Technical Papers
Nov 17, 2016

Prediction of Evapotranspiration in a Mediterranean Region Using Basic Meteorological Variables

Publication: Journal of Hydrologic Engineering
Volume 22, Issue 4

Abstract

A critical need for farmers, particularly those in arid and semiarid areas is to have a reliable, accurate and reasonably accessible means of estimating the evapotranspiration rates of their crops to optimize their irrigation requirements. Evapotranspiration is a crucial process because of its influence on the precipitation that is returned to the atmosphere. The calculation of this variable often starts from the estimation of reference evapotranspiration, for which a variety of methods have been developed. However, these methods are very complex either theoretically and/or because of the large amount of parameters on which they are based, which makes the development of a simple and reliable methodology for the prediction of this variable important. This research combined three concepts such as cluster analysis, multiple linear regression (MLR), and Voronoi diagrams to achieve that end. Cluster analysis divided the study area into groups based on its weather characteristics, whose locations were then delimited by drawing the Voronoi regions associated with them. Regression equations were built to predict daily reference evapotranspiration in each cluster using basic climate variables produced in forecasts made by meteorological agencies. Finally, the Voronoi diagrams were used again to regionalize the crop coefficients and calculate evapotranspiration from the values of reference evapotranspiration derived from the regression models. These operations were applied to the Valencian region (Spain), a Mediterranean area which is partly semiarid and for which evapotranspiration is a critical issue. The results demonstrated the usefulness and accuracy of the methodology to predict the water demands of crops and hence enable farmers to plan their irrigation needs.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This paper was possible thanks to the research project RHIVU (Ref. BIA2012-32463), financed by the Spanish Ministry of Economy and Competitiveness with funds from the State General Budget (PGE) and the European Regional Development Fund (ERDF). The authors also wish to express their gratitude to the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA) for providing the data necessary to develop this study.

