Technical Papers
Oct 24, 2013

Current and Future Challenges in Groundwater. I: Modeling and Management of Resources

Publication: Journal of Hydrologic Engineering
Volume 20, Issue 1

Abstract

Groundwater, one of the world’s most important natural resources, is under constant threat of exploitation with increasing population and economic development. Proper understanding and modeling of subsurface water movement has been an enduring challenge for hydrologists and practitioners. Current modeling efforts are plagued by the complex heterogeneity within the subsurface, reconciliation with spatial and temporal scales, and lack of supporting data. Long-term consequences of droughts in aquifers and efficient management of the available resources in arid and semiarid regions of the world deserve special attention. Assessing the potential impacts of climate change on groundwater is yet another long-term challenge that confounds both researchers and managers. With groundwater being likened to fossil fuels in some parts of the world, conservation and management of these resources have become imperative. Developing new models that account for uncertainties and provide more realistic assessment of predictive capabilities is needed for devising effective management practices. Current data acquisition techniques need to be improved for reliable modeling and impact studies. In this paper, some of these major challenges in groundwater hydrology are discussed, and their possible implications are presented.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abderrahman, W. A. (2006). “Saudi Arabia aquifers.” Non-renewable groundwater resources: A guidebook on socially-sustainable management for water-policy makers, S. Foster and D. P. Loucks, eds., United Nations Educational, Scientific and Cultural Organization, International Association of Hydrogeologists (UNESCO/IAH), Paris, 63–67.
Akbar, T. A., Lin, H., and DeGroote, J. (2011). “Development and evaluation of GIS-based ArcPRZM-3 system for spatial modeling of groundwater vulnerability to pesticide contamination.” Comput. Geosci., 37(7), 822–830.
Ali, R., et al. (2012). “Potential climate change impacts on groundwater resources of south-western Australia.” J. Hydrol., 475(19), 456–472.
Almeida, C. N., Roehrig, J., and Wendland, E. (2013). “Development and integration of a groundwater simulation model to an open geographic information system.” J. Am. Water Resour. Assoc., 50(1), 101–110.
Al-Taj, M. (2008). “Structural control on groundwater distribution and flow in Irbid area, north Jordan.” Jordan J. Earth Environ. Sci., 1(2), 81–88.
Ankeny, M. D., Ahmed, M., Kaspar, T. C., and Horton, R. (1991). “Simple field method for determining unsaturated hydraulic conductivity.” Soil Sci. Soc. Am. J., 55(2), 467–470.
Aquilina, L., Ladouche, B., and Dörfliger, N. (2006). “Water storage and transfer in the epikarst of karstic systems during high flow periods.” J. Hydrol., 327(3–4), 472–485.
Arnell, N. W. (1998). “Climate change and water resources in Britain.” Clim. Change, 39(1), 83–110.
Bakalowicz, M. (2005). “Karst groundwater: A challenge for new resources.” Hydrogeol. J., 13(1), 148–160.
Bakhbakhi, M. (2006). “Nubian sandstone aquifer system.” Non-renewable groundwater resources: A guidebook on socially-sustainable management for water-policy makers, S. Foster and D. P. Loucks, eds., United Nations Educational, Scientific and Cultural Organization, International Association of Hydrogeologists (UNESCO/IAH), Paris, 75–81.
Barber, C., Otto, C. J., Bates, L. E., and Taylor, K. J. (1996). “Evaluation of the relationship between land-use changes and groundwater quality in a water-supply catchment, using gis technology: The GWELUP wellfield, western Australia.” Hydrogeol. J., 4(1), 6–19.
Başağaoğlu, H., Ginn, T. R., Green, C. T., and McCoy, B. J. (2002). “Transport in heterogeneous media: Tracer dynamics in complex flow networks.” AIChE J., 48(5), 1121–1131.
Bedford, T., and Cooke, R. (2003). Probabilistic risk analysis: Foundations and methods, Cambridge University Press, Cambridge, U.K.
Ben-Dor, E., Patkin, K., Banin, A., and Karnieli, A. (2002). “Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—A case study over clayey soils in Israel.” Int. J. Rem. Sens., 23(6), 1043–1062.
Bense, V. F., Ferguson, G., and Kooi, H. (2009). “Evolution of shallow groundwater flow systems in areas of degrading permafrost.” Geophys. Res. Lett., 36(22), L22401.
Biggar, J. W., and Nielsen, D. R. (1976). “Spatial variability of the leaching characteristics of a field soil.” Water Resour. Res., 12(1), 78–84.
Blöschl, G., and Sivapalan, M. (1995). “Scale issues in hydrological modelling: A review.” Hydrol. Processes, 9(3–4), 251–290.
Bobba, A. G. (2002). “Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India.” Hydrol. Sci. J., 47(S1), S67–S80.
Bohne, K., Roth, C., Leij, F. J., and van Genuchten, M. (1993). “Rapid method for estimating the unsaturated hydraulic conductivity from infiltration measurements.” Soil Sci., 155(4), 237–244.
Bouma, J., Hillel, D. I., Hole, F. D., and Amerman, C. R. (1971). “Field measurement of unsaturated hydraulic conductivity by infiltration through artificial crusts.” Soil Sci. Soc. Am. J., 35(2), 362–364.
Bredehoeft, J. (2012). “Modeling groundwater flow-the beginnings.” Ground Water, 50(3), 325–329.
