Technical Papers
Jul 2, 2019

Rainfall Generator for Nonstationary Extreme Rainfall Condition

Publication: Journal of Hydrologic Engineering
Volume 24, Issue 9

Abstract

Stochastic weather generators are generally used to produce scenarios of climate variability on a daily timescale for hydrological modeling and water resource planning applications. Most of the available weather generators assume extreme rainfall series as stationary series. However, it is currently perceived that global climate change is increasing the intensity and frequency of extreme rainfall events and creating a nonstationary component in extreme rainfall time series. Consequently, the realistic modeling of rainfall extremes in a nonstationary context is indispensable. In this study, we propose a modified version of a k-nearest neighbor (KNN) weather generator that incorporates nonstationarity in the extreme rainfall series. The proposed algorithm first models the nonlinear trend in the extreme rainfall series that exceeds the defined threshold u and perturbs the original-KNN-simulated extreme rainfall using the knowledge available in the nonstationary model. The proposed algorithm is demonstrated with three case studies, and the performance of the proposed algorithm is validated using various extreme precipitation indices. The results of the three case studies indicate that extreme rainfall characteristics are consistently well simulated with the proposed algorithm. Particularly, based on the results of the three case studies, the proposed algorithm decreases the root-mean-square error (RMSE) in rainfall simulation with respect to the original KNN algorithm by at least 40%.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support provided by the Information Technology Research Academy, Government of India. We also thank the editor, associate editor, and four anonymous reviewers whose constructive comments helped improve the manuscript’s clarity and quality.

