Technical Papers
Apr 25, 2019

Consistency of Extreme Flood Estimation Approaches

Publication: Journal of Hydrologic Engineering
Volume 24, Issue 7

Abstract

Estimations of low-probability flood events are frequently used to plan infrastructure and to determine the dimensions of flood protection measures. Several well-established methods exist for estimating low-probability floods. However, a global assessment of the consistency of these methods is difficult to achieve because the “true value” of an extreme flood is not observable. A detailed comparison performed on a given case study brings useful information about the statistical and hydrological processes involved in different methods. In the present study, the following three methods of estimating low-probability floods are compared: a purely statistical method (ordinary extreme value statistics), a statistical method based on stochastic rainfall-runoff simulation (SCHADEX method), and a deterministic method (physically based estimation of the probable maximum flood, PMF). These methods are tested for two different Swiss catchments; the results show that the 10,000-year return level flood estimations exceed the PMF estimations by 3% and 18%. The analysis shows that the plausibility of an extreme flood estimation does not only depend on the applied method but also on its ability to represent flood-triggering processes, including precipitation input, spatio-temporal precipitation distribution, and runoff.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank EDF for providing the SCHADEX tools and for granting support for the tools’ application. Data were provided by the Swiss Federal Office of Environment, FOEN; the Swiss Federal Office for Topography, swisstopo; and the Swiss Federal Office for Climatology and Meteorology, MeteoSwiss. This study was funded by the Mobiliar Lab for Natural Risks.

References

Adams, R., A. W. Western, and A. W. Seed. 2012. “An analysis of the impact of spatial variability in rainfall on runoff and sediment predictions from a distributed model.” Hydrol. Processes 26 (21): 3263–3280. https://doi.org/10.1002/hyp.8435.
Ahmadisharaf, E., and A. J. Kalyanapu. 2015. “Investigation of the impact of streamflow temporal variation on dam overtopping risk: Case study of a high-hazard dam.” In Proc., World Environmental and Water Resources Congress. Reston, VA: ASCE.
Beauchamp, J. R., R. Leconte, M. Trudel, and F. Brissete. 2013. “Estimation of the summer-fall PMP and PMF of a northern watershed under a changed climate.” Water Resour. Res. 49 (6): 3853–3862. https://doi.org/10.1002/wrcr.20336.
Beguería, S., A. Angulo-Martinez, S. M. Vicente-Serrano, J. I. Lopez-Moreno, and A. El-Kenawy. 2011. “Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: A case study in northeast Spain from 1930 to 2006.” Int. J. Climatol. 31 (14): 2102–2114. https://doi.org/10.1002/joc.2218.
Beven, K. 2016. “Facets of uncertainty: Epistemic uncertainty, nonstationarity, likelihood, hypothesis testing, and communication.” Hydrol. Sci. J. 61 (9): 1652–1665. https://doi.org/10.1080/02626667.2015.1031761.
Brath, A., A. Montanari, and G. Moretti. 2006. “Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty).” J. Hydrol. 324 (1–4): 141–153. https://doi.org/10.1016/j.jhydrol.2005.10.001.
Brocca, L., F. Melone, and T. Moramarco. 2011. “Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting.” Hydrol. Processes 25 (18): 2801–2813. https://doi.org/10.1002/hyp.8042.
Chen, J., M. L. Kavvas, K. Ishida, T. Trinh, M. L. Anderson, and R. Z. Q. Chen. 2016. “Role of snowmelt in determining whether the maximum precipitation always results in the maximum flood.” J. Hydrol. Eng. 21 (10): 04016032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001366.
Coles, S. 2004. An introduction to statistical modelling of extreme values. London: Springer.
Cook, A., and V. Merwade. 2009. “Effect of topographic data, geometric configuration and modelling approach on flood inundation mapping.” J. Hydrol. 377 (1–2): 131–142. https://doi.org/10.1016/j.jhydrol.2009.08.015.
Doherty, J. 2015. Calibration and uncertainty analysis for complex environmental models. Brisbane, Australia: Watermark Numerical Computing.