Bresler, E., and Dagan, G. (1983). “Unsaturated flow in spatially variable fields. II. Application of water flow models to various fields.” Water Resour. Res., 19(2), 421–428.
Broadbridge, P., and White, I. (1988). “Constant rate rainfall infiltration: A versatile nonlinear model. I: Analytical solution.” Water Resour. Res., 24(1), 145–154.
Brouyère, S., Carabin, G., and Dassargues, A. (2004). “Climate change impacts on groundwater resources: Modelled deficits in a chalky aquifer, Geer basin, Belgium.” Hydrogeol. J., 12(2), 123–134.
Brunner, P., Cook, P. G., and Simmons, C. T. (2011). “Disconnected surface water and groundwater: From theory to practice.” Ground Water, 49(4), 460–467.
Budhu, M., and Adiyaman, I. B. (2010). “Mechanics of land subsidence due to groundwater pumping.” Int. J. Numer. Anal. Methods Geomech., 34(14), 1459–1478.
Buma, J., and Dehn, M. (1998). “A method for predicting the impact of climate change on slope stability.” Environ. Geol., 35(2–3), 190–196.
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). “Simplified flowchart showing the investigation program towards the development of a groundwater management strategy for Lusaka.” 〈http://www.bgr.bund.de/EN/Themen/Wasser/Bilder/Was_tz_zambia_lu_fig03_g_en.html〉 (Jun. 10, 2013).
Calow, R. C., et al. (1997). “Groundwater management in drought-prone areas of Africa.” Int. J. Water Resour. Dev., 13(2), 241–262.
Chatterjee, C., Kumar, R., Chakravorty, B., Lohani, A. K., and Kumar, S. (2005). “Integrating remote sensing and GIS techniques with groundwater flow modeling for assessment of waterlogged areas.” Water Resour. Manage., 19(5), 539–554.
Chen, C. C., Gillig, D., and McCarl, B. A. (2001). “Effects of clim. change on a water dependent regional economy: A study of the Texas Edwards aquifer.” Clim. Change, 49(4), 397–409.
Chen, Y., and Durlofsky, L. J. (2006). “Adaptive local-global upscaling for general flow scenarios in heterogeneous formations.” Transp. Porous Media, 62(2), 157–185.
Chen, Z., Govindaraju, R. S., and Kavvas, M. L. (1994). “Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields. I: Development of models.” Water Resour. Res., 30(2), 523–533.
Chen, Z. H., Grasby, S. E., and Osadetz, K. G. (2002). “Predicting average annual groundwater levels from climatic variables: An empirical model.” J. Hydrol., 260(1–4), 102–117.
Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., and Palmer, R. N. (2004). “Effects of climate change on the hydrology and water resources of the Colorado River basin.” Clim. Change, 62(1–3), 337–363.
Ciollaro, G., and Romano, N. (1995). “Spatial variability of the soil hydraulic properties of a volcanic soil.” Geoderma, 65(3–4), 263–282.
Corradini, C., Govindaraju, R. S., and Morbidelli, R. (2002). “Simplified modeling of areal average infiltration at hillslope scale.” Hydrol. Processes, 16(9), 1757–1770.
Corradini, C., Morbidelli, R., and Melone, F. (1998). “On the interaction between infiltration and Hortonian runoff.” J. Hydrol., 204(1–4), 52–67.
Corwin, D. L., Hopmans, J., and de Rooij, G. H. (2006). “From field-to landscape-scale vadose zone processes: Scale issues, modeling, and monitoring.” Vadose Zone J., 5(1), 129–139.
Crawford, J. W., Baveye, P., Grindrod, P., and Rappoldt, C. (1999). “Application of fractals to soil properties, landscape patterns, and solute transport in porous media.” Assessment of non-point source pollution in the vadose zone, D. L. Corwin, K. Loague, and T. R. Ellsworth, eds., American Geophysical Union, Washington, DC.
Crosbie, R., McCallum, J., Walker, G., and Chiew, F. S. (2010). “Modelling climate-change impacts on groundwater recharge in the Murray-Darling basin, Australia.” Hydrogeol. J., 18(7), 1639–1656.
Crosbie, R., Pickett, T., Mpelasoka, F., Hodgson, G., Charles, S., and Barron, O. (2013). “An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs.” Clim. Change, 117(1–2), 41–53.
Cushman, J. H., Bennethum, L. S., and Hu, B. X. (2002). “A primer on upscaling tools for porous media.” Adv. Water Resour., 25(8–12), 1043–1067.
Dagan, G., and Bresler, E. (1983). “Unsaturated flow in spatially variable fields. I: Derivation of models of infiltration and redistribution.” Water Resour. Res., 19(2), 413–420.
Davis, S. N., Thompson, G. M., Bentley, H. W., and Stiles, G. (1980). “Ground-water tracers—A short review.” Ground Water, 18(1), 14–23.
Delinom, R. M. (2009). “Structural geology controls on groundwater flow: Lembang fault case study, west Java, Indonesia.” Hydrogeol. J., 17(4), 1011–1023.
Deng, H., Ye, M., Schaap, M. G., and Khaleel, R. (2009). “Quantification of uncertainty in pedotransfer function-based parameter estimation for unsaturated flow modeling.” Water Resour. Res., 45(4), W04409.
de Rooij, G. H., Kasteel, R. T., Papritz, A., and Flühler, H. (2004). “Joint distributions of the unsaturated soil hydraulic parameters and their effect on other variates.” Vadose Zone J., 3(3), 947–955.