References

Agilan, V., and N. V. Umamahesh. 2015. “Detection and attribution of non-stationarity in intensity and frequency of daily and 4-h extreme rainfall of Hyderabad, India.” J. Hydrol. 530 (Nov): 677–697. https://doi.org/10.1016/j.jhydrol.2015.10.028.
Agilan, V., and N. V. Umamahesh. 2017. “Modelling nonlinear trend for developing non-stationary rainfall intensity-duration–frequency curve.” Int. J. Climatol. 37 (3): 1265–1281. https://doi.org/10.1002/joc.4774.
Agilan, V., and N. V. Umamahesh. 2017. “What are the best covariates for developing non-stationary rainfall intensity-duration-frequency relationship?” Adv. Water Resour. 101 (Mar): 11–22. https://doi.org/10.1016/j.advwatres.2016.12.016.
Ajayamohan, R. S., and S. A. Rao. 2008. “Indian Ocean dipole modulates the number of extreme rainfall events over India in a warming environment.” J. Meteorol. Soc. Japan 86 (1): 245–252. https://doi.org/10.2151/jmsj.86.245.
Alexander, L. V., et al. 2006. “Global observed changes in daily climate extremes of temperature and precipitation.” J. Geophys. Res. 111 (D05109): 1–22. https://doi.org/10.1029/2005JD006290.
Allen, M. R., and W. J. Ingram. 2002. “Constraints on future changes in climate and the hydrologic cycle.” Nature 419: 224–232. https://doi.org/10.1038/nature01092.
Baxevani, A., and J. Lennartsson. 2015. “A spatiotemporal precipitation generator based on a censored latent Gaussian field.” Water Resour. Res. 51 (6): 4338–4358. https://doi.org/10.1002/2014WR016455.
Berg, P., C. Moseley, and J. O. Haerter. 2013. “Strong increase in convective precipitation in response to higher temperatures.” Nat. Geosci. 6 (3): 181–185. https://doi.org/10.1038/ngeo1731.
Borgomeo, E., J. W. Hall, F. Fung, G. Watts, K. Colquhoun, and C. Lambert. 2014. “Risk-based water resources planning: Incorporating probabilistic nonstationary climate uncertainties.” Water Resour. Res. 50 (8): 6850–6873. https://doi.org/10.1002/2014WR015558.
Brown, C. 2010. “The end of reliability [editorial].” J. Water Resour. Plann. Manage. 136 (2): 143–145. https://doi.org/10.1061/(ASCE)WR.1943-5452.65.
Buishand, T. A., and T. Brandsma. 2001. “Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling.” Water Resour. Res. 37 (11): 2761–2776. https://doi.org/10.1029/2001WR000291.
Burian, S. J., and J. M. Shepherd. 2005. “Effect of urbanization on the diurnal rainfall pattern in Houston.” Hydrol. Process. 19 (5): 1089–1103. https://doi.org/10.1002/hyp.5647.
Burnham, K. P., and D. R. Anderson. 2004. “Multimodel inference: Understanding AIC and BIC in model selection.” Sociol. Methods Res. 33 (2): 261–304. https://doi.org/10.1177/0049124104268644.
Cai, W., et al. 2014a. “Increasing frequency of extreme El Niño events due to greenhouse warming.” Nat. Clim. Change 4 (2): 111–116. https://doi.org/10.1038/nclimate2100.
Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata. 2014b. “Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming.” Nature 510 (7504): 254–258. https://doi.org/10.1038/nature13327.
Cavanaugh, N. R., A. Gershunov, A. K. Panorska, and T. J. Kozubowski. 2015. “The probability distribution of intense daily precipitation.” Geophys. Res. Lett. 42 (5): 1560–1567. https://doi.org/10.1002/2015GL063238.
Chen, J., and F. P. Brissette. 2014. “Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the Loess Plateau of China.” Int. J. Climatol. 34 (10): 3089–3105. https://doi.org/10.1002/joc.3896.
Cheng, L., and A. AghaKouchak. 2014. “Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate.” Nat. Sci. Rep. 4: 7093. https://doi.org/10.1038/srep07093.
Cheng, L., A. A. Kouchak, E. Gilleland, and R. W. Katz. 2014. “Non-stationary extreme value analysis in a changing climate.” Clim. Change 127 (2): 353–369. https://doi.org/10.1007/s10584-014-1254-5.
Coles, S. 2001. An introduction to statistical modelling of extreme values. London: Springer.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A fast and elitist multiobjective genetic algorithm: NSGA-II.” IEEE Trans. Evol. Comput. 6 (2): 182–197. https://doi.org/10.1109/4235.996017.
DESA (Department of Economic and Social Affairs). 2010. World urbanization prospects: The 2009 Revision. New York: United Nations.
Dhakal, N., S. Jain, A. Gray, M. Dandy, and E. Stancioff. 2015. “Nonstationarity in seasonality of extreme precipitation: A nonparametric circular statistical approach and its application.” Water Resour. Res. 51 (6): 4499–4515. https://doi.org/10.1002/2014WR016399.
Emori, S., and S. J. Brown. 2005. “Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate.” Geophys Res. Lett. 35 (12): L17706. https://doi.org/10.1029/2005GL023272.
Furrer, E. M., and R. W. Katz. 2007. “Generalized linear modeling approach to stochastic weather generators.” Clim. Res. 34: 129–144. https://doi.org/10.3354/cr034129.
Furrer, E. M., and R. W. Katz. 2008. “Improving the simulation of extreme precipitation events by stochastic weather generators.” Water Resour. Res. 44 (12): W12439. https://doi.org/10.1029/2008WR007316.
Glenis, V., V. Pinamonti, J. W. Hall, and C. G. Kilsby. 2015. “A transient stochastic weather generator incorporating climate model uncertainty.” Adv. Water Resour. 85 (Nov): 14–26. https://doi.org/10.1016/j.advwatres.2015.08.002.
