Abstract

High-resolution quantitative precipitation estimation (QPE) from radar and satellite combined with rain gauges is one of the most important guides for hydrological forecasts. Whereas rain gauges provide accurate measurement at a point, remote sensing helps to retrieve the spatial pattern. An algorithm, named Siprec, has been used to blend rain gauges, radar mosaic data, and satellite Eumetsat/MPE estimates by using Poisson’s equation over two basins in Brazil. The results indicated that Siprec decreased the root mean square error (RMSE) when compared to radar and satellite estimates as well as improved the correlation. Most of the errors were related to precipitation above 10mmh1, due to large spatial variability, typical of deep convection. The solution of Poisson’s equation acts directly on the data received at a certain time, converging the amplitude to the rain gauge values and keeping the spatial distribution of the radar or satellite measurement without a priori adjustments. This is an important advantage in an operational environment because it does not require frequent processing to update the weights like other schemes.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adler, R. F., and Negri, A. J. (1988). “A satellite infrared technique to estimate tropical convective and stratiform rainfall.” J. Appl. Meteorol., 27(1), 30–51.
AghaKouchak, A., Habib, E., and Bárdossy, A. (2010). “Modeling radar rainfall estimation uncertainties: Random error model.” J. Hydrol. Eng., 265–274.
Briggs, W. L., Henson, V. E., and McCormick, S. F. (2000). A multigrid tutorial, 2nd Ed., Society for Industrial and Applied Mathematics, Philadelphia, PA.
Bringi, V. N., Huang, G.-J., Munchak, S. J., Mummerow, C. D., Marks, D. A., and Wolff, D. B. (2012). “Comparison of drop size distribution parameter (D0) and rain rate from S-band dual-polarized ground radar, TRMM precipitation radar (PR), and combined PR_TMI: Two events from Kwajalein Atoll.” J. Atmos. Oceanic Technol., 29(11), 1603–1616.
Calheiros, R. V., and Gomes, A. M. (2011). “Reflectivity climatology for central São Paulo.” Proc., 35th Conf. on Radar Meteorology, American Meteorological Society, Boston.
Chen, S., et al. (2013). “Evaluation and uncertainty estimation of NOAA/NSSL next generation national mosaic QPF product (Q2) over the continental USA.” J. Hydrometeorol., 14(4), 1308–1322.
Dixon, M., and Wiener, G. (1993). “Titan: Thunderstorm, identification, tracking, analysis and nowcasting—A radar-based methodology.” J. Atmos. Oceanic Technol., 10(6), 785–797.
Einfalt, T., Lobbrecht, A., Leung, K., and Lempio, G. (2013). “Preparation and evaluation of a Dutch-German radar composite to enhance precipitation information in border areas.” J. Hydrol. Eng., 279–284.
Ercan, M., and Goodall, J. (2013). “Estimating watershed-scale precipitation by combining gauge- and radar-derived observations.” J. Hydrol. Eng., 983–994.
Feidas, H., and Apostolos, G. (2012). “Classifying convective and stratiform rain using multispectral infrared Meteosat second generation satellite data.” Theor. Appl. Climatol., 108(3-4), 613–630.
Gabella, M., and Notarpietro, R. (2002). “Ground clutter characterization and elimination in mountainous terrain.” Proc., ERAD 2002, Göttingen, Germany, 305–311.
Goodman, S., et al. (2012). “The GOES-R proving ground.” Bull. Am. Meteorol. Soc., 93(7), 1029–1040.
Goudenhoofdt, E., and Delobbe, L. (2009). “Evaluation of radar-gauge merging methods for quantitative precipitation estimates.” Hydrol. Earth Syst. Sci., 13(2), 195–203.
Guillet, T., and Teyssier, R. (2011). “A simple multidgrid scheme for solving the Poisson’s equation with arbitrary domain boundaries.” J. Comput. Phys., 230(12), 4756–4771.
Habib, E., Haile, A. T., Tian, Y., and Joyce, R. J. (2012). “Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates.” J. Hydrometeorol., 13(6), 1784–1798.
Habib, E., Malakpet, C., Tokay, A., and Kucera, P. (2008). “Sensitivity of streamflow simulations to temporal variability and estimation of Z-R relationships.” J. Hydrol. Eng., 1177–1186.
Habib, E., Qin, L., Seo, D., Ciach, G., and Nelson, B. (2013). “Independent assessment of incremental complexity in NWS multisensor precipitation estimator algorithms.” J. Hydrol. Eng., 143–155.
Heinemann, T., Lattanzio, A., and Roveda, F. (2002). “The Eumetsat multi-sensor precipitation estimate (MPE).” Proc., 1st IPWG Workshop, Coordination Group for Meteorological Satellites (CGMS), Darmstadt, Germany, 23–27.
