Case Studies
Nov 30, 2018

Evaluation of Temperature-Based Methods for the Estimation of Reference Evapotranspiration in the Yucatán Peninsula, Mexico

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Hydrologic Engineering
Volume 24, Issue 2

Abstract

Estimation of reference evapotranspiration (ETo) using air temperature is particularly attractive for places where solar radiation, wind speed, and air humidity data are not readily available. In this study, seven temperature-based (TET) models and the standardized reference evapotranspiration equation for short canopies method were compared. Using only temperature data from the Yucatán Peninsula, México, the Food and Agriculture Organization of the United Nations (FAO)-Penman-Monteith (PMT) model was used to estimate ETo. Results from the temperature-based models are compared with FAO-56 daily ETo calculations using the Nash-Sutcliffe model efficiency coefficient (NSE), the coefficient of determination (R2), mean absolute bias error (MAE), mean absolute percentage error (MAPE) and root mean square (RMSE). The results show that the noncalibrated PMT expression using temperatures alone produced the best results, with RMSE=0.7  mmd1. The Hargreaves-Samani calibrated (RMSE=0.74  mm·d1) and Camargo calibrated (RMSE=0.78) models exhibited the next best performance. RMSE values were as high as 1.56  mm·d1 for the other models.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

We greatly appreciate the assistance of Dr. Richard L. Snyder in editing for the correct use of the English language and making constructive suggestions.

