Case Studies
Jan 16, 2020

Impact of Eastern Tibetan Plateau Glacier Melt on Land Water Storage Change across the Yangtze River Basin

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 3

Abstract

The Qinghai-Tibet Plateau (QTP) glaciers have been consistently retreating for decades and accelerating their retreat in recent years. It would impact the river water resources that originate from the QTP, such as the Yangtze River Basin (YRB). Therefore, there is an urgent need to study the relationship between QTP glacier melt and land water storage changes (LWSC) across the YRB. Here, the investigation will be inferred by combining data from the Gravity Recovery and Climate Experiment (GRACE); the Ice, Cloud, and land Elevation Satellite (ICESat); a 3-arc-second digital elevation model of the Shuttle Radar Terrestrial Mission (SRTM); a hydrological model; and in situ hydrological and weather stations. The results indicate that (1) the glacier melt in the Eastern Tibetan Plateau (ETP) is a result of the increasing temperature and the LWSC in the YRB are increasing, (2) the contribution of ETP glacier melt to the LWSC in the YRB was close to 20% during the period 2003–2009, (3) the maximum correlation between them is 0.45 with a lag of approximately 9 months, and (4) the LWSC in the YRB are primarily from precipitation and secondarily from the ETP glacier melt. Our research provides important information for applications within China’s South-to-North Water Transfer Project and water resource management.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the following data providers for making their data available: GRACE-JPL; ICESat; SRTM; Landsat 7; WGHM; in situ hydroclimatic stations. This study is supported by NSFC (China) under grants 41974019, 41704011, 41674015, 41774019, 41274032, 41474018, 41704012, 41771449, 41874093, and 41429401; and the Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of Ministry of Natural Resources.

References

Abdalati, W., et al. 2010. “The ICESat-2 laser altimetry mission.” Proc. IEEE 98 (5): 735–751. https://doi.org/10.1109/JPROC.2009.2034765.
Baghdadi, N., N. Lemarquand, H. Abdallah, and J. S. Bailly. 2011. “The relevance of GLAS/ICESat elevation data for the monitoring of river networks.” Remote Sens. 3 (4): 708–720. https://doi.org/10.3390/rs3040708.
Brenner, A. C., et al. 2003. “Derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights.” In Algorithm theoretical basis document. Greenbelt, MD: Goddard Space Flight Center.
Cazenave, A., and J. Chen. 2010. “Time-variable gravity from space and present-day mass redistribution in the Earth system.” Earth Planet. Sci. Lett. 298 (3–4): 263–274. https://doi.org/10.1016/j.epsl.2010.07.035.
CGIAR-CSI (Consortium for Spatial Information). 2017. “Contemporary sea level rise, annual review of marine science.” Accessed August 16, 2017. https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/.
Chambers, D. P., J. Wahr, and R. S. Nerem. 2004. “Preliminary observations of global ocean mass variation with GRACE.” Geophys. Res. Lett. 31 (13): L13310. https://doi.org/10.1029/2004GL020461.
Chao, N., and Z. Wang. 2017. “Characterized flood potential in the Yangtze River basin from GRACE gravity observation, hydrological model and in-situ hydrological station.” J. Hydrol. Eng. 22 (9): 05017016. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001547.
Chao, N., Z. Wang, C. Hwang, T. Jin, and Y. Cheng. 2017. “Glacier retreat in Yangtze River’s source region detected by ICESat altimetry and assessed by hydroclimatic data.” Remote Sens. 9 (1): 75. https://doi.org/10.3390/rs9010075.
Chao, N. F., Z. T. Wang, W. P. Jiang, and D. B. Chao. 2016. “A quantitative approach for hydrological drought characterization in southwestern China using GRACE.” Hydrogeol. J. 24 (4): 893–903. https://doi.org/10.1007/s10040-015-1362-y.
Chen, J. L., C. R. Wilson, and K.-W. Seo. 2009. “S2 tide aliasing in GRACE time-variable gravity solutions.” J. Geod. 83 (7): 679–687. https://doi.org/10.1007/s00190-008-0282-1.