Heistermann, M., Jacobi, S., and Pfaff, T. (2013). “An open source library for processing weather radar data (wradlib).” Hydrol. Earth Syst. Sci., 17(2), 863–871.
Hou, D., et al. (2014). “Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV towards CPC gauge based analysis.” J. Hydrometeorol., 15(6), 2542–2557.
Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment.” Comput. Sci. Eng., 9(3), 90–95.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. (2004). “CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution.” J. Hydrometeorol., 5(3), 487–503.
Kitzmiller, D., Miller, D., Fulton, R., and Ding, F. (2013). “Radar and multisensor precipitation estimation techniques in national weather service hydrologic operations.” J. Hydrol. Eng., 133–142.
Krajewski, W. F., Villarini, G., and Smith, J. A. (2010). “RADAR-rainfall uncertainties.” Bull. Am. Meteorol. Soc., 91(1), 87–94.
Kuhnlein, M., Appelhans, T., Thies, B., and Nauss, T. (2014). “Precipitation estimates from MSG SEVIRI daytime, nighttime and twilight data with random forests.” J. Appl. Meteorol., 53(11), 2457–2480.
Li, H., Corzo Perez, G., Martinez, C., and Mynett, A. (2013). “Self-learning cellular automata for forecasting precipitation from radar images.” J. Hydrol. Eng., 206–211.
Li, Z., Yang, D., Gao, B., Jiao, Y., Hong, Y., and Xu, T. (2014). “Multi-scale hydrologic applications of the latest satellite precipitation products in the Yangtze river basin using a distributed hydrologic model.” J. Hydrometeorol., 16(1), 407–426.
Lien, G.-Y., Kalnay, E., and Miyoshi, T. (2013). “Effective assimilation of global precipitation: Simulation experiments.” Tellus A, 65(1), 1–16.
Lim, S., Cifelli, R., Chandrasekar, V., and Matrosov, S. Y. (2013). “Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the hydrometeorology test bed.” J. Atmos. Oceanic Technol., 30(9), 2108–2120.
Looper, J., and Vieux, B. (2013). “Distributed hydrologic forecast reliability using next-generation radar.” J. Hydrol. Eng., 260–268.
Lopez, P. (2011). “Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF.” Mon. Weather Rev., 139(7), 2098–2116.
Marshall, J. S., and Palmer, W. Mc K. (1948). “The distribution of raindrops with size.” J. Meteorolog., 5(4), 165–166.
Nanding, N., Rico-Ramirez, M. A., and Han, D. (2015). “Comparison of different radar-raingauge rainfall merging techniques.” J. Hydroinf., 17(3), 422–445.
Neundorf, R. L. A. (2013). “Performance of the parallel multigrid algorithm applied to the Poisson’s equation.” M.S. thesis, Federal Univ. of Parana, Brazil (in Portuguese).
Pereira Fo, A. J., Crawford, K. C., and Hartzell, C. L. (1998). “Improving WSR-88D hourly rainfall estimates.” Weather Forecasting, 13(4), 1016–1028.
Quimpo, R., and Swensson, M. (2005). “Use of radar-based precipitation estimates for runoff prediction.” Impacts of global climate change, ASCE, Reston, VA, 1–10.
Radhakrishna, B., Zawadski, I., and Fabry, F. (2012). “Predictability of precipitation from continental radar images. Part IV: Growth and decay.” J. Atmos. Sci., 69(11), 3336–3349.
Reynolds, R. W. (1988). “A real-time global sea surface temperature analysis.” J. Clim., 1(1), 75–87.
Roebeling, R. A., Wolters, E. L. A., Meiring, J. F., and Leijnse, H. (2012). “Triple collocation of summer precipitation retrievals from SEVIRI over Europe with gridded rain gauge and weather radar data.” J. Hydrometeorol., 13(5), 1552–1566.
Rozante, J. R., Moreira, D. S., de Goncalves, L. G. G., and Vila, D. A. (2010). “Combining TRMM and surface observations of precipitation: Technique and validation over South America.” Weather Forecasting, 25(3), 885–894.
Santos, T. N. dos. (2014). “Artificial neural networks and the ZR relationship applied to the precipitation estimation.” M.S. thesis, Federal Univ. of Parana, Brazil (in Portuguese).
Seo, D., Siddique, R., and Ahnert, P. (2014). “Objective reduction of rain gauge network via geostatistical analysis of uncertainty in radar-gauge precipitation estimation.” J. Hydrol. Eng., 04014050.