Greene, A. M., M. Hellmuth, and T. Lumsden. 2012. “Stochastic decadal climate simulations for the Berg and Breede water management areas, western Cape Province, South Africa.” Water Resour. Res. 48 (6): W06504. https://doi.org/10.1029/2011WR011152.
IPCC (Intergovernmental Panel on Climate Change). 2013. “Climate Change 2013: The physical science basis.” In Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, edited by T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, and P. M. Midgley. Cambridge, UK: Cambridge University Press.
Ivanov, V. Y., R. L. Bras, and D. C. Curtis. 2007. “A weather generator for hydrological, ecological, and agricultural applications.” Water Resour. Res. 43 (10): W10406. https://doi.org/10.1029/2006WR005364.
Katz, R. W. 2013. “Statistical methods for nonstationary extremes.” In Extremes in a changing climate: Detection, analysis and uncertainty, edited by A. A. Kouchak, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, 15–37. Dordrecht, Netherlands: Springer.
Katz, R. W., M. B. Parlange, and P. Naveau. 2002. “Statistics of extremes in hydrology.” Adv. Water Resour. 25 (8): 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8.
Kenyon, J., and G. C. Hegerl. 2010. “Influence of modes of climate variability on global precipitation extremes.” J. Clim. 23 (23): 6248–6262. https://doi.org/10.1175/2010JCLI3617.1.
Khaliq, M. N., T. B. Ouarda, J. C. Ondo, P. Gachon, and B. Bobee. 2006. “Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review.” J. Hydrol. 329 (3–4): 534–552. https://doi.org/10.1016/j.jhydrol.2006.03.004.
Kim, Y., B. Rajagopalan, and G. Lee. 2016. “Temporal statistical downscaling of precipitation and temperature forecasts using a stochastic weather generator.” Adv. Atmos. Sci. 33 (2): 175–183. https://doi.org/10.1007/s00376-015-5115-6.
Kishtawal, C. M., D. Niyogi, M. Tewari, R. A. Pielke, and M. Shepherd. 2009. “Urbanization signature in the observed heavy rainfall climatology over India.” Int. J. Climatol. 30 (13): 1908–1916. https://doi.org/10.1002/joc.2044.
Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon. 2013. “Probable maximum precipitation and climate change.” Geophys. Res. Lett. 40 (7): 1402–1408. https://doi.org/10.1002/grl.50334.
Lall, U., and A. Sharma. 1996. “A nearest neighbor bootstrap for time series resampling.” Water Resour. Res. 32 (3): 679–693. https://doi.org/10.1029/95WR02966.
Lei, M., D. Niyogi, C. Kishtawal, R. A. Pielke, A. B. Przekurat, T. E. Nobis, and S. S. Vaidya. 2008. “Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India.” Atmos. Chem. Phys. 8 (20): 5975–5995. https://doi.org/10.5194/acp-8-5975-2008.
Manning, L. J., J. W. Hall, H. J. Fowler, C. G. Kilsby, and C. Tebaldi. 2009. “Using probabilistic climate change information from a multi-model ensemble for water resources assessment.” Water Resour. Res. 45 (11): W11411. https://doi.org/10.1029/2007WR006674.
Miao, S., F. Chen, and Q. L. Fan. 2011. “Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006.” J. Appl. Meteorol. Climatol. 50 (4): 806–825. https://doi.org/10.1175/2010JAMC2513.1.
Milly, P. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer. 2008. “Stationarity is dead: Whither water management?” Science 319 (5863): 573–574. https://doi.org/10.1126/science.1151915.
Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl. 2011. “Human contribution to more-intense precipitation extremes.” Nature 470 (7334): 378–381. https://doi.org/10.1038/nature09763.
Mondal, A., and P. P. Mujumdar. 2015. “Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India.” J. Hydrol. 521 (Feb): 217–231. https://doi.org/10.1016/j.jhydrol.2014.11.071.
Mujumdar, P. P., and D. N. Kumar. 2012. Floods in a changing climate. 1st ed. Cambridge, UK.
Nogaj, M., S. Parey, and D. D. Castelle. 2007. “Non-stationary extreme models and a climatic application.” Nonlinear Processes Geophys. 14 (3): 305–316. https://doi.org/10.5194/npg-14-305-2007.
Prodanovic, P., and S. P. Simonovic. 2007. Development of rainfall intensity duration frequency curves for the city of London under the changing climate. Ontario, Canada: Univ. of Western Ontario.
Rajagopalan, B., and U. Lall. 1999. “A k-nearest neighbour simulator for daily precipitation and other variables.” Water Resour. Res. 35 (10): 3089–3101. https://doi.org/10.1029/1999WR900028.
Richardson, C. W. 1981. “Stochastic simulation of daily precipitation, temperature and solar radiation.” Water Resour. Res. 17 (1): 182–190. https://doi.org/10.1029/WR017i001p00182.
Scarrott, C. J., and A. MacDonald. 2012. “A review of extreme value threshold estimation and uncertainty quantification.” REVSTAT Stat. J. 10 (1): 33–59.
Semenov, M. A. 2008. “Simulation of extreme weather events by a stochastic weather generator.” Clim. Res. 35: 203–212. https://doi.org/10.3354/cr00731.
Sharif, M., and D. H. Burn. 2006. “Simulating climate change scenarios using an improved K-nearest neighbor model.” J. Hydrol. 325 (1–4): 179–196. https://doi.org/10.1016/j.jhydrol.2005.10.015.
Sharif, M., and D. H. Burn. 2007. “Improved K-nearest neighbor weather generating model.” J. Hydrol. Eng. 12 (1): 42–51. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(42).