England, J. F., P. Y. Julien, and M. L. Velleux. 2014. “Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds.” J. Hydrol. 510 (Mar): 228–245. https://doi.org/10.1016/j.jhydrol.2013.12.021.
ENSI (Swiss Federal Nuclear Safety Inspectorate). 2013. Sicherheitstechnische Stellungnahme zur Periodischen Sicherheitsüberprüfung 2010 des Kernkraftwerks Mühleberg. ENSI 11/1864. Brugg, Switzerland: ENSI.
Faulkner, D., and J. Benn. 2016. “Reservoir flood estimation: Time for a re-think.” In Dams: Benefits and disbenefits: Assets or liabilities? edited by A. Pepper. London: ICE Publishing.
Felder, G., and R. Weingartner. 2016. “An approach for the determination of precipitation input for worst-case flood modelling.” Hydrol. Sci. J. 61 (14): 2600–2609. https://doi.org/10.1080/02626667.2016.1151980.
Felder, G., and R. Weingartner. 2017. “Assessment of PMF estimation methods.” Hydrol. Sci. J. 62 (10): 1591–1602. https://doi.org/10.1080/02626667.2017.1319065.
Felder, G., A. Zischg, and R. Weingartner. 2017. “The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation.” J. Hydrol. 550 (Jul): 157–165. https://doi.org/10.1016/j.jhydrol.2017.04.052.
FEMA. 2012. Summary of existing guidelines for hydrologic safety of dams. FEMA P-919. Washington, DC: FEMA.
FEMA. 2013. Selecting and accommodating inflow design floods for dams. FEMA P-94. Washington, DC: FEMA.
FERC (Federal Energy Regulatory Commission). 2001. Engineering guidelines for the evaluation of hydropower projects. Washington, DC: FERC.
Fernandes, W., M. Naghettini, and R. Loschi. 2010. “A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions.” Stochastic Environ. Res. Risk Assess. 24 (8): 1127–1143. https://doi.org/10.1007/s00477-010-0365-4.
French Ministry of Ecology and Sustainable Development. 2015. Decree n°2015-526 (ref. NOR DEVP1423128D). Paris: French Ministry of Ecology and Sustainable Development.
Garavaglia, F., J. Gailhard, E. Paquet, M. Lang, R. Garcon, and P. Bernardara. 2010. “Introducing a rainfall compound distribution model based on weather patterns sub-sampling.” Hydrol. Earth Syst. Sci. 14 (6): 951–964. https://doi.org/10.5194/hess-14-951-2010.
Garavaglia, F., M. Lang, E. Paquet, J. Gaillard, R. Garçon, and B. Renard. 2011. “Reliability and robustness of rainfall compound distribution model based on weather pattern sub-sampling.” Hydrol. Earth Syst. Sci. 15 (2): 519–532. https://doi.org/10.5194/hess-15-519-2011.
Garavaglia, F., M. Le Lay, F. Gottardi, R. Garçon, J. Gailhard, E. Paquet, and T. Mathevet. 2017. “Impact of model structure on flow simulation and hydrological realism: From lumped to semi-distributed approach.” Hydrol. Earth Syst. Sci. 21: 3937–3952. https://doi.org/10.5194/hess-2017-82.
Harris, J., and G. Brunner. 2011. “Approximating the probability of the probable maximum flood.” In Proc., World Environmental and Water Resources Congress, 3695–3702. Reston, VA: ASCE.
Huang, S., J. Rauberg, H. Apel, M. Disse, and K.-E. Lindenschmidt. 2007. “The effectiveness of polder systems on peak discharge capping of floods along the middle reaches of the Elbe River in Germany.” Hydrol. Earth Syst. Sci. 11 (4): 1391–1401. https://doi.org/10.5194/hess-11-1391-2007.
Institute of Hydrology. 1999. Flood estimation handbook. Wallingford, UK: Institute of Hydrology.
Kienzler, P., N. Andres, D. Näf-Huber, and M. Zappa. 2015. “Derivation of extreme precipitation and flooding in the catchment of Lake Sihl to improve flood protection in the city of Zurich.” Hydrol. Water Resour. Manage. 59 (2): 48–58. https://doi.org/10.5675/HyWa\_2015,2\_1.