Shafer, M. A., Fiebrich, C. A., Arndt, D. S., Fredrickson, S. E., and Hughes, T. W. (2000). “Quality assurance procedures in the Oklahoma Mesonetwork.” J. Atmos. Oceanic Technol., 17(4), 474–494.
Tabary, P., Desplats, J., Do Khac, K., Eideliman, F., Gueguen, C., and Heinrich, J.-C. (2007). “The new French operational radar rainfall product. Part II: Validation”. Weather Forecasting, 22(3), 409–427.
Turner, B. J., Zawadski, I., and Germann, U. (2004). “Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE).” J. Appl. Meteorol., 43(2), 231–248.
Vasiloff, S. V., et al. (2007). “Improving QPE and very short term QPF.” Bull. Am. Meteorol. Soc., 88(12), 1899–1911.
Velasco-Forero, C. A., Sempere-Torres, D., Cassiraga, E. F., and Gomez-Hernandez, J. J. (2009). “A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data.” Adv. Water Resour., 32(7), 986–1002.
Vila, D. A., de Goncalves, L. G. G., Toll, D. L., and Rozante, J. R. (2009). “Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America.” J. Hydrometeorol., 10(2), 533–543.
Xie, P., and Arkin, P. A. (1996). “Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions.” J. Clim., 9(4), 840–858.
Xie, P., and Arkin, P. A. (1997). “Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs.” Bull. Am. Meteorol. Soc., 78(11), 2539–2558.
Zeweldi, D. Z., Gebremichael, M., and Downer, C. W. (2011). “On CMORPH rainfall for streamflow simulation in a small, Hortonian watershed.” J. Hydrometeorol., 12(3), 456–466.
Zhang, J., Howard, K., and Gourley, J. J. (2005). “Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes.” J. Appl. Meteorol., 22(1), 30–42.
Zhang, J., Qi, Y., Kingsmill, D., and Howard, K. (2012). “Radar-based quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA hydrometeorology testbed.” J. Hydrometeorol., 13(6), 1836–1854.
Zhang, J., Qi, Y., Langston, C., Kaney, B., and Howard, K. (2014). “A real-time algorithm for merging radar QPEs with rain gauge observations and orographic precipitation climatology.” J. Hydrometeorol., 15(5), 1794–1809.
Zulkafli, Z., et al. (2014). “A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon River Basins.” J. Hydrometeorol., 15(2), 581–592.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 22Issue 5May 2017

History

Received: Jan 30, 2015
Accepted: May 5, 2016
Published online: Jul 22, 2016
Discussion open until: Dec 22, 2016
Published in print: May 1, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Leonardo Calvetti, Ph.D. [email protected]
Professor, Dept. of Meteorology, Federal Univ. of Pelotas, Campus Universitario Cx. Postal 354, CEP 96010-900, Pelotas, RS, Brazil (corresponding author). E-mail: [email protected]
Cesar Beneti, Ph.D. [email protected]
Researcher, Parana Meteorological System (SIMEPAR), Francisco H. dos Santos 210, CEP 81531-980, Curitiba, PR, Brazil. E-mail: [email protected]
Réverton Luís Antunes Neundorf, Ph.D. [email protected]
Student, Parana Meteorological System (SIMEPAR), Francisco H. dos Santos 210, CEP 81531-980, Curitiba, PR, Brazil. E-mail: [email protected]
Rafael Toshio Inouye [email protected]
Researcher, Parana Meteorological System (SIMEPAR), Francisco H. dos Santos 210, CEP 81531-980, Curitiba, PR, Brazil. E-mail: [email protected]
Tiago Noronha dos Santos, Ph.D. [email protected]
Student, Parana Meteorological System (SIMEPAR), Francisco H. dos Santos 210, CEP 81531-980, Curitiba, PR, Brazil. E-mail: [email protected]
Ana Maria Gomes, Ph.D. [email protected]
Researcher, Meteorological Research Institute, Sao Paulo State Univ. (IPMET/UNESP), Eng. Luiz Edmundo Coube, CEP 17033-360, Bauru, SP, Brazil. E-mail: [email protected]
Dirceu Luis Herdies, Ph.D. [email protected]
Researcher, Center for Weather Forecasting and Climate Research (CPTEC/INPE), Presidente Dutra Highway, km 39, CEP 12630-000, Cachoeira Paulista, SP, Brazil. E-mail: [email protected]
Luis Gustavo Gonçalves de Gonçalves, Ph.D. [email protected]
Researcher, Center for Weather Forecasting and Climate Research (CPTEC/INPE), Presidente Dutra Highway, km 39, CEP 12630-000, Cachoeira Paulista, SP, Brazil. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share