References

Adamala, S., Raghuwanshi, N. S., Mishra, A., and Tiwari, M. K. (2014). “Evapotranspiration modeling using second-order neural networks.” J. Hydrol. Eng., 1131–1140.
AEMET (State Meteorological Agency). (2016). “Agencia estatal de meteorología.” ⟨www.aemet.es⟩ (May 19, 2016).
Allen, R. G. (2000). “Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study.” J. Hydrol., 229(1–2), 27–41.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). “Crop evapotranspiration—Guidelines for computing crop water requirements.” FAO Irrig. Drain. Pap., 56(9), 1–174.
Allen, R. G., Walter, I. A., Elliott, R., Howell, T., Itenfisu, D., and Jensen, M. (2005). “The ASCE standardized reference evapotranspiration equation.” ASCE, Reston, VA.
Amayreh, J., and Al-Abed, N. (2005). “Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch.” Agric. Water Manage., 73(3), 247–254.
Aurenhammer, F. (1991). “Voronoi diagrams—A survey of a fundamental geometric data structure.” ACM Comput. Surv., 23(3), 345–405.
Aurenhammer, F., and Klein, R. (2000). “Voronoi diagrams.” Handbook of computational geometry, V. J. Sack and G. Urrutia, eds., Elsevier, Graz, Austria, 201–290.
Aytek, A. (2009). “Co-active neurofuzzy inference system for evapotranspiration modeling.” Soft Comput., 13(7), 691–700.
Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity, Wiley, Hoboken, NJ.
Biswas, A. K. (2004). “Integrated water resources management: A reassessment.” Water Int., 29(2), 248–256.
Bos, M. G., Kselik, R. A. L., Allen, R. G., and Molden, D. (2008). Water requirements for irrigation and the environment, Springer, Heidelberg, Germany.
Brunt, D. (2011). Physical and dynamical meteorology, Cambridge University Press, Cambridge, U.K.
Brutsaert, W. (2005). Hydrology: An introduction, Cambridge University Press, Cambridge, U.K.
Brutsaert, W. H. (1982). Evaporation into the atmosphere, D. Reidel, Dordrecht, Netherlands.
Chazarra, A., Mestre Barceló, A., Pires, V., Cunha, S., Mendes, M., and Neto, J. (2011). “Atlas climático ibérico. agencia estatal de meteorología and instituto de meteorología de Portugal.” Agencia Estatal de Meteorología (AEMET) and Instituto de Meteorologia de Portugal, Madrid, Spain.
Chen, F., and Dudhia, J. (2001). “Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity.” Mon. Weather Rev., 129(4), 569–585.
Crawford, A. J., McLachlan, D. H., Hetherington, A. M., and Franklin, K. A. (2012). “High temperature exposure increases plant cooling capacity.” Curr. Biol., 22(10), R396–R397.
Dirichlet, G. L. (1850). “Über die reduktion der positiven quadratischen formen mit drei unbestimmten ganzen zahlen.” J. Reine Angew. Math., 1850(40) 209–227.
Dolman, A. J. (1993). “A multiple-source land surface energy balance model for use in general circulation models.” Agric.for. Meterol., 65(1–2), 21–45.
Doorenbos, J., and Pruitt, W. O. (1976). “Guidelines for predicting crop water requirements.” Food and Agriculture Organization of the United Nations, Rome.
Droogers, P., and Allen, R. G. (2002). “Estimating reference evapotranspiration under inaccurate data conditions.” Irrig. Drain. Syst., 16(1), 33–45.
Durbin, J., and Watson, G. S. (1950). “Testing for serial correlation in least squares regression. I.” Biometrika, 37(3–4), 409–428.
Durbin, J., and Watson, G. S. (1951). “Testing for serial correlation in least squares regression. II.” Biometrika, 38(1–2), 159–178.
Estivill-Castro, V., and Yang, J. (2004). “Fast and robust general purpose clustering algorithms.” Data Min. Knowl. Discov., 8(2), 127–150.
Ferreira, T. C., and Carr, M. K. V. (2002). “Responses of potatoes (Solanum tuberosum L.) to irrigation and nitrogen in a hot, dry climate: I. Water use.” Field Crops Res., 78(1), 51–64.
Forgy, E. W. (1965). “Cluster analysis of multivariate data: efficiency versus interpretability of classifications.” Biometrics, 21, 768–769.
George, B. A., Reddy, B. R. S., Raghuwanshi, N. S., and Wallender, W. W. (2002). “Decision support system for estimating reference evapotranspiration.” J. Irrig. Drain. Eng., 1–10.
Gocic, M., and Trajkovic, S. (2010). “Software for estimating reference evapotranspiration using limited weather data.” Comput. Electron. Agric., 71(2), 158–162.
Healy, R. W., and Scanlon, B. R. (2010). Estimating groundwater recharge, Cambridge University Press, Cambridge, U.K.
Hirsch, R. M., Helsel, D. R., Cohn, T. A., and Gilroy, E. J. (1993). “Statistical analysis of hydrologic data.” Handbook of hydrology, D. R. Maidment, ed., McGraw-Hill, New York, 1–55.
Jackson, R. D. (1985). “Evaluating evapotranspiration at local and regional scales.” Proc. IEEE, 73(6), 1086–1096.
Jain, S. K., Nayak, P. C., and Sudheer, K. P. (2008). “Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation.” Hydrol. Processes, 22(13), 2225–2234.
Jensen, M. E., Burman, R. D., and Allen, R. G. (1990). “Evapotranspiration and irrigation water requirements.” ASCE, New York.
Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W., and Pruitt, W. O. (2002). “Estimating evapotranspiration using artificial neural network.” J. Irrig. Drain. Eng., 224–233.
Ladlani, I., Houichi, L., Djemili, L., Heddam, S., and Belouz, K. (2014). “Estimation of daily reference evapotranspiration (ET0) in the north of Algeria using adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) models: A comparative study.” Arab. J. Sci. Eng., 39(8), 5959–5969.
López-Urrea, R., Martín de Santa Olalla, F., Fabeiro, C., and Moratalla, A. (2006). “Testing evapotranspiration equations using lysimeter observations in a semiarid climate.” Agric. Water Manage., 85(1–2), 15–26.
MacQueen, J. (1967). “Some methods for classification and analysis of multivariate observations.” Proc., 5th Berkeley Symp. on Mathematical Statistics and Probability, Vol. 1, University of California Press, Oakland, CA, 281–297.
Mallikarjuna, P., Jyothy, S. A., and Sekhar Reddy, K. C. (2012). “Daily reference evapotranspiration estimation using linear regression and ANN models.” J. Inst. Eng. India Ser. A, 93(4), 215–221.
Martinez, C. J., and Thepadia, M. (2010). “Estimating reference evapotranspiration with minimum data in Florida.” J. Irrig. Drain. Eng., 494–501.
Martínez-Cob, A. (2008). “Use of thermal units to estimate corn crop coefficients under semiarid climatic conditions.” Irrig. Sci., 26(4), 335–345.
Monteith, J. L. (1981). “Evaporation and surface temperature.” Q. J. R. Meterol. Soc., 107(451), 1–27.
Moore, R., Clark, W. D., and Vodopich, D. S. (2003). Botany, McGraw-Hill, New York.
Naoum, S., and Tsanis, I. K. (2003). “Hydroinformatics in evapotranspiration estimation.” Environ. Model. Software., 18(3), 261–271.
Osborne, J. W., and Waters, E. (2002). “Four assumptions of multiple regression that researchers should always test.” Pract. Assess. Res. Eval., 8(2), 1–7.
Parasuraman, K., Elshorbagy, A., and Carey, S. K. (2007). “Modelling the dynamics of the evapotranspiration process using genetic programming.” Hydrol. Sci. J., 52(3), 563–578.
Sabziparvar, A. A., Tabari, H., Aeini, A., and Ghafouri, M. (2010). “Evaluation of class a pan coefficient models for estimation of reference crop evapotranspiration in cold semi-arid and warm arid climates.” Water Resour. Manage., 24(5), 909–920.
Sanford, W. E., and Selnick, D. L. (2013). “Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data.” J. Am. Water Resour. Assoc., 49(1) 217–230.
Shapiro, S. S., and Wilk, M. B. (1965). “An analysis of variance test for normality.” Biometrika, 52(3–4), 591–611.
Shapiro, S. S., Wilk, M. B., and Chen, H. J. (1968). “A comparative study of various tests for normality.” J. Am. Stat. Assoc., 63(324), 1343–1372.
SiAR (Irrigation Advisory Service for Farmers). (2016). “Necesidades netas.” ⟨eportal.magrama.gob.es/websiar/NecesidadesHidricas.aspx⟩ (May 19, 2016).
Sorooshian, S., Duan, Q., and Gupta, V. K. (1993). “Calibration of rainfall-runoff models: Application of global optimization to the sacramento soil moisture accounting model.” Water Resour. Res., 29(4), 1185–1194.
Stevens, J. (2009). Applied multivariate statistics for the social sciences, Taylor & Francis, Mahwah, NJ.
Sun, G., et al. (2011). “A general predictive model for estimating monthly ecosystem evapotranspiration.” Ecohydrology, 4(2), 245–255.
Tabari, H., Kisi, O., Ezani, A., and Hosseinzadeh Talaee, P. (2012). “SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment.” J. Hydrol., 444–445, 78–89.
Tabari, H., and Talaee, P. H. (2011). “Local calibration of the hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of iran based on the Penman-Monteith model.” J. Hydrol. Eng., 837–845.
Tan, P. N., Steinbach, M., and Kumar, V. (2005). Cluster analysis: Basic concepts and algorithms, Wesley, Boston, 487–568.
Testi, L., Villalobos, F. J., and Orgaz, F. (2004). “Evapotranspiration of a young irrigated olive orchard in southern Spain.” Agric.for. Meterol., 121(1–2), 1–18.
Thiessen, A. J., and Alter, J. C. (1911). “Precipitation averages for larger areas.” Mon. Weather Rev., 39(7), 1082–1084.
Thut, H. F. (1938). “Relative humidity variations affecting transpiration.” Am. J. Bot., 25(8), 589–595.
Tibshirani, R., Walther, G., and Hastie, T. (2001). “Estimating the number of clusters in a data set via the gap statistic.” J. R. Stat. Soc. Ser. B Stat. Methodol., 63(2), 411–423.
Traore, S., Wang, Y. M., and Kerh, T. (2010). “Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone.” Agric. Water Manage., 97(5), 707–714.
Tryon, R. (1939). Cluster analysis: Correlation profile and orthometric (factor) analysis for the isolation of unities in mind and personality, Edwards Brothers Malloy, Ann Arbor, MI.
Villalobos, F. J., Testi, L., and Moreno-Perez, M. F. (2009). “Evaporation and canopy conductance of citrus orchards.” Agric. Water Manage., 96(4), 565–573.
Voronoi, G. M. (1908). “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième Mémoire: Recherches sur les parallélloèdres primitifs.” J. Reine Angew. Math., 1908(134), 198–287.
Wang, Y. M., Traore, S., and Kerh, T. (2008). “Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso.” WSEAS Trans. Comput., 7(6), 704–713.
Williams, L. E., Phene, C. J., Grimes, D. W., and Trout, T. J. (2003). “Water use of mature thompson seedless grapevines in California.” Irrig. Sci., 22(1), 11–18.
Wu, X., et al. (2008). “Top 10 algorithms in data mining.” Knowl. Inf. Systems. Syst., 14(1), 1–37.
Xing, Z., Chow, L., Meng, F. R., Rees, H. W., Monteith, J., and Lionel, S. (2008). “Testing reference evapotranspiration estimation methods using evaporation pan and modeling in maritime region of Canada.” J. Irrig. Drain. Eng., 417–424.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 22Issue 4April 2017

History

Received: May 19, 2016
Accepted: Sep 14, 2016
Published online: Nov 17, 2016
Published in print: Apr 1, 2017
Discussion open until: Apr 17, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Daniel Jato-Espino [email protected]
Research Assistant, GITECO Research Group, Univ. of Cantabria, Av. de los Castros s/n, 39005 Santander, Spain (corresponding author). E-mail: [email protected]
Susanne M. Charlesworth [email protected]
Professor, Centre for Agroecology, Water and Resilience, Coventry Univ., Priory St., Coventry CV1 5FB, U.K. E-mail: [email protected]
Sara Perales-Momparler [email protected]
Manager, Green Blue Management, Av. del Puerto, 180-1B, 46023 Valencia, Spain. E-mail: [email protected]
Ignacio Andrés-Doménech [email protected]
Assistant Professor, Instituto Universitario de Investigación de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share