Technical Papers
Apr 8, 2020

Probability Distribution of Waiting Time of the kth Extreme Event under Serial Dependence

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Hydrologic Engineering
Volume 25, Issue 6

Abstract

Negative binomial distribution has been suggested to describe the first arrival time of the kth flood exceeding the design flood under independence and both stationary and nonstationary conditions. However, hydrological processes often exhibit temporal dependence, which can cause persistent fluctuations in observed series and clustering of extreme events that might be confused with nonstationary effects. This study focuses on a distribution of waiting time of the kth event exceeding a prescribed design value under stationarity and serial dependence. This probability distribution is known as beta negative binomial, which complements the models proposed for (non)stationary independent processes, and enables the comparison with results corresponding to stationary dependent processes. We discuss the properties of the beta negative binomial distribution and show its validity for theoretical occurrence processes with power-law and exponentially decaying autocorrelation functions. The proposed model is applied to peak flows and maximum temperatures recorded across the conterminous United States. Results show that the beta negative binomial distribution can capture the effect of serial dependence on the distribution of waiting time of extreme events.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Peak flow data used in this study are freely available in the supplemental material of Hirsch and Ryberg (2012) at https://doi.org/10.1080/02626667.2011.621895 and from the USGS via the National Water Information System (NWIS) online database (USGS 2016). Temperature data are provided by the National Oceanic and Atmospheric Administration (NOAA) through the US Climate Divisional Database (Vose et al. 2014b). The analyses were performed in R (R Core Team 2019).

Acknowledgments

Francesco Serinaldi acknowledges the support from the Willis Research Network and dedicates this study to Giacomo Serinaldi (1932–2018). Federico Lombardo is grateful to the Italian National Fire and Rescue Service for the continuous support. The authors thank two anonymous reviewers for their constructive remarks.