Klemeš, V. 2000. “Tall tales about tails of hydrological distributions. I.” J. Hydrol. Eng. 5 (3): 227–231. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(227).
Kochanek, K., B. Renard, P. Arnaud, Y. Aubert, M. Lang, T. Cipriani, and E. Sauquet. 2014. “A data-based comparison of flood frequency analysis methods used in France.” Nat. Hazards Earth Syst. Sci. 14 (2): 295–308. https://doi.org/10.5194/nhess-14-295-2014.
Kuchment, L. S., and A. N. Gelfan. 2011. “Assessment of extreme flood characteristics based on a dynamic-stochastic model of runoff generation and the probable maximum discharge.” J. Flood Risk Manage. 4 (2): 115–127. https://doi.org/10.1111/j.1753-318X.2011.01096.x.
Lagos-Zúñiga, M. A., and X. M. Vargas. 2014. “PMP and PMF estimations in sparsely-gauged Andean basins and climate change projections.” Hydrol. Sci. J. 59 (11): 2027–2042. https://doi.org/10.1080/02626667.2013.877588.
Lammersen, R., H. Engel, W. van de Langemheen, and H. Buiteveld. 2002. “Impact of river training and retention areas on flood peaks along the Rhine.” J. Hydrol. 267 (1–2): 115–124. https://doi.org/10.1016/S0022-1694(02)00144-0.
Lobligeois, F., V. Andréassian, C. Perrin, P. Tabary, and C. Loumange. 2014. “When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events.” Hydrol. Earth Syst. Sci. 18 (2): 575–594. https://doi.org/10.5194/hess-18-575-2014.
McClenathan, J. T. 2013. “We can, but should we? PMF frequency estimates.” In Proc., World Environmental and Water Resources Congress, 1923–1928. Reston, VA: ASCE.
Mediero, L., A. Jimenez-Alvarez, and L. Garrote. 2010. “Design flood hydrographs from the relationship between flood peak and volume.” Hydrol. Earth Syst. Sci. 14 (12): 2495–2505. https://doi.org/10.5194/hess-14-2495-2010.
Merz, R., and G. Blöschl. 2008. “Flood frequency hydrology. Part I: Temporal, spatial and causal expansion of information.” Water Resour. Res. 44 (8): W08432. https://doi.org/10.1029/2007WR006744.
MeteoSwiss. 2016. “Documentation of MeteoSwiss grid-data products: Daily precipitation (final analysis): RhiresD.” Accessed July 5, 2017. http://www.meteoswiss.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-niederschlag/doc/ProdDoc_RhiresD.pdf.
Micovic, Z., M. Schaefer, and G. Taylor. 2015. “Uncertainty analysis for probable maximum precipitation estimates.” J. Hydrol. 521 (Feb): 360–373. https://doi.org/10.1016/j.jhydrol.2014.12.033.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models. Part I: A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Nicótina, L., E. Alessi Celegon, A. Rinaldo, and M. Marani. 2008. “On the impact of rainfall patterns on the hydrologic response.” Water Resour. Res. 44 (12): 1–14. https://doi.org/10.1029/2007WR006654.
Official Journal of French Republic. 2006. Law n°2006-1772 about Water and Aquatic Environments (ref. NOR DEVX0400302L). Paris: Official Journal of French Republic.
Paquet, E., F. Garavaglia, R. Garçon, and J. Gailhard. 2013. “The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation.” J. Hydrol. 495 (Jul): 23–37. https://doi.org/10.1016/j.jhydrol.2013.04.045.
Paschalis, A., S. Fatichi, P. Molnar, S. Rimkus, and P. Burlando. 2014. “On the effects of small scale space–time variability of rainfall on basin flood response.” J. Hydrol. 514 (Jun): 313–327. https://doi.org/10.1016/j.jhydrol.2014.04.014.
Rogger, M., H. Pirkl, A. Viglione, J. Komma, B. Kohl, R. Kirnbauer, R. Merz, and G. Blöschl. 2012. “Step changes in the flood frequency curve: Process controls.” Water Resour. Res. 48 (5): W05544. https://doi.org/10.1029/2011WR011187.