Deshan, T. (1995). “Optimal allocation of water resources in large river basins. I: Theory.” Water Resour. Manage., 9(1), 39–51.
Destouni, G. (1992). “Prediction uncertainty in solute flux through heterogeneous soil.” Water Resour. Res., 28(3), 793–801.
de Vries, J. J., and Simmers, I. (2002). “Groundwater recharge: An overview of processes and challenges.” Hydrogeol. J., 10(1), 5–17.
de Wrachien, D., and Fasso, C. A. (2002). “Conjunctive use of surface and groundwater: Overview and perspective.” Irrig. Drain., 51(1), 1–15.
Diersch, H.-J. G. (2002). FEFLOW. Finite element sub-surface flow and transport simulation system, DHI-WASY Gmbh, Berlin, Germany.
Döll, P. (2009). “Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment.” Environ. Res. Lett., 4(3), 1–12.
Döll, P., et al. (2012). “Impact of water withdrawals from groundwater and surface water on continental water storage variations.” J. Geodynam., 59–60(1), 143–156.
Döll, P., and Fiedler, K. (2008). “Global-scale modeling of groundwater recharge.” Hydrol. Earth Syst. Sci., 12(3), 863–885.
Dörfliger, N., Fleury, P., and Ladouche, B. (2009). “Inverse modeling approach to allogenic karst system characterization.” Ground Water, 47(3), 414–426.
Dragoni, W., and Sukhija, B. S. (2008). “Climate change and ground water: A short review.” J. Geol. Soc. London, 288(1), 1–12.
Dufresne, D. P., and Drake, C. W. (1999). “Regional groundwater flow model construction and wellfield site selection in a karst area, Lake City, Florida.” Eng. Geol., 52(1–2), 129–139.
Dunne, T. (1978). “Field studies of hillslope flow processes.” Hillslope hydrology, M. J. Kirkby, ed., Wiley-Interscience, New York.
Eching, S. O., Hopmans, J. W., and Wendroth, O. (1994). “Unsaturated hydraulic conductivity from transient multi-step outflow and soil water pressure data.” Soil Sci. Soc. Am. J., 58(3), 687–695.
El-Kadi, A. I., Oloufa, A. A., Eltahan, A. A., and Malik, H. U. (1994). “Use of a geographic information system in site-specific ground-water modeling.” Ground Water, 32(4), 617–625.
Eltahir, E. A. B., and Yeh, P. J. F. (1999). “On the asymmetric response of aquifer water level to floods and droughts in Illinois.” Water Resour. Res., 35(4), 1199–1217.
EPA. (1998). “National primary drinking water regulations: Disinfectants and disinfection by-products, final rule.” 40 CFR parts 9, 141, and 142, Vol. 63, Office of the Federal Register, National Archives and Records Administration, Washington, DC, 69390–69476.
Famiglietti, J. S., et al. (2011). “Satellites measure recent rates of groundwater depletion in California’s central valley.” Geophys. Res. Lett., 38(3), L03403.
Ferguson, I. M., and Maxwell, R. M. (2010). “Role of groundwater in watershed response and land surface feedbacks under climate change.” Water Resour. Res., 46(8), 1–8.
Ferguson, I. M., and Maxwell, R. M. (2012). “Human impacts on terrestrial hydrology: Climate change versus pumping and irrigation.” Environ. Res. Lett., 7(4), 044022.
Feyen, J., Jacques, D., Timmerman, A., and Vanderborght, J. (1998). “Modelling water flow and solute transport in heterogeneous soils: A review of recent approaches.” J. Agric. Eng. Res., 70(3), 231–256.
Finsterle, S., et al. (2008). “Advanced vadose zone simulations using TOUGH.” Vadose Zone J., 7(2), 601–609.
Fleury, P., Ladouche, B., Conroux, Y., Jourde, H., and Dörfliger, N. (2009). “Modelling the hydrologic functions of a karst aquifer under active water management—The Lez spring.” J. Hydrol., 365(3–4), 235–243.
Flury, M., and Wai, N. N. (2003). “Dyes as tracers for vadose zone hydrology.” Rev. Geophys., 41(1), 1002.
Foussereau, X., Graham, W. D., Akpoji, G. A., Destouni, G., and Rao, P. S. C. (2000). “Stochastic analysis of transport in unsaturated heterogeneous soils under transient flow regimes.” Water Resour. Res., 36(4), 911–921.
Fowler, H. J., Kilsby, C. G., and Stunell, J. (2007). “Modelling the impacts of projected future climate change on water resources in northwest England.” Hydrol. Earth Syst. Sci., 11(3), 1115–1126.
Freeze, R. A. (1980). “A stochastic-conceptual analysis of rainfall runoff processes on a hillslope.” Water Resour. Res., 16(2), 391–408.
Galloway, D. L. (2010). “The complex future of hydrogeology.” Hydrogeol. J., 18(4), 807–810.
Galloway, D. L., Alley, W. M., Barlow, P. M., Reilly, T. E., and Tucci, P. (2003). “Evolving issues and practices in managing ground-water resources: Case studies on the role of science.” U.S. Geological Survey Circular 1247, U.S. Government Printing Office, Washington, DC, 1–73.