Cheng, M. K., J. C. Ries, and B. D. Tapley. 2011. “Variations of the Earth’s Fig. Axis from satellite laser ranging and GRACE.” J. Geophys. Res. 116 (B1): B01409. https://doi.org/10.1029/2010JB000850.
Cornelis, S. 2007. Towards a combined estimation of Greenland’s ice sheet mass balance using GRACE and ICESat data. Holland, Netherlands: Delft Univ. of Technology.
Döll, P., F. Kaspar, and B. Lehner. 2003. “A global hydrological model for deriving water availability indicators: Model tuning and validation.” J. Hydrol. 270 (1–2): 105–134. https://doi.org/10.1016/S0022-1694(02)00283-4.
Dyurgerov, M. 2003. “Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle.” J. Hydrol. 282 (1–4): 164–176. https://doi.org/10.1016/S0022-1694(03)00254-3.
European Space Agency, Mullar Space Science Laboratory. 2012. CryoSat product handbook. London: ESRIN-ESA and Mullard Space Science Laboratory-Univ. College London.
Famiglietti, J. S., M. Lo, S. L. Ho, J. Bethune, K. J. Anderson, T. H. Syed, S. C. Swenson, C. R. de Linage, and M. Rodell. 2011. “Satellites measure recent trends of groundwater depletion in California’s Central Valley.” Geophys. Res. Lett. 38 (3): L03403. https://doi.org/10.1029/2010GL046442.
Flechtner, F., P. Morton, M. Watkins, and F. Webb. 2014. “Status of the GRACE follow-on mission.” In Vol. 141 of IAG Symposium Gravity, Geoid, and Height Systems, 117–121. Venice, Italy: Springer.
Forootan, E., O. Didova, J. Kusche, and A. Löcher. 2013. “Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations.” J. Geophys. Res. Solid Earth 118 (5): 2382–2396. https://doi.org/10.1002/jgrb.50160.
Frappart, F., G. Ramillien, and J. S. Famiglietti. 2011. “Water balance of the Arctic drainage system using GRACE gravimetry products.” Int. J. Remote Sens. 32 (2): 431–453. https://doi.org/10.1080/01431160903474954.
Gardelle, J., E. Berthier, and Y. Arnaud. 2012. “Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing.” J. Glaciol. 58 (208): 419–422. https://doi.org/10.3189/2012JoG11J175.
Gardner, A. S., et al. 2013. “A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009.” Science 340 (6134): 852–857. https://doi.org/10.1126/science.1234532.
Geruo, A., J. Wahr, and S. Zhong. 2013. “Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada.” Geophys. J. Int. 192 (2): 557–572. https://doi.org/10.1093/gji/ggs030.
Guo, W. Q., et al. 2015. “The second chinese glacier inventory: Data, methods and results.” J. Glaciol. 61 (226): 357–372. https://doi.org/10.3189/2015JoG14J209.
Heiskanen, W. A., and H. Moritz. 1967. Physical geodesy. San Francisco: W. H. Freeman and Company.
Huang, Y., M. S. Salama, M. S. Krol, Z. Su, A. Y. Hoekstra, Y. Zeng, and Y. Zhou. 2015. “Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze River basin.” Water Resour. Res. 51 (10): 8494–8516. https://doi.org/10.1002/2015WR016923.
Huning, L. S., and A. AghaKouchak. 2018. “Mountain snowpack response to different levels of warming.” Proc. Natl. Acad. Sci. 115 (43): 10932–10937. https://doi.org/10.1073/pnas.1805953115.
Huss, M., and R. Hock. 2018. “Global-scale hydrological response to future glacier mass loss.” Nat. Clim. Change 8 (2): 135. https://doi.org/10.1038/s41558-017-0049-x.
Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens. 2010. “Climate change will affect the Asian water towers.” Science 328 (5984): 1382–1385. https://doi.org/10.1126/science.1183188.