Rouhani, H., and R. Leconte. 2016. “A novel method to estimate the maximization ratio of the probable maximum precipitation (PMP) using regional climate model output.” Water Resour. Res. 52 (9): 7347–7365. https://doi.org/10.1002/2016WR018603.
Rousseau, A. N., I. M. Klein, D. Freudiger, P. Gagnon, A. Frigon, and C. Ratté-Fortin. 2014. “Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada.” J. Hydrol. 519 (Nov): 3094–3109. https://doi.org/10.1016/j.jhydrol.2014.10.053.
Saghafian, B., S. Golian, and A. Ghasemi. 2014. “Flood frequency analysis based on simulated peak discharges.” Nat. Hazards 71 (1): 403–417. https://doi.org/10.1007/s11069-013-0925-2.
Salas, J. D., G. Gavilán, F. R. Salas, P. Y. Julien, and J. Abdullah. 2014. “Uncertainty of the PMP and PMF.” In Vol. 2 of Handbook of engineering hydrology: Modeling, climate change and variability, 575–603. Boca Raton, FL: CRC Press.
Sen, Z., S. As-Sefry, and S. Al-Harithy. 2017. “Probable maximum precipitation and flood calculations for Jeddah area, Kingdom of Saudi Arabia.” Environ. Earth Sci. 76 (5): 1–21. https://doi.org/10.1007/s12665-016-6312-z.
Seo, Y., A. R. Schmidt, and M. Sivapalan. 2012. “Effect of storm movement on flood peaks: Analysis framework based on characteristic timescales.” Water Resour. Res. 48 (5): W05532. https://doi.org/10.1029/2011WR011761.
Serinaldi, F. 2015. “Dismissing return periods.” Stochastic Environ. Res. Risk Assess. 29 (4): 1179–1189. https://doi.org/10.1007/s00477-014-0916-1.
Serinaldi, F., and C. G. Kilsby. 2015. “Stationarity is undead: Uncertainty dominates the distribution of extremes.” Adv. Water Resour. 77 (Mar): 17–36. https://doi.org/10.1016/j.advwatres.2014.12.013.
SFOE (Swiss Federal Office of Energy). 2008. Basisdokument zum Nachweis der Hochwassersicherheit. Bern, Switzerland: SFOE.
Silva, A. T., M. M. Portela, and M. Naghettini. 2014. “On peaks-over-threshold modelling of floods with zero-inflated Poisson arrivals under stationarity and nonstationarity.” Stochastic Environ. Res. Risk Assess. 28 (6): 1587–1599. https://doi.org/10.1007/s00477-013-0813-z.
Smithers, J. C. 2012. “Methods for design flood estimation in South Africa.” Water SA 38 (4): 633–646. https://doi.org/10.4314/wsa.v38i4.19.
Sraj, M., A. Viglione, J. Parajka, and G. Blöschl. 2016. “The influence of non-stationarity in extreme hydrological events on flood frequency estimation.” J. Hydrol. Hydromech. 61 (4): 426–437. https://doi.org/10.1515/johh-2016-0032.
Stratz, S. A., and F. Hossain. 2014. “Probable maximum precipitation in a changing climate: Implications for dam design.” J. Hydrol. Eng. 19 (12): 06014006. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001021.
Vetsch, D., et al. 2016. “System manuals of BASEMENT, version 2.5.” Accessed March 29, 2016. http://www.basement.ethz.ch.
Viglione, A., R. Merz, J. L. Salinas, and G. Blöschl. 2013. “Flood frequency hydrology. Part III: A Bayesian analysis.” Water Resour. Res. 49 (2): 675–692. https://doi.org/10.1029/2011WR010782.
Viviroli, D., H. Mittelbach, J. Gurtz, and R. Weingartner. 2009a. “Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland. Part II: Parameter regionalisation and flood estimation results.” J. Hydrol. 377 (1–2): 208–225. https://doi.org/10.1016/j.jhydrol.2009.08.022.