Gambolati, G., Ricceri, G., Bertoni, W., Brighenti, G., and Vuillermin, E. (1991). “Mathematical Simulation of the Subsidence of Ravenna.” Water Resour. Res., 27(11), 2899–2918.
Ghanbarian-Alavijeh, B., Liaghat, A., Huang, G. H., and van Genuchten, M. T. (2010). “Estimation of the van Genuchten soil water retention properties from soil textural data.” Pedosphere, 20(4), 456–465.
Ghasemizadeh, R., et al. (2012). “Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.” Hydrogeol. J., 20(8), 1441–1461.
Ginn, T. R. (2001). “Stochastic–convective transport with nonlinear reactions and mixing: Finite streamtube ensemble formulation for multicomponent reaction systems with intra-streamtube dispersion.” J. Contam. Hydrol., 47(1), 1–28.
Glasser, S., et al. (2007). FS-881—Technical guide to managing groundwater resources, 〈http://www.rosemonteis.us/files/references/glasser-2007.pdf〉 (Jan. 30, 2013).
Glassley, W. E., Nitao, J. J., and Grant, C. W. (2002). “The impact of climate change on the chemical composition of deep vadose zone waters.” Vadose Zone J., 1(1), 3–13.
Glassley, W. E., Nitao, J. J., Grant, C. W., Johnson, J. W., Steefel, C. I., and Kercher, J. R. (2003). “The impact of climate change on vadose zone pore waters and its implication for long-term monitoring.” Comput. Geosci., 29(3), 399–411.
Goderniaux, P., et al. (2009). “Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves.” J. Hydrol., 373(1–2), 122–138.
Gogu, R., Carabin, G., Hallet, V., Peters, V., and Dassargues, A. (2001). “GIS-based hydrogeological databases and groundwater modeling.” Hydrogeol. J., 9(6), 555–569.
Govindaraju, R. S., and Kavvas, M. L. (1991). “Dynamics of moving boundary overland flows over infiltrating surfaces at hillslopes.” Water Resour. Res., 27(8), 1885–1898.
Govindaraju, R. S., Morbidelli, R., and Corradini, C. (2001). “Areal infiltration modeling over soils with spatially correlated hydraulic conductivities.” J. Hydrol. Eng., 150–158.
Govindaraju, R. S., Or, D., Kavvas, M. L., Rolston, D. E., and Biggar, J. W. (1992). “Error analyses of simplified unsaturated flow models under large uncertainty in hydraulic properties.” Water Resour. Res., 28(11), 2913–2924.
Graham, D. N., and Refsgaard, A. (2001). “MIKE SHE: A distributed, physically based modelling system for surface water/groundwater interactions.” Proc., MODFLOW 2001 and Other Modelling Odysseys Conf., B. Seo, E. Poeter, and C. Zheng, eds., Integrated Groundwater Modeling Centre Publications, Colorado School of Mines, CO, 321–327.
Green, T. R., et al. (2011). “Beneath the surface of global change: Impacts of climate change on groundwater.” J. Hydrol., 405(3–4), 532–560.
Gurdak, J. J., et al. (2007). “Climate variability controls on unsaturated water and chemical movement, high plains aquifer, USA.” Vadose Zone J., 6(3), 533–547.
Gurdak, J. J., Hanson, R. T., and Green, T. R. (2009). “Effects of climate variability on groundwater resources of the United States.” Fact Sheet 2009-3074, 〈http://pubs.usgs.gov/fs/2009/3074/pdf/FS09-3074.pdf〉 (Feb. 24, 2013).
Hantush, M. M., Kalin, L., and Govindaraju, R. S. (2011). “Subsurface and surface water flow interactions.” Groundwater quantity and quality management, M. M. Aral and S. W. Taylor, eds., ASCE, New York, 295–393.
Hart, B. S. (1999). “Definition of subsurface stratigraphy, structure and rock properties from 3-D seismic data.” Earth Sci. Rev., 47(3–4), 189–218.
Harter, T., and Hopmans, J. W. (2004). “Role of vadose zone flow processes in regional scale hydrology: Review, opportunities and challenges.” Unsaturated-zone modeling: Progress, applications, and challenges, R. A. Feddes, G. H. de Rooij, and J. C. van Dam, eds., Kluwer Academic, New York.
Harter, T., and Yeh, T. J. (1998). “Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models.” Adv. Water Resour., 22(3), 257–272.
Hartmann, A., Kralik, M., Humer, F., Lange, J., and Weiler, M. (2012a). “Identification of a karst system’s intrinsic hydrodynamic parameters: Upscaling from single springs to the whole aquifer.” Environ. Earth Sci., 65(8), 2377–2389.
Hartmann, A., Lange, J., Weiler, M., Arbel, Y., and Greenbaum, N. (2012b). “A new approach to model the spatial and temporal variability of recharge to karst aquifers.” Hydrol. Earth Syst. Sci., 16(7), 2219–2231.
Hawkins, R. H., and Cundy, T. W. (1987). “Steady-state analysis of infiltration and overland flow for spatially varied hillslopes.” Water Resour. Res., 23(2), 251–256.
Healy, R. W. (2008). “Simulating water, solute, and heat transport in the subsurface with the VS2DI software package.” Vadose Zone J., 7(2), 632–639.
Herczeg, A. L., Rattray, K. J., Dillon, P. J., Pavelic, P., and Barry, K. E. (2004). “Geochemical processes during five years of aquifer storage recovery.” Ground Water, 42(3), 438–445.