IPCC (Intergovernmental Panel on Climate Change). 2013. “Climate Change 2013: The physical science basis.” In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535. Cambridge, UK and New York: Cambridge University Press.
Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson. 2012. “Recent contributions of glaciers and ice caps to sea level rise.” Nature 482 (7386): 514–518. https://doi.org/10.1038/nature10847.
Jekeli, C. 1981. Alternative methods to smooth the earth’s gravity field. Columbus, OH: Dept. of Geodetic Science and Surveying, Ohio State Univ.
Jiang, Q., V. G. Ferreira, and J. Chen. 2016. “Monitoring groundwater changes in the Yangtze River basin using satellite and model data.” Arabian J. Geosci. 9 (7): 500. https://doi.org/10.1007/s12517-016-2522-7.
Kääb, A., E. Berthier, C. Nuth, J. Gardelle, and Y. Arnaud. 2012. “Contrasting patterns of early tewnty-first-century glacier mass change in the Himalayas.” Nature 488 (7412): 495–498. https://doi.org/10.1038/nature11324.
Kääb, A., D. Treichler, C. Nuth, and E. Berthier. 2015. “Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya.” Cryosphere 9 (2): 557–564. https://doi.org/10.5194/tc-9-557-2015.
Kaser, G., M. Großhauser, and B. Marzeion. 2010. “Contribution potential of glaciers to water availability in different climate regimes.” Proc. Natl. Acad. Sci. USA 107 (47): 20223–20227. https://doi.org/10.1073/pnas.1008162107.
Ke, L., X. Ding, and C. Song. 2015. “Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory.” Remote Sens. Environ. 168 (Oct): 13–23. https://doi.org/10.1016/j.rse.2015.06.019.
Kraaijenbrink, P. D. A., M. F. P. Bierkens, A. F. Lutz, and W. W. Immerzeel. 2017. “Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers.” Nature 549 (7671): 257. https://doi.org/10.1038/nature23878.
Li, X. 2003. GLIMS glacier database. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.
Luthcke, S. B., T. J. Sabaka, B. D. Loomis, A. A. Arendt, J. J. McCarthy, and J. Camp. 2013. “Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution.” J. Glaciol. 59 (216): 613–631. https://doi.org/10.3189/2013JoG12J147.
Markus, T., et al. 2017. “The ice, cloud, and land elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation.” Remote Sens. Environ. 190 (Mar): 260–273. https://doi.org/10.1016/j.rse.2016.12.029.
Martinec, J., A. Rango, and R. Roberts. 1998. The snowmelt runoff model (SRM) user’s manual, 7–57. Berne, Switzerland: Univ. of Berne.
Melo, D. de C. D., B. R. Scanlon, Z. Zhang, E. Wendland, and L. Yin. 2016. “Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil.” Hydrol. Earth Syst. Sci. 20 (11): 4673–4688. https://doi.org/10.5194/hess-20-4673-2016.
Moholdt, G., C. Nuth, J. O. Hagen, and J. Kohler. 2010. “Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry.” Remote Sens. Environ. 114 (11): 2756–2767. https://doi.org/10.1016/j.rse.2010.06.008.
Moholdt, G., B. Wouters, and A. S. Gardner. 2012. “Recent mass changes of glaciers in the Russian High Arctic.” Geophys. Res. Lett. 39 (10): L10502. https://doi.org/10.1029/2012GL051466.
Müller Schmied, H., S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll. 2014. “Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration.” Hydrol. Earth Syst. Sci. 18 (9): 3511–3538. https://doi.org/10.5194/hess-18-3511-2014.
Neckel, N., J. Kropáček, T. Bolch, and V. Hochschild. 2014. “Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements.” Environ. Res. Lett. 9 (1): 014009. https://doi.org/10.1088/1748-9326/9/1/014009.
Nuth, C., and A. Kääb. 2011. “Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change.” Cryosphere 5 (1): 271–290. https://doi.org/10.5194/tc-5-271-2011.
Oerlemans, J. 2001. Glaciers and climate change. Leiden, Netherlands: A.A. Balkema Publishers.
Oerlemans, J. 2005. “Extracting a climate signal from 169 glacier records.” Science 308 (5722): 675–677. https://doi.org/10.1126/science.1107046.
Ogawa, R., B. F. Chao, and K. Heki. 2011. “Acceleration signal in GRACE time-variable gravity in relation to interannual hydrological changes.” Geophys. J. Int. 184 (2): 673–679. https://doi.org/10.1111/j.1365-246X.2010.04843.x.
Pritchard, H. D. 2017. “Asia’s glaciers are a regionally important buffer against drought.” Nature 545 (7653): 169–174. https://doi.org/10.1038/nature22062.
Reager, J. T., A. S. Gardner, J. S. Famiglietti, D. N. Wiese, A. Eicker, and M.-H. Lo. 2016. “A decade of sea level rise slowed by climate-driven hydrology.” Science 351 (6274): 699–703. https://doi.org/10.1126/science.aad8386.
Rodell, M., J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, and M.-H. Lo. 2018. “Emerging trends in global freshwater availability.” Nature 557 (7707): 651–659. https://doi.org/10.1038/s41586-018-0123-1.
Save, H., S. Bettadpur, and B. D. Tapley. 2016. “High resolution CSR GRACE RL05 mascons.” J. Geophys. Res. Solid Earth 121 (10): 7547–7569. https://doi.org/10.1002/2016JB013007.
Scanlon, B. R., Z. Zhang, H. Save, D. N. Wiese, F. W. Landerer, D. Long, L. Longuevergne, and J. L. Chen. 2016. “Global evaluation of new GRACE mascons products for hydrologic applications.” Water Resour. Res. 52 (12): 9412–9429. https://doi.org/10.1002/2016WR019494.
Singh, P., and L. Bengtsson. 2005. “Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region.” J. Hydrol. 300 (1–4): 140–154. https://doi.org/10.1016/j.jhydrol.2004.06.005.
Song, C. Q., L. H. Ke, B. Huang, and K. S. Richards. 2015. “Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?” Global Planet. Change 124 (Jan): 1–9. https://doi.org/10.1016/j.gloplacha.2014.11.001.
Sun, A. Y., B. R. Scanlon, A. AghaKouchak, and Z. Zhang. 2017. “Using GRACE satellite gravimetry for assessing large-scale hydrologic extremes.” Remote Sens. 9 (12): 1287. https://doi.org/10.3390/rs9121287.
Sun, Z., X. Zhu, Y. Pan, J. Zhang, and X. Liu. 2018. “Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China.” Sci. Total Environ. 634 (Sep): 727–738. https://doi.org/10.1016/j.scitotenv.2018.03.292.
Surazakov, A. B., and V. B. Aizen. 2006. “Estimating volume change of mountain glaciers using SRTM and map-based topographic data.” IEEE Trans. Geosci. Remote Sens. 44 (10): 2991–2995. https://doi.org/10.1109/TGRS.2006.875357.
Swenson, S., D. Chambers, and J. Wahr. 2008. “Estimating geocenter variations from a combination of GRACE and ocean model output.” J. Geophys. Res. 113 (B8): B08410. https://doi.org/10.1029/2007JB005338.
Swenson, S., and J. Wahr. 2002. “Methods for inferring regional surface mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity.” J. Geophys. Res. 107 (B9): 2193. https://doi.org/10.1029/2001JB000576.
Swenson, S., and J. Wahr. 2006. “Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements.” J. Hydrometeorol. 7 (2): 252–270. https://doi.org/10.1175/JHM478.1.
Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber. 2004. “The gravity recovery and climate experiment: Mission overview and early results.” Geophys. Res. Lett. 31 (9): L09607. https://doi.org/10.1029/2004GL019920.
Treichler, D., and A. Kääb. 2016. “ICESat laser altimetry over small mountain glaciers.” Cryosphere 10 (5): 2129–2146. https://doi.org/10.5194/tc-10-2129-2016.
Wahr, J., M. Molenaar, and F. Bryan. 1998. “Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE.” J. Geophys. Res. 103 (B12): 30205–30229. https://doi.org/10.1029/98JB02844.
Wang, J., et al. 2018. “Recent global decline in endorheic basin water storages.” Nat. Geosci. 11 (12): 926–932. https://doi.org/10.1038/s41561-018-0265-7.
Wang, S., M. Zhang, Z. Li, F. Wang, H. Li, Y. Li, and X. Huang. 2011. “Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960.” J. Geogr. Sci. 21 (2): 263–273. https://doi.org/10.1007/s11442-011-0843-8.
Wiese, D. N., F. W. Landerer, and M. M. Watkins. 2016. “Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution.” Water Resour. Res. 52 (9): 7490–7502. https://doi.org/10.1002/2016WR019344.
Wouters, B., J. A. Bonin, D. P. Chambers, R. E. M. Riva, I. Sasgen, and J. Wahr. 2014. “GRACE, time-varying gravity, Earth system dynamics and climate change.” Rep. Prog. Phys. 77 (11): 116801. https://doi.org/10.1088/0034-4885/77/11/116801.
Zeng, N., J.-H. Yoon, A. Mariotti, and S. Swenson. 2008. “Variability of basin-scale terrestrial water storage from a PER Water Budget Method: The Amazon and the Mississippi.” J Clim. 21 (2): 248–265. https://doi.org/10.1175/2007JCLI1639.1.
Zhang, B., E. Zhang, L. Liu, S. A. Khan, T. van Dam, Y. Yao, M. Bevis, and V. Helm. 2018. “Geodetic measurements reveal short-term changes of glacial mass near Jakobshavn Isbræ (Greenland) from 2007 to 2017.” Earth Planet. Sci. Lett. 503 (Dec): 216–226. https://doi.org/10.1016/j.epsl.2018.09.029.
Zhang, G., T. Yao, H. Xie, S. Kang, and Y. Lei. 2013. “Increased mass over the Tibetan Plateau: From lakes or glaciers?” Geophys. Res. Lett. 40 (10): 2125–2130. https://doi.org/10.1002/grl.50462.
Zhang, Z., B. F. Chao, J. Chen, and C. R. Wilson. 2015. “Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO.” Global Planet. Change 126 (Mar): 35–45. https://doi.org/10.1016/j.gloplacha.2015.01.002.
Zhou, H., Z. Luo, N. Tangdamrongsub, L. Wang, L. He, C. Xu, and Q. Li. 2017. “Characterizing drought and flood events over the Yangtze River Basin using the HUST-Grace2016 Solution and ancillary data.” Remote Sens. 9 (11): 1100. https://doi.org/10.3390/rs9111100.
Zlotnicki, V., S. Bettadpur, F. W. Landerer, and M. M. Watkins. 2013. “Gravity recovery and climate experiment (GRACE): Detection of ice mass loss, terrestrial mass changes, and ocean mass gains earth.” In Earth system monitoring: Selected entries from the encyclopedia of sustainability science and technology, 123–152. New York: Springer.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 3March 2020

History

Received: Mar 5, 2018
Accepted: Sep 11, 2019
Published online: Jan 16, 2020
Published in print: Mar 1, 2020
Discussion open until: Jun 16, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Nengfang Chao [email protected]
College of Marine Science and Technology, China Univ. of Geosciences, Wuhan 430074, PR China; Hubei Subsurface Multi-Scale Imaging Key Laboratory, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, PR China (corresponding author). Email: [email protected]
Professor, College of Marine Science and Technology, China Univ. of Geosciences, Wuhan 430074, PR China. Email: [email protected]
Zhengtao Wang [email protected]
Professor, School of Geodesy and Geomatics, Key Laboratory of Geospace Environment and Geodesy, Wuhan Univ., Wuhan 430079, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share