P. Hughes, and M. Salathé. 2016. “Using deep learning for image-based plant disease detection.” Front. Plant Sci. 7: 1419. https://doi.org/10.3389/fpls.2016.01419.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Nordbo, A., S. Launiainen, I. Mammarella, M. Leppäranta, J. Huotari, A. Ojala, and T. Vesala. 2011. “Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique.” J. Geophys. Res. Atmos. 116 (D02119): 1–17. https://doi.org/10.1029/2010JD014542.
Pal, M., and S. Deswal. 2009. “M5 model tree based modelling of reference evapotranspiration.” Hydrol. Process. 23 (10): 1437–1443. https://doi.org/10.1002/hyp.7266.
Penman, H. L. 1948. “Natural evaporation from open water, bare soil and grass.” Proc. R. Soc. London, Ser. A 193 (1032): 120–145. https://doi.org/10.1098/rspa.1948.0037.
Pereira, P. A. A., G. B. Martha, C. A. Santana, and E. Alves. 2012. “The development of Brazilian agriculture: Future technological challenges and opportunities.” Agric. Food Secur. 1 (1): 4. https://doi.org/10.1186/2048-7010-1-4.
Poussin, J.-C., L. Renaudin, D. Adogoba, A. Sanon, F. Tazen, W. Dogbe, J.-L. Fusillier, B. Barbier, and P. Cecchi. 2015. “Performance of small reservoir irrigated schemes in the Upper Volta basin: Case studies in Burkina Faso and Ghana.” Water Resour. Rural Dev. 6 (Nov): 50–65. https://doi.org/10.1016/j.wrr.2015.05.001.
Quinlan, J. R. 1992. “Learning with continuous classes.” In Proc., 5th Australian Joint Conf. on Artificial Intelligence, 343–348. Singapore: World Scientific.
Quinlan, J. R. 1993. “Combining instance-based and model-based learning.” In Proc., Machine Learning 1993, 236–243. San Francisco: Morgan Kaufmann.
Rahimikhoob, A. 2014. “Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment.” Water Resour. Manage. 28 (3): 657–669. https://doi.org/10.1007/s11269-013-0506-x.
Richter, K., T. B. Hank, C. Atzberger, and W. Mauser. 2011. “Goodness-of-fit measures: What do they tell about vegetation variable retrieval performance from Earth observation data.” In Remote sensing for agriculture, ecosystems, and hydrology XIII, 81740R. Prague, Czech Republic: International Society for Optics and Photonics.
Rodrigues, L. N., and T. Dekker. 2008. Avaliação da taxa de infiltração em pequenas barragens. ITEM. Irrigação e Tecnologia Moderna 80: 57–61.
Rodrigues, L. N., E. E. Sano, T. S. Steenhuis, and D. P. Passo. 2012. “Estimation of small reservoir storage capacities with remote sensing in the Brazilian Savannah region.” Water Resour. Manage. 26 (4): 873–882. https://doi.org/10.1007/s11269-011-9941-8.
Rodriguez, P. P., and D. Gianola. 2018. BRNN: Bayesian regularization for feed-forward neural networks. Accessed May 27, 2020. https://cran.r-project.org/web/packages/brnn/.
Rosenberry, D. O., T. C. Winter, D. C. Buso, and G. E. Likens. 2007. “Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA.” J. Hydrol. 340 (3–4): 149–166. https://doi.org/10.1016/j.jhydrol.2007.03.018.
Schaefli, B., and H. V. Gupta. 2007. “Do Nash values have value?” Hydrol. Process. 21 (15): 2075–2080. https://doi.org/10.1002/hyp.6825.
Spears, M., J. Huntington, and S. Gangpadhyay. 2016. Improving reservoir evaporation. Reclamation: Managing water in the west. Denver: Research and Development Office US Dept. of the Interior, Bureau of Reclamation. https://www.usbr.gov/research/projects/download_product.cfm?id=1556.