Holman, I. P. (2006). “Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward?” Hydrogeol. J., 14(5), 637–647.
Horton, R. E. (1933). “The role of infiltration in the hydrological cycle.” Trans. Am. Geophys. Union, 12(1), 189–202.
Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik, B. F. (2012). “Drought indicators based on model-assimilated gravity recovery and climate experiment (GRACE) terrestrial water storage observations.” Water Resour. Res., 48(7), W07525.
Hu, C., Hao, Y., Yeh, T.-C. J., Pang, B., and Wu, Z. (2008). “Simulation of spring flows from a karst aquifer with an artificial neural network.” Hydrol. Process., 22(5), 596–604.
Huggenberger, P., Epting, J., and Scheidler, S. (2013). “Concepts for the sustainable management of multi-scale flow systems: The groundwater system within the Laufen Basin, Switzerland.” Environ. Earth Sci., 69(2), 645–661.
Hughes, J. D., Petrone, K. C., and Silberstein, R. P. (2012). “Drought, groundwater storage and stream flow decline in southwestern Australia.” Geophys. Res. Lett., 39(3), L03408.
Hunt, R. J., et al. (2010). “Using a cloud to replenish parched groundwater modeling efforts.” Ground Water, 48(3), 360–365.
Hunt, R. J., and Welter, D. E. (2010). “Taking account of ’unknown unknowns.’” Ground Water, 48(4), 477–623.
Hunt, R. J., and Zheng, C. (2012). “The current state of modeling.” Ground Water, 50(3), 330–333.
Intergovernmental Panel on Climate Change (IPCC). (2007). “Climate change 2007: Impacts, adaptation and vulnerability.” Contribution of Working Group II to the Fourth Assessment Rep. of the Intergovernmental Panel on Climate Change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, eds., Cambridge University Press, Cambridge, U.K.
Jia, Y., and You, J. (2010). “Sustainable groundwater management in the north China plain: Main issues, practices and foresights.” 38th IAH Congress, Polish Oil and Gas Company (PGNiG), Poland.
Jobson, H. E., and Harbaugh, A. W. (1999). “Modifications to the diffusion analogy surface-water flow model (DAFLOW) for coupling to the modular finite-difference ground-water flow model (MODFLOW).”, U.S. Dept. of the Interior, U.S. Geological Survey, Reston, VA.
Johnson, K. D., Entekhabi, D., and Eagleson, P. S. (1993). “The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model.” J. Clim., 6(6), 1009–1026.
Jukić, D., and Denić-Jukić, V. (2009). “Groundwater balance estimation in karst by using a conceptual rainfall–runoff model.” J. Hydrol., 373(3–4), 302–315.
Jury, W. A., Russo, D., Sposito, G., and Elabd, H. (1987). “The spatial variability of water and solute transport properties in unsaturated soil.” Hilgardia, 55(4), 1–56.
Jyrkama, M. I., and Sykes, J. F. (2007). “The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario).” J. Hydrol., 338(3–4), 237–250.
Kabat, P., Hutjes, R. W. A., and Feddes, R. A. (1997). “The scaling characteristics of soil parameters: From plot scale heterogeneity to subgrid parameterization.” J. Hydrol., 190(3–4), 363–396.
Karamouz, M., Kerachian, R., and Zahraie, B. (2004). “Monthly water resources and irrigation planning: Case study of conjunctive use of surface water and groundwater resources.” J. Irrig. Drain. Eng., 391–402.
Kavvas, M. L., et al. (1998). “A regional-scale land surface parameterization based on areally-averaged hydrological conservation equations.” Hydrol. Sci. J., 43(4), 611–631.
Kavvas, M. L. (1999). “On the coarse-graining of hydrologic processes with increasing scales.” J. Hydrol., 217(3–4), 191–202.
Kim, C. P., and Stricker, J. N. M. (1996). “Influence of spatially variable soil hydraulic properties and rainfall intensity on the water budget.” Water Resour. Res., 32(6), 1699–1712.
Konikow, L. F. (2011). “The secret to successful solute-transport modeling.” Ground Water, 49(2), 144–159.
Kool, J. B., Parker, J. C., and van Genuchten, M. T. (1985). “Determining soil hydraulic properties from one step outflow experiments by parameter estimation. I: Theory and numerical studies.” Soil Sci. Soc. Am. J., 49(6), 1348–1354.
Kool, J. B., Parker, J. C., and van Genuchten, M. T. (1987). “Parameter estimation for unsaturated flow and transport models—A review.” J. Hydrol., 91(3), 255–293.
Kovalevskii, V. S. (2007). “Effect of climate changes on groundwater.” Water Resour., 34(2), 140–152.
Krüger, A., Ulbrich, U., and Speth, P. (2001). “Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios.” Phys. Chem. Earth, Part B Hydrol. Oceans Atmos., 26(11–12), 853–861.
Kumar, C. P. (2012). “Climate change and its impact on groundwater resources.” Res. Inventy: Int. J. Eng. Sci., 1(5), 43–60.
Langevin, C. D., and Pandey, S. (2012). “Future of groundwater modeling.” Ground Water, 50(3), 333–339.
Laroque, M., Mangin, A., Razack, M., and Banton, O. (1998). “Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France).” J. Hydrol., 205(3–4), 217–231.
Larson, K. J., Başaǧaoǧlu, H., and Mariño, M. A. (2001). “Prediction of optimal safe groundwater yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model.” J. Hydrol., 242(1–2), 79–102.