References

Ahn, H., and J. J. Chen. 1995. “Generation of over-dispersed and under-dispersed binomial variates.” J. Comput. Graphical Stat. 4 (1): 55–64. https://doi.org/10.1080/10618600.1995.10474665.
Bayazit, M. 2015. “Nonstationarity of hydrological records and recent trends in trend analysis: A state-of-the-art review.” Environ. Processes 2 (3): 527–542. https://doi.org/10.1007/s40710-015-0081-7.
Cohn, T. A., and H. F. Lins. 2005. “Nature’s style: Naturally trendy.” Geophys. Res. Lett. 32 (23): L23402. https://doi.org/10.1029/2005GL024476.
Cooley, D. 2013. “Return periods and return levels under climate change.” In Vol. 65 of Extremes in a changing climate: Water science and technology library, edited by A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, 97–114. Dordrecht, Netherlands: Springer.
Dobson, A. J., and A. Barnett. 2008. An introduction to generalized linear models. 3rd ed. Boca Raton, FL: Chapman & Hall/CRC.
Edwards, A. W. F. 1960. “The meaning of binomial distribution.” Nature 186 (4730): 1074. https://doi.org/10.1038/1861074a0.
Eggenberger, F., and G. Pólya. 1923. “Über die statistik verketteter vorgänge.” ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 3 (4): 279–289. https://doi.org/10.1002/zamm.19230030407.
Eggenberger, F., and G. Pólya. 1928. “Calcul des probabilités–sur l’interprétation de certaines courbes de frequence.” Comptes Rendus, Académie des Sciences, Paris 187: 870–872.
England, J. F., Jr., T. A. Cohn, B. A. Faber, J. R. Stedinger, W. O. Thomas, Jr., A. G. Veilleux, J. E. Kiang, and R. R. Mason, Jr. 2019. Chapter B5 of Guidelines for determining flood flow frequency—Bulletin 17C (ver. 1.1, May 2019), 148. Reston, VA: USGS.
Fernández, B., and J. Salas. 1999. “Return period and risk of hydrologic events. I: Mathematical formulation.” J. Hydrol. Eng. 4 (4): 297–307. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(297).
Greenwood, M., and G. U. Yule. 1920. “An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents.” J. R. Stat. Soc. 83 (2): 255–279. https://doi.org/10.2307/2341080.
Griffiths, D. A. 1973. “Maximum likelihood estimation for the Beta-Binomial distribution and an application to the household distribution of the total number of cases of a disease.” Biometrics 29 (4): 637–648. https://doi.org/10.2307/2529131.
Hastie, T. J., and R. J. Tibshirani. 1990. Generalized additive models. London: Chapman and Hall.
Hirsch, R. M., and K. R. Ryberg. 2012. “Has the magnitude of floods across the USA changed with global CO2 levels?” Hydrol. Sci. J. 57 (1): 1–9. https://doi.org/10.1080/02626667.2011.621895.
Hughes, G., and L. Madden. 1993. “Using the Beta-Binomial distribution to describe aggegated patterns of disease incidence.” Phytopathology 83 (9): 759–763. https://doi.org/10.1094/Phyto-83-759.
Johnson, N. L., A. W. Kemp, and S. Kotz. 2005. Univariate discrete distributions. 3rd ed. Hoboken, NJ: Wiley.
Karl, T., and W. J. Koss. 1984. Regional and national monthly, seasonal, and annual temperature weighted by area, 1895-1983: Historical climatology series. Asheville, NC: National Climatic Data Center.
Katz, R. W. 2013. “Statistical methods for nonstationary extremes.” In Vol. 65 of Extremes in a changing climate: Water science and technology library, edited by A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, 15–37. Dordrecht, Netherlands: Springer.
Kemp, C. D., and A. W. Kemp. 1956. “Generalized hypergeometric distributions.” J. Royal Stat. Soc. Series B (Methodol.) 18 (2): 202–211. https://doi.org/10.1111/j.2517-6161.1956.tb00224.x.
Khaliq, M. N., T. B. M. J. Ouarda, J.-C. Ondo, P. Gachon, and B. Bobée. 2006. “Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review.” J. Hydrol. 329 (3): 534–552. https://doi.org/10.1016/j.jhydrol.2006.03.004.
Koutsoyiannis, D. 2010. “HESS Opinions “A random walk on water.” Hydrol. Earth Syst. Sci. 14 (3): 585–601. https://doi.org/10.5194/hess-14-585-2010.
Koutsoyiannis, D. 2016. “Generic and parsimonious stochastic modelling for hydrology and beyond.” Hydrol. Sci. J. 61 (2): 225–244. https://doi.org/10.1080/02626667.2015.1016950.
Koutsoyiannis, D., and A. Montanari. 2007. “Statistical analysis of hydroclimatic time series: Uncertainty and insights.” Water Resour. Res. 43 (5): W05429. https://doi.org/10.1029/2006WR005592.
Koutsoyiannis, D., and A. Montanari. 2015. “Negligent killing of scientific concepts: The stationarity case.” Hydrol. Sci. J. 60 (7–8): 1174–1183. https://doi.org/10.1080/02626667.2014.959959.
Lins, H. F., and T. A. Cohn. 2011. “Stationarity: Wanted dead or alive?” J. Am. Water Resour. Assoc. 47 (3): 475–480. https://doi.org/10.1111/j.1752-1688.2011.00542.x.
Lins, H. F., and J. R. Slack. 1999. “Streamflow trends in the United States.” Geophys. Res. Lett. 26 (2): 227–230. https://doi.org/10.1029/1998GL900291.
Lombardo, F., F. Napolitano, F. Russo, and D. Koutsoyiannis. 2019. “On the exact distribution of correlated extremes in hydrology.” Water Resour. Res. 55 (12): 10405–10423. https://doi.org/10.1029/2019WR025547.
Markonis, Y., Y. Moustakis, C. Nasika, P. Sychova, P. Dimitriadis, M. Hanel, P. Máca, and S. M. Papalexiou. 2018. “Global estimation of long-term persistence in annual river runoff.” Adv. Water Resour. 113 (Mar): 1–12. https://doi.org/10.1016/j.advwatres.2018.01.003.
Nicola, V. F., and A. Goyal. 1990. “Modeling of correlated failures and community error recovery in multiversion software.” IEEE Trans. Software Eng. 16 (3): 350–359. https://doi.org/10.1109/32.48942.
Obeysekera, J., and J. D. Salas. 2016. “Frequency of recurrent extremes under nonstationarity.” J. Hydrol. Eng. 21 (5): 04016005. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001339.
Poisson, S. D. 1837. Recherches sur la probabilité des jugements en matière criminelle et en matière civile: précédées des règles générales du calcul des probabilités. Paris: Bachelier, imprimeur-libraire.