Viviroli, D., M. Zappa, J. Gurtz, and R. Weingartner. 2009b. “An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools.” Environ. Modell. Software 24 (10): 1209–1222. https://doi.org/10.1016/j.envsoft.2009.04.001.
Viviroli, D., M. Zappa, J. Schwanbeck, J. Gurtz, and R. Weingartner. 2009c. “Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland. Part I: Modelling framework and calibration results.” J. Hydrol. 377 (1–2): 191–207. https://doi.org/10.1016/j.jhydrol.2009.08.023.
Vogel, R. M., N. C. Matalas, J. F. England, and A. Castellarin. 2007. “An assessment of exceedance probabilities of envelope curves.” Water Resour. Res. 43 (7): W07403. https://doi.org/10.1029/2006WR005586.
Vorogushyn, S., B. Merz, K.-E. Lindenschmidt, and H. Apel. 2010. “A new methodology for flood hazard assessment under consideration of dike breaches.” Water Resour. Res. 46 (8): W08541. https://doi.org/10.1029/2009WR008475.
Ward, P. J., H. Renssen, J. C. J. H. Aerts, R. T. van Balen, and J. Vandenberghe. 2008. “Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: Impacts of long-term antropogenic land use change and climate variability.” Hydrol. Earth Syst. Sci. 12 (1): 159–175. https://doi.org/10.5194/hess-12-159-2008.
Weingartner, R. 1999. Regionalhydrologische Analysen. Grundlagen und Anwendungen: Beiträge zur Hydrologie der Schweiz. Nr. 37. Bern, Switzerland: Schweizerische Gesellschaft fu¨r Hydrologie und Limnologie.
WMO (World Meteorological Organization). 2009. Manual on estimation of probable maximum precipitation (PMP). Geneva: WMO.
Yigzaw, W., and F. Hossain. 2016. “Land use and land cover impact on probable maximum flood and sedimentation for artificial reservoirs: Case study in the western United States.” J. Hydrol. Eng. 21 (2): 05015022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001287.
Yigzaw, W., F. Hossain, and A. Kalyanapu. 2013. “Comparison of PMP-driven probable maximum floods with flood magnitudes due to increasingly urbanized catchment: The case of American river watershed.” Earth Interact. 17 (8): 1–15. https://doi.org/10.1175/2012EI000497.1.
Zeimetz, F., J. García-Hernández, and A. J. Schleiss. 2015. “Extreme flood estimations on a small alpine catchment in Switzerland, the case study of Limmerboden.” Proc. Int. Assoc. Hydrol. Sci. 370: 147–152. https://doi.org/10.5194/piahs-370-147-2015.
Zoglat, A., S. E. L. ADlouni, F. Badaoui, A. Amar, and C. G. Okou. 2014. “Managing hydrological risks with extreme modelling: Application of peaks over threshold model to the Loukkos Watershed, Morocco.” J. Hydrol. Eng. 19 (9): 05014010. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000996.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 24Issue 7July 2019

History

Received: Jul 20, 2017
Accepted: Jan 18, 2019
Published online: Apr 25, 2019
Published in print: Jul 1, 2019
Discussion open until: Sep 25, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Guido Felder, Ph.D. [email protected]
Postdoctoral Researcher, Mobiliar Laboratories for Natural Risk, Oeschger Centre for Climate Change Research, Institute of Geography, Univ. of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland; Zurich Insurance Group, Ltd., Austrasse 46, CH-8045 Zurich, Switzerland (corresponding author). Email: [email protected]
Emmanuel Paquet
Researcher, Electricité de France SA, Division Technique Générale, 21 Ave. de l’Europe, 38040 Grenoble, France.
David Penot, Ph.D.
Researcher, Electricité de France SA, Division Technique Générale, 21 Ave. de l’Europe, 38040 Grenoble, France.
Postdoctoral Researcher, Mobiliar Laboratories for Natural Risk, Oeschger Centre for Climate Change Research, Institute of Geography, Univ. of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland. ORCID: https://orcid.org/0000-0002-4749-7670
Rolf Weingartner
Professor for Hydrology, Mobiliar Laboratories for Natural Risk, Oeschger Centre for Climate Change Research, Institute of Geography, Univ. of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share