Leake, S., and Prudic, D. E. (1991). “Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model.” Techniques of Water-Resources Investigations, U.S. Geological Survey, Washington, DC.
Leblanc, M., Favreau, G., Tweed, S., Leduc, C., Razack, M., and Mofor, L. (2007). “Remote sensing for groundwater modelling in large semiarid areas: Lake Chad basin, Africa.” Hydrogeol. J., 15(1), 97–100.
Legrand, H. E., and Stringfield, V. T. (1973). “Karst hydrology—A review.” J. Hydrol., 20(2), 97–120.
Leij, F. J., Sciortino, A., Haverkamp, R., and Ugalde, J. M. S. (2007). “Aggregation of vertical flow in the vadose zone with auto- and cross-correlated hydraulic properties.” J. Hydrol., 338(1–2), 96–112.
Levy, J., and Xu, Y. (2012). “Review: Groundwater management and groundwater/surface-water interaction in the context of South African water policy.” Hydrogeol. J., 20(2), 205–226.
Liedl, R. (1994). “A conceptual perturbation model of water movement in stochastically heterogeneous soils.” Adv. Water Resour., 17(3), 171–179.
Loague, K., and Gander, G. A. (1990). “R-5 revisited: 1. Spatial variability of infiltration on a small rangeland catchment.” Water Resour. Res., 26(5), 957–971.
Loaiciga, H. A., Maidment, D. R., and Valdes, J. B. (2000). “Climate-change impacts in a regional karst aquifer, Texas, USA.” J. Hydrol., 227(1–4), 173–194.
Logsdon, S. D., McCoy, E. L., Allmaras, R. R., and Linden, D. R. (1993). “Macropore characterization by indirect methods.” Soil Sci., 155(5), 316–324.
Loll, P., and Moldrup, P. (1998). “A new two-step stochastic modeling approach: Application to water transport in a spatially variable unsaturated soil.” Water Resour. Res., 34(8), 1909–1918.
Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N., and Save, H. (2013). “GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas.” Geophys. Res. Lett., 40(13), 3395–3401.
Luckey, R. R., Gutentag, E. D., and Weeks, J. B. (1981). “Water-level and saturated-thickness changes, predevelopment to 1980, in the high plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming.” 〈http://pubs.er.usgs.gov/publication/ha652〉 (Feb. 24, 2013).
Maliva, R. G., Guo, W., and Missimer, T. M. (2006). “Aquifer storage and recovery: Recent hydrogeological advances and system performance.” Water Environ. Res., 78(13), 2428–2435.
Mallants, D., Mohanty, B. P., Jacques, D., and Feyen, J. (1996). “Spatial variability of hydraulic properties in a multi-layered soil profile.” Soil Sci., 161(3), 167–181.
Mantoglou, A., and Gelhar, L. W. (1987). “Effective hydraulic conductivity of transient unsaturated flow in stratified soils.” Water Resour. Res., 23(1), 57–67.
Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., and Barlow, P. M. (2008). “GSFLOW-coupled ground-water and surface-water FLOW model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005).” Techniques and Methods 6–D1, U.S. Geological Survey, Reston, VA.
Masters, G. M. (1998). Introduction to environmental engineering and science, 2nd Ed., Prentice-Hall, Upper Saddle River, NJ.
Maxwell, R. M., et al. (2009). PARFLOW user’s manual, International Groundwater Modeling Center, Colorado School of Mines, Golden, CO, 129.
McDonald, J., and Harbaugh, A. (1988). A modular 3D finite difference ground-water flow model, U.S. Government Printing Office, Washington, DC, 586.
McGuire, V. L. (2003). “Water-level changes in the high plains aquifer, predevelopment to 2001, 1999 to 2000, and 2000 to 2001.” U.S. Geological Survey Fact Sheet FS-078-03, U.S. Geological Survey, Reston, VA.
McGuire, V. L. (2009). “Water-level changes in the high plains aquifer, predevelopment to 2007, 2005-06, and 2006-07.”, U.S. Geological Survey, Reston, VA.
McGuire, V. L. (2011). “Water-level changes in the High Plains aquifer, predevelopment to 2009, 2007–08, and 2008–09 and changes in water in storage, predevelopment to 2009.”, U.S. Geological Survey, Reston, VA.
Menenti, M., Chambouleyron, J., Morabito, J., Fornero, L., and Stefanini, L. (1992). “Appraisal and optimization of agricultural water use in large irrigation schemes. I: Theory.” Water Resour. Manage., 6(3), 185–199.
Miller, E. E., and Miller, R. D. (1956). “Physical theory for capillary flow phenomena.” J. Appl. Phys., 27(4), 324–332.
Minasny, B., and Field, D. (2005). “Estimating soil hydraulic properties and their uncertainty: The use of stochastic simulation in the inverse modeling of the evaporation method.” Geoderma, 126(3–4), 277–290.
Mirecki, J. E., Campbell, B. G., Conlon, K. J., and Petkewich, M. D. (1998). “Solute changes during aquifer storage recovery in a limestone/clastic aquifer.” Ground Water, 36(3), 394–403.
Mishra, A. K., and Singh, V. P. (2010). “A review of drought concepts.” J. Hydrol., 391(1–2), 202–216.