References

Allen, R., W. Pruitt, J. Wright, and T. Howell. 2006. “A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method.” Agric. Water Manage. 81 (1–2): 1–22. https://doi.org/10.1016/j.agwat.2005.03.007.
Allen, R. G. 1995. Evaluation of procedures for estimating mean monthly solar radiation from air temperature. Rome: United Nations Food and Agricultural Organization.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration—Guidelines for computing crop water requirements. Rome: FAO.
Allen, R. G., L. S. Pereira, M. Smith, D. Raes, and J. L. Wright. 2005. “FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions.” J. Irrig. Drain. Eng. 13 (1): 2–13. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2).
Almorox, J., and J. Grieser. 2016. “Calibration of the Hargreaves-Samani method for the calculation of reference evapotranspiration in different Köppen climate classes.” Hydrol. Res. 47 (2): 521–531. https://doi.org/10.2166/nh.2015.091.
Almorox, J., V. Quej, and P. Martí. 2015. “Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes.” J. Hydrol. 528 (1): 514–522. https://doi.org/10.1016/j.jhydrol.2015.06.057.
Annandale, J., N. Jovanovic, N. Benade, and R. Allen. 2002. “Software for missing data error analysis of Penman-Monteith reference evapotranspiration.” Irrig. Sci. 21 (2): 57–67. https://doi.org/10.1007/s002710100047.
Cai, J., Y. Liu, D. Xu, and P. Paredes. 2009. “Simulation of the soil water balance of wheat using daily weather forecast messages to estimate the reference evapotranspiration.” Hydrol. Earth Syst. Sci. 13 (7): 1045–1059. https://doi.org/10.5194/hess-13-1045-2009.
Camargo, A. P., F. R. Marin, P. C. Sentelhas, and A. G. Picini. 1999. “Adjust of the Thornthwaite’s method to estimate the potential evapotranspiration for arid and superhumid climates, based on daily temperature amplitude.” Rev. Bras. Agrometeorol. 7 (2): 251–257.
Droogers, P., and R. Allen. 2002. “Estimating reference evapotranspiration under inaccurate data conditions.” Irrig. Drain. Syst. 16 (1): 33–45. https://doi.org/10.1023/A:1015508322413.
Gavilán, P., J. I. Lorite, and J. TorneroBerengera. 2006. “Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment.” Agric. Water Manage. 81 (3): 257–281. https://doi.org/10.1016/j.agwat.2005.05.001.
Gocic, M., and S. Trajkovic. 2010. “Software for estimating reference evapotranspiration using limited weather data.” Comput. Electron. Agric. 71 (2): 158–162. https://doi.org/10.1016/j.compag.2010.01.003.
Hamon, W. R. 1963. “Computation of direct runoff amounts from storm rainfall.” Int. Assoc. Sci. Hydrol. Publ. 63 (1): 52–62.
Hargreaves, G. H., and R. G. Allen. 2003. “History and evaluation of Hargreaves evapotranspiration equation.” J. Irrig. Drain. Eng. 129 (1): 53–63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53).
Hargreaves, G. H., and Z. A. Samani. 1982. “Estimating potential evapotranspiration.” J. Irrig. Drain. Eng. 108 (3): 225–230.
Hargreaves, G. H., and Z. A. Samani. 1985. Reference crop evapotranspiration from ambient air temperature. St. Joseph, MI: American Society of Agricultural Engineers.
Jabloun, M. D., and A. Sahli. 2008. “Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia.” Agric. Water Manage. 95 (6): 707–715. https://doi.org/10.1016/j.agwat.2008.01.009.
Kra, E. Y. 2010. “An empirical simplification of the temperature Penman-Monteith model for the tropics.” J. Agric. Sci. 2 (1): 162–171.
López-Moreno, J. I., T. M. Hess, and A. S. M. White. 2009. “Estimation of reference evapotranspiration in a mountainous Mediterranean site using the Penman-Monteith equation with limited meteorological data.” Pirineos JACA 164 (1): 7–31. https://doi.org/10.3989/pirineos.2009.v164.27.
Malmström, V. H. 1969. “A new approach to the classification of climate.” J. Geogr. 68 (6): 351–357. https://doi.org/10.1080/00221346908981131.
Martinez, C., and M. Thepadia. 2010. “Estimating reference evapotranspiration with minimum data in Florida.” J. Irrig. Drain. 136 (7): 494–501. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000214.
Mendicino, G., and A. Senatore. 2013. “Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in southern Italy.” J. Irrig. Drain. 139 (5): 349–362. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000547.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models. Part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil, and C. Loumagne. 2005. “Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2: Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling.” J. Hydrol. 303 (1–4): 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026.
Pandey, P., and V. Pandey. 2016. “Evaluation of temperature-based Penman-Monteith (TPM) model under the humid environment.” Model. Earth Syst. Environ. 2 (3): 152. https://doi.org/10.1007/s40808-016-0204-9.
Papadakis, J. 1966. Climate of the and world their agricultural potentialities. Cordoba, Spain: Buenos Aires.
Pereira, L. S., R. G. Allen, M. Smith, and D. Raes. 2015. “Crop evapotranspiration estimation with FAO56: Past and future.” Agric. Water Manage. 147 (1): 4–20. https://doi.org/10.1016/j.agwat.2014.07.031.
Popova, Z., M. Kercheva, and L. S. Pereira. 2006. “Validation of the FAO methodology for computing ETo with limited data. Application to south Bulgaria.” Irrig. Drain. 55 (2): 201–215. https://doi.org/10.1002/ird.228.
Quej, V. H., J. Almorox, M. Ibrakhimov, and L. Saito. 2016. “Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico.” Energy Convers. Manage. 110 (2): 448–456. https://doi.org/10.1016/j.enconman.2015.12.050.
Raziei, T., and L. S. Pereira. 2013. “Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran.” Agric. Water Manage. 121 (4): 1–18. https://doi.org/10.1016/j.agwat.2012.12.019.
Ren, X., Z. Qu, D. S. Martins, P. Paredes, and L. S. Pereira. 2016. “Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in Inner Mongolia, China. Part I: Assessing temperature methods and spatial variability.” Water Resour. Manage. 30 (11): 3769–3791. https://doi.org/10.1007/s11269-016-1384-9.
Sheffield, J., E. F. Wood, and M. L. Roderick. 2012. “Little change in global drought over the past 60 years.” Nature 491 (7424): 435–438. https://doi.org/10.1038/nature11575.
Spencer, J. W. 1971. “Fourier series representation of the position of the sun.” Search 2 (5): 172.
Thornthwaite, C. W. 1948. “An approach toward a rational classification of climate.” Geogr. Rev. 38 (1): 55–94. https://doi.org/10.2307/210739.
Todorovic, M., B. Karic, and L. S. Pereira. 2013. “Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates.” J. Hydrol. 481 (2): 166–176. https://doi.org/10.1016/j.jhydrol.2012.12.034.
Trajkovic, S. 2005. “Temperature-based approaches for estimating reference evapotranspiration.” J. Irrig. Drain. Eng. 131 (4): 316–323. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316).
UNEP. 1997. World atlas of desertification. 2nd ed. Edited by N. Middleton and D. Thomas. London: Arnold.
Valipour, M., M. A. G. Sefidkouhi, and M. Raeini-Sarjaz. 2017. “Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events.” Agric. Water Manage. 180 (1): 50–60. https://doi.org/10.1016/j.agwat.2016.08.025.
Vangelis, H., D. Tigkas, and G. Tsakiris. 2013. “The effect of PET method on reconnaissance drought index (RDI) calculation.” J. Arid Environ. 88 (1): 130–140. https://doi.org/10.1016/j.jaridenv.2012.07.020.
Wilm, H., et al. 1944. “Report of the committee on evaporation and transpiration, 1943–1944.” Trans. Amer. Geophys. Union 25 (5): 683–693. https://doi.org/10.1029/TR025i005p00683.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 24Issue 2February 2019

History

Received: Jan 25, 2018
Accepted: Aug 24, 2018
Published online: Nov 30, 2018
Published in print: Feb 1, 2019
Discussion open until: Apr 30, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Victor H. Quej [email protected]
Researcher, Colegio de Postgraduados, Campus Campeche, Carretera Haltunchen—Edzná, km 17.5, Sihochac, Champotón, Campeche 24450, México (corresponding author). Email: [email protected]
Javier Almorox [email protected]
Professor, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieria Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, Avd. Puerta de Hierro, 2, Madrid 28040, Spain. Email: [email protected]
Javier A. Arnaldo [email protected]
Researcher, Facultad de Ciencias, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza Ciencias, 1, Madrid 28040, Spain. Email: [email protected]
Rubén Moratiel [email protected]
Professor, Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share