Prosdocimi, I., T. R. Kjeldsen, and C. Svensson. 2014. “Non-stationarity in annual and seasonal series of peak flow and precipitation in the uk.” Nat. Hazards Earth Syst. Sci. 14 (5): 1125–1144. https://doi.org/10.5194/nhess-14-1125-2014.
R Core Team. 2019. A Language and Environment for Statistical Computing. Vienna, Austria: Foundation for Statistical Computing.
Read, L. K., and R. M. Vogel. 2015. “Reliability, return periods, and risk under nonstationarity.” Water Resour. Res. 51 (8): 6381–6398. https://doi.org/10.1002/2015WR017089.
Salas, J. D., and J. Obeysekera. 2019. “Probability distribution and risk of the first occurrence of extreme hydrologic events.” J. Hydrol. Eng. 24 (10): 04019032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001809.
Salas, J. D., J. Obeysekera, and R. M. Vogel. 2018. “Techniques for assessing water infrastructure for nonstationary extreme events: A review.” Hydrol. Sci. J. 63 (3): 325–352. https://doi.org/10.1080/02626667.2018.1426858.
Salvadori, G., F. Durante, C. De Michele, M. Bernardi, and L. Petrella. 2016. “A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities.” Water Resour. Res. 52 (5): 3701–3721. https://doi.org/10.1002/2015WR017225.
Serinaldi, F. 2015. “Dismissing return periods!” Stochastic Environ. Res. Risk Assess. 29 (4): 1179–1189. https://doi.org/10.1007/s00477-014-0916-1.
Serinaldi, F., and C. G. Kilsby. 2016. “Understanding persistence to avoid underestimation of collective flood risk.” Water 8 (4): 152. https://doi.org/10.3390/w8040152.
Serinaldi, F., and C. G. Kilsby. 2018. “Unsurprising surprises: The frequency of record-breaking and overthreshold hydrological extremes under spatial and temporal dependence.” Water Resour. Res. 54 (9): 6460–6487. https://doi.org/10.1029/2018WR023055.
Serinaldi, F., C. G. Kilsby, and F. Lombardo. 2018. “Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology.” Adv. Water Resour. 111 (Jan): 132–155. https://doi.org/10.1016/j.advwatres.2017.10.015.
Serinaldi, F., and F. Lombardo. 2017a. “Betabit: A fast generator of autocorrelated binary processes for geophysical research.” EPL (Europhys. Lett.) 118 (3): 30007. https://doi.org/10.1209/0295-5075/118/30007.
Serinaldi, F., and F. Lombardo. 2017b. “General simulation algorithm for autocorrelated binary processes.” Phys. Rev. E 95 (2): 023312. https://doi.org/10.1103/PhysRevE.95.023312.
Skellam, J. G. 1948. “A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials.” J. Royal Stat. Soc. Series B (Methodol.) 10 (2): 257–261. https://doi.org/10.1111/j.2517-6161.1948.tb00014.x.
Stedinger, J. R., and V. W. Griffis. 2011. “Getting from here to where? Flood frequency analysis and climate.” J. Am. Water Resour. Assoc. 47 (3): 506–513. https://doi.org/10.1111/j.1752-1688.2011.00545.x.
Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou. 1993. Chapter 18 of Frequency analysis of extreme events. New York: McGraw-Hill.
Tejada, A., and A. J. den Dekker. 2011. “The role of Poisson’s binomial distribution in the analysis of TEM images.” Ultramicroscopy 111 (11): 1553–1556. https://doi.org/10.1016/j.ultramic.2011.08.010.
Tsai, C.-A., H. Hsueh, and J. J. Chen. 2003. “Estimation of false discovery rates in multiple testing: Application to gene microarray data.” Biometrics 59 (4): 1071–1081. https://doi.org/10.1111/j.0006-341X.2003.00123.x.
USGS. 2016. “National water information system data.” Accessed July 27, 2019. http://waterdata.usgs.gov/nwis/peak.
Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski. 2009a. “On the stationarity of annual flood peaks in the continental United States during the 20th century.” Water Resour. Res. 45 (8): WR007645. https://doi.org/10.1029/2008WR007645.
Villarini, G., J. A. Smith, F. Serinaldi, J. Bales, P. D. Bates, and W. F. Krajewski. 2009b. “Flood frequency analysis for nonstationary annual peak records in an urban drainage basin.” Adv. Water Resour. 32 (8): 1255–1266. https://doi.org/10.1016/j.advwatres.2009.05.003.
Vogel, R. M., C. Yaindl, and M. Walter. 2011. “Nonstationarity: Flood magnification and recurrence reduction factors in the United States.” J. Am. Water Resour. Assoc. 47 (3): 464–474. https://doi.org/10.1111/j.1752-1688.2011.00541.x.
Volpi, E., A. Fiori, S. Grimaldi, F. Lombardo, and D. Koutsoyiannis. 2015. “One hundred years of return period: Strengths and limitations.” Water Resour. Res. 51 (10): 8570–8585. https://doi.org/10.1002/2015WR017820.
Vose, R. S., S. Applequist, M. Squires, I. Durre, M. J. Menne, C. N. Williams, Jr., C. Fenimore, K. Gleason, and D. Arndt. 2014a. “Improved historical temperature and precipitation time series for U.S. climate divisions.” J. Appl. Meteorol. Climatol. 53 (5): 1232–1251. https://doi.org/10.1175/JAMC-D-13-0248.1.
Vose, R. S., S. Applequist, M. Squires, I. Durre, M. J. Menne, C. N. Williams, Jr., C. Fenimore, K. Gleason, and D. Arndt. 2014b. “NOAA's gridded climate divisional dataset (CLIMDIV). [Maximum temperature].” NOAA National Climatic Data Center. Accessed July 27, 2019. http://www.ncdc.noaa.gov/cag/time-series/us.
Water Resources Council. 1982. Guidelines for determining flood flow frequency. Bulletin 17B. Washington, DC: Water Resources Council.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 6June 2020

History

Received: Aug 12, 2019
Accepted: Dec 17, 2019
Published online: Apr 8, 2020
Published in print: Jun 1, 2020
Discussion open until: Sep 8, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

School of Engineering, Newcastle Univ., Newcastle Upon Tyne NE1 7RU, UK; Willis Research Network, 51 Lime St., London EC3M 7DQ, UK (corresponding author). ORCID: https://orcid.org/0000-0002-1871-1068. Email: [email protected]
Federico Lombardo
Dipartimento di Ingegneria Civile, Edile e Ambientale, Sapienza Università di Roma, Via Eudossiana, 18, Rome 00184, Italy; Corpo Nazionale dei Vigili del Fuoco, Ministero dell’Interno, Piazza del Viminale, 1, Rome 00184, Italy.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share