Morbidelli, R., Corradini, C., and Govindaraju, R. S. (2006). “A field-scale infiltration model accounting for spatial heterogeneity of rainfall and soil hydraulic properties.” Hydrol. Proc., 20(7), 1465–1481.
Morbidelli, R., Corradini, C., Saltalippi, C., and Govindaraju, R. S. (2008). “Laboratory experimental investigation of infiltration by the run-on process.” J. Hydrol. Eng., 1187–1192.
Morrow, C. M., and Minear, R. A. (1987). “Use of regression models to link raw water characteristics to trihalomethane concentrations in drinking water.” Water Resour. Res., 21(1), 41–48.
Mualem, Y. (1976). “A new model for predicting the hydraulic conductivity of unsaturated porous media.” Water Resour. Res., 12(3), 513–522.
Mulwa, J. K., Gaciri, S. J., Barongo, J. O., Opiyo-Akech, N., and Kianji, G. K. (2005). “Geological and structural influence on groundwater distribution and flow in Ngong area, Kenya.” African J. Sci. Technol., 6(1), 105–115.
Nahar, N., Govindaraju, R. S., Corradini, C., and Morbidelli, R. (2004). “Role of run-on for describing field-scale infiltration and overland flow over spatially variable soils.” J. Hydrol., 286(1–4), 36–51.
Neuweiler, I., and Vogel, H.-J. (2007). “Upscaling for unsaturated flow for non-Gaussian heterogeneous porous media.” Water Resour. Res., 43(3), W03443.
Nielsen, D. R., Biggar, J. W., and Erh, K. T. (1973). “Spatial variability of field measured soil-water properties.” Hilgardia, 42(7), 215–259.
Observatory of the Sahara, and the Sahel (OSS). (2004). “Water resources in the OSS (Observatory of the Sahara and the Sahel) countries.” United Nations Educational, Scientific and Cultural Organization-International Hydrological Programme Non Serial Publications in Hydrology, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France.
Okkonen, J., Jyrkama, M., and Klove, B. (2010). “A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland).” Hydrogeol. J., 18(2), 429–439.
Oliveira, L. I., Demond, A. H., Abriola, L. M., and Goovaerts, P. (2006). “Simulation of solute transport in a heterogeneous vadose zone describing the hydraulic properties using a multistep stochastic approach.” Water Resour. Res., 42(5), W05420.
Ortega-Guerrero, A., Rudolph, D. L., and Cherry, J. A. (1999). “Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling.” Water Resour. Res., 35(11), 3327–3341.
Otz, M. H., Otz, H. K., Otz, I., and Siegel, D. I. (2003). “Surface water/groundwater interaction in the Piora aquifer, Switzerland: Evidence from dye tracing tests.” Hydrogeol. J., 11(2), 228–239.
Pachepsky, Y. A., Crawford, J. W., and Rawls, W. J. (2000). “Fractals in soil science.” Developments in soil science, Vol. 27, Elsevier Science, Amsterdam, the Netherlands.
Pachepsky, Y. A., and Rawls, W. J. (2004). Development of pedotransfer functions in soil hydrology, Elsevier, Amsterdam, the Netherlands.
Pachepsky, Y. A., Rawls, W. J., and Timlin, D. J. (1999). “The current status of pedotransfer functions: Their accuracy, reliability, and utility in field and regional-scale modeling in assessment of non-point source pollution in the vadose zone.” Geophysical Monograph Series, D. L. Corwin, K. Loague, and T. R. Ellsworth, eds., Vol. 108, American Geophysical Union, Washington, DC, 223–234.
Panda, D. K., Mishra, A., Jena, S. K., James, B. K., and Kumar, A. (2007). “The influence of drought and anthropogenic effects on groundwater levels in Orissa, India.” J. Hydrol., 343(3–4), 140–153.
Parlange, J. (1972). “Theory of water movement in soils, 6, Effect of water depth over soil.” Soil Sci., 113(5), 308–312.
Pavelic, P., Dillon, P. J., and Simmons, C. T. (2006). “Multiscale characterization of a heterogeneous aquifer using an ASR operation.” Ground Water, 44(2), 155–164.
Peck, A., Gorelick, S., de Marsily, G., Foster, S., and Kovalevsky, V. (1988). Consequences of spatial variability in aquifer properties and data limitations for groundwater modelling practice, IAHS Press, Institute of Hydrology, Wallingford, Oxfordshire, U.K.
Perez, H. H., Datta-Gupta, A., and Mishra, S. (2005). “The role of electrofacies, lithofacies, and hydraulic flow units in permeability predictions from well logs: A comparative analysis using classification trees.” SPE Reservoir Eval. Eng., 8(2), 143–155.
Perrier, E., Rieu, M., Sposito, G., and deMarsily, G. (1996). “Models of the water retention curve for soils with a fractal pore size distribution.” Water Resour. Res., 32(10), 3025–3031.
Perroux, K. M., and White, I. (1988). “Designs for disc permeameters.” Soil Sci. Soc. Am. J., 52(5), 1205–1215.
Peters, E., Bier, G., van Lanen, H. A. J., and Torfs, P. J. J. F. (2006). “Propagation and spatial distribution of drought in a groundwater catchment.” J. Hydrol., 321(1–4), 257–275.
Peters, E., van Lanen, H. A. J., Torfs, P. J. J. F., and Bier, G. (2005). “Drought in groundwater—Drought distribution and performance indicators.” J. Hydrol., 306(1–4), 302–317.