Shepherd, J. M., and S. J. Burian. 2003. “Detection of urban-induced rainfall anomalies in a major coastal city.” Earth Interact. 7 (4): 1–17. https://doi.org/10.1175/1087-3562(2003)007%3C0001:DOUIRA%3E2.0.CO;2.
Shepherd, J. M., H. Pierce, and A. J. Negri. 2002. “Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite.” J. Appl. Meteorol. 41 (7): 689–701. https://doi.org/10.1175/1520-0450(2002)041%3C0689:RMBMUA%3E2.0.CO;2.
Srivastav, R. K., and S. P. Simonovic. 2015. “Multi-site, multivariate weather generator using maximum entropy bootstrap.” Clim. Dyn. 44 (11–12): 3431–3448. https://doi.org/10.1007/s00382-014-2157-x.
Steinschneider, S., and C. Brown. 2013. “A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments.” Water Resour. Res. 49 (11): 7205–7220. https://doi.org/10.1002/wrcr.20528.
Sugahara, S., R. P. Rocha, and R. Silveira. 2009. “Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil.” Int. J. Climatol. 29 (9): 1339–1349. https://doi.org/10.1002/joc.1760.
Sun, X., B. Renard, M. Thyer, S. Westra, and M. Lang. 2015. “A global analysis of the asymmetric effect of ENSO on extreme precipitation.” J. Hydrol. 530 (Nov): 51–65. https://doi.org/10.1016/j.jhydrol.2015.09.016.
Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner. 1999. “Increased El Niño frequency in a climate model forced by future greenhouse warming.” Nature 398 (6729): 694–697. https://doi.org/10.1038/19505.
Tramblay, Y., L. Neppel, J. Carreau, and E. Sanchez-Gomez. 2012. “Extreme value modelling of daily areal rainfall over Mediterranean catchments in a changing climate.” Hydrol. Process. 26 (25): 3934–3944. https://doi.org/10.1002/hyp.8417.
Trenberth, K. E. 2011. “Changes in precipitation with climate change.” Clim. Res. 47 (1): 123–138. https://doi.org/10.3354/cr00953.
Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons. 2003. “The changing character of precipitation.” Bull. Am. Meteorol. Soc. 84 (9): 1205–1218. https://doi.org/10.1175/BAMS-84-9-1205.
UNFPA (United Nations Population Fund). 2007. State of world population 2007: Unleashing the potential of urban growth. New York: UNFPA.
Verdin, A., B. Rajagopalan, W. Kleiber, G. Podestá, and F. Bert. 2015. “A conditional stochastic weather generator for seasonal to multi-decadal simulations.” J. Hydrol. 556 (Jan): 835–846. https://doi.org/10.1016/j.jhydrol.2015.12.036.
Villafuerte, M. Q., and J. Matsumoto. 2015. “Significant influences of global mean temperature and ENSO on extreme rainfall in Southeast Asia.” J. Clim. 28 (5): 1905–1919. https://doi.org/10.1175/JCLI-D-14-00531.1.
Wu, S. J., C. H. Lien, and H. C. Chang. 2012. “Calibration of a conceptual rainfall runoff model using a genetic algorithm integrated with runoff estimation sensitivity to parameters.” J. Hydroinf. 14 (2): 497–511. https://doi.org/10.2166/hydro.2011.010.
XiQuan, W., W. ZiFa, Q. YanBin, and G. Hu. 2009. “Effect of urbanization on the winter precipitation distribution in Beijing area.” Sci. China Ser. D-Earth Sci. 52 (2): 250–256. https://doi.org/10.1007/s11430-009-0019-x.
Xu, L., H. Zhou, L. Du, H. Yao, and H. Wang. 2015. “Precipitation trends and variability from 1950 to 2000 in arid lands of central Asia.” J. Arid Land 7 (4): 514–526. https://doi.org/10.1007/s40333-015-0045-9.
Yang, L., F. Tian, and D. Niyogi. 2015. “A need to revisit hydrologic responses to urbanization by incorporating the feedback on spatial rainfall patterns.” Urban Clim. 12 (Jun): 128–140. https://doi.org/10.1016/j.uclim.2015.03.001.
Yates, D., S. Gangopadhyay, B. Rajagopalan, and K. Strzepek. 2003. “A technique for generating regional climate scenarios using a nearest-neighbor algorithm.” Water Resour. Res. 39 (7): 1–15. https://doi.org/10.1029/2002WR001769.
Zeng, X., and F. W. Zwires. 2013. “Statistical indices for the diagnosing and detecting changes in extremes.” In Extremes in a changing climate: Detection, analysis and uncertainty, edited by A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, 1–14. New York: Springer.
Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers. 2011. “Indices for monitoring changes in extremes based on daily temperature and precipitation data.” WIREs Clim. Change 2 (6): 851–870. https://doi.org/10.1002/wcc.147.
Zhang, X., J. Wang, and F. W. Zwiers. 2010. “The influence of large-scale climate variability on winter maximum daily precipitation over North America.” J. Clim. 23 (11): 2902–2915. https://doi.org/10.1175/2010JCLI3249.1.
Zhang, Y., J. A. Smith, L. Luo, Z. Wang, and M. L. Baeck. 2014. “Urbanization and rainfall variability in the Beijing metropolitan region.” J. Hydrometeorol. 15 (6): 2219–2235. https://doi.org/10.1175/JHM-D-13-0180.1.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 24Issue 9September 2019

History

Received: Mar 9, 2018
Accepted: Mar 26, 2019
Published online: Jul 2, 2019
Published in print: Sep 1, 2019
Discussion open until: Dec 2, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, National Institute of Technology, Calicut, Kerala 673601, India. Email: [email protected]
Professor, Dept. of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India (corresponding author). ORCID: https://orcid.org/0000-0003-0460-8956. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share