Suliński, J., and K. Owsiak. 2009. “Premises for the construction of balance equations of water reserves in the saturation zone of forest soil.” J. Water Land Dev. 13 (1): 87–108. https://doi.org/10.2478/v10025-010-0007-8.
Tabari, H., S. Marofi, and A.-A. Sabziparvar. 2010. “Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression.” Irrig. Sci. 28 (5): 399–406. https://doi.org/10.1007/s00271-009-0201-0.
Ticknor, J. L. 2013. “A Bayesian regularized artificial neural network for stock market forecasting.” Expert Syst. Appl. 40 (14): 5501–5506. https://doi.org/10.1016/j.eswa.2013.04.013.
Tinoco, V., P. Willems, G. Wyseure, and F. Cisneros. 2016. “Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador.” J. Hydrol.: Reg. Stud. 5 (Mar): 213–225. https://doi.org/10.1016/j.ejrh.2015.12.063.
Vapnik, V. 1995. The nature of statistical learning theory. New York: Springer.
Vapnik, V., S. E. Golowich, and A. J. Smola. 1997. “Support vector method for function approximation, regression estimation and signal processing.” In Advances in neural information processing systems 9, edited by M. C. Mozer, M. I. Jordan, and T. Petsche, 281–287. Cambridge, MA: MIT Press.
Wang, L., O. Kisi, B. Hu, M. Bilal, M. Zounemat-Kermani, and H. Li. 2017a. “Evaporation modelling using different machine learning techniques.” Supplement, Int. J. Climatol. 37 (S1): 1076–1092. https://doi.org/10.1002/joc.5064.
Wang, L., Z. Niu, O. Kisi, C. Li, and D. Yu. 2017b. “Pan evaporation modeling using four different heuristic approaches.” Comput. Electron. Agric. 140 (Aug): 203–213. https://doi.org/10.1016/j.compag.2017.05.036.
Wang, X., X. Chen, Q. Cui, and Z. Yang. 2019. “An improved two-step parameter adjustment method for the optimization of a reservoir operation function model based on repeated principal component analysis and a genetic algorithm.” J. Hydroinf. 21 (1): 1–12. https://doi.org/10.2166/hydro.2018.086.
Webb, E. K. 1966. “A pan-lake evaporation relationship.” J. Hydrol. 4: 1–11. https://doi.org/10.1016/0022-1694(66)90063-1.
Wurbs, R. A., and R. A. Ayala. 2014. “Reservoir evaporation in Texas, USA.” Supplement, J. Hydrol. 510 (SC): 1–9. https://doi.org/10.1016/j.jhydrol.2013.12.011.
Xu, T., et al. 2018. “Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale.” J. Geophys. Res. Atmos. 123 (16): 8674–8690. https://doi.org/10.1029/2018JD028447.
Yihdego, Y., and J. A. Webb. 2018. “Comparison of evaporation rate on open water bodies: Energy balance estimate versus measured pan.” J. Water Clim. Change 9 (1): 101–111. https://doi.org/10.2166/wcc.2017.139.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 8August 2020

History

Received: Aug 12, 2019
Accepted: Apr 10, 2020
Published online: Jun 9, 2020
Published in print: Aug 1, 2020
Discussion open until: Nov 9, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Agricultural Engineering, Federal Univ. of Viçosa, Av. Peter Henry Rolfs, s.n., Viçosa, Minas Gerais 36570-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-5390-575X. Email: [email protected]; [email protected]
Roberto Filgueiras [email protected]
Postdoctoral Researcher, Dept. of Agricultural Engineering, Federal Univ. of Viçosa, Av. Peter Henry Rolfs, s.n., Viçosa, Minas Gerais 36570-900, Brazil. Email: [email protected]
Lineu Neiva Rodrigues [email protected]
Senior Researcher, Brazilian Agricultural Research Corporation (EMBRAPA) Cerrados, BR-020, Km 18, Planaltina, DF 73310-970, Brazil; Postgraduate Adviser, Dept. of Agricultural Engineering, Federal Univ. of Viçosa, Av. Peter Henry Rolfs, s.n., Viçosa, Minas Gerais 36570-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share