Pettyjohn, W. A. (1981). Introduction to artificial ground-water recharge, National Ground Water Association, Westerville, OH.
Philip, J. R. (1969). “Theory of infiltration.” Advances in hydrological sciences, ven te Chow, ed., Vol. 5, Academic Press, London, U.K., 215–296.
Poland, F. (1972). “Land subsidence in the western states due to groundwater overdraft.” J. Am. Water Resour. Assoc., 8(1), 118–131.
Pool, D. R., and Eychaner, J. H. (1995). “Measurement of aquifer-storage change and specific yield using gravity surveys.” Ground Water, 33(3), 425–432.
Pyne, R. D. G. (1995). Groundwater recharge and wells: A guide to aquifer storage recovery, CRC Press, Boca Raton, FL.
Pyne, R. D. G. (2005). Aquifer storage recovery: A guide to groundwater recharge through wells, ASR Press, Gainesville, FL.
Quetner, E. P. (1997). “Description and application of the combined surface and groundwater flow model MOGROW.” J. Hydrol., 192(1–4), 158–188.
Quinn, J. J., Tomasko, D., and Kuiper, J. A. (2006). “Modeling complex flow in a karst aquifer.” Sediment. Geol., 184(3–4), 343–351.
Quinton, W. L., Hayashi, M., and Chasmer, L. E. (2011). “Permafrost-thaw-induced land-cover change in the Canadian subarctic: Implications for water resources.” Hydrol. Processes, 25(1), 152–158.
Ranjan, S. P., Kazama, S., and Sawamoto, M. (2006). “Effects of climate and land use changes on groundwater resources in coastal aquifers.” J. Environ. Manage., 80(1), 25–35.
Rapaglia, J., Vafeidis, A., Bokuniewicz, H., and Pick, T. (2010). “Forecasting salt-water intrusion into coastal aquifers due to climate change.” World Environmental and Water Resources Congress 2010, ASCE, Reston,VA, 752–760.
Rasmussen, P., Sonnenborg, T. O., Goncear, G., and Hinsby, K. (2013). “Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer.” Hydrol. Earth Syst. Sci., 17(1), 421–443.
Rawls, W. J., Gish, T. J., and Brakensiek, D. L. (1991). “Estimating soil water retention from soil physical properties and characteristics.” Advances in soil science, B. A. Stewart, ed., Vol. 16, 213–234.
Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., and Troldborg, L. (2012). “Review of strategies for handling geological uncertainty in groundwater flow and transport modeling.” Adv. Water Resour., 36(1), 36–50.
Reynolds, W. D., and Elrick, D. E. (1991). “Determination of hydraulic conductivity using a tension infiltrometer.” Soil Sci. Soc. Am. J., 55(3), 633–639.
Rieu, M., and Sposito, G. (1991). “Fractal fragmentation, soil porosity, and soil water properties. I: Theory.” Soil Sci. Soc. Am. J., 55(5), 1231–1238.
Ritter, A., Hupet, F., Muñoz-Carpena, R., Lambot, S., and Vanclooster, M. (2003). “Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods.” Agric. Water Manage., 59(2), 77–96.
Rodell, M., Velicogna, I., and Famiglietti, J. S. (2009). “Satellite-based estimates of groundwater depletion in India.” Nature, 460(7258), 999–1002.
Rosenberg, N. J., Epstein, D. J., Wang, D., Vail, L., Srinivasan, R., and Arnold, J. G. (1999). “Possible impacts of global warming on the hydrology of the Ogallala aquifer region.” Clim. Change, 42(4), 677–692.
Rubin, J., and Steinhardt, R. (1963). “Soil water relations during rain infiltration. I: Theory.” Soil Sci. Soc. Am. J., 27(3), 246–251.
Russo, D. (1989). “Field-scale transport of interacting solutes through the unsaturated zone 1. Analysis of spatially variable soils.” Water Resour. Res., 25(12), 2475–2485.
Russo, D. (1992). “Upscaling of hydraulic conductivity in partially saturated heterogeneous porous formation.” Water Resour. Res., 28(2), 397–409.
Russo, D. (1995). “On the velocity covariance and transport modeling in heterogeneous anisotropic porous formations. II: Unsaturated flow.” Water Resour. Res., 31(1), 139–145.
Russo, D. (1998). “Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation.” Water Resour. Res., 34(4), 569–581.
Russo, D., and Bouton, M. (1992). “Statistical analysis of spatial variability in unsaturated flow parameters.” Water Resour. Res., 28(7), 1911–1925.
Russo, D., Bresler, E., Shani, U., and Parker, J. C. (1991). “Analyses of infiltration events in relation to determining soil hydraulic properties by inverse-problems methodology.” Water Resour. Res., 27(6), 1361–1373.
Russo, D., and Jury, W. (1987a). “A theoretical study on the estimation of the correlation scale in spatially variably fields. I: Stationary fields.” Water Resour. Res., 23(7), 1257–1268.
Russo, D., and Jury, W. (1987b). “A theoretical study on the estimation of the correlation scale in spatially variably fields. II: Nonstationary fields.” Water Resour. Res., 23(7), 1269–1279.
Saghafian, B., Julien, P. Y., and Ogden, F. L. (1995). “ Similarity in catchment response. I: Stationary rainstorms.” Water Resour. Res., 31(6), 1533–1541.
Sánchez-Vila, X., Carrera, J., and Girardi, J. P. (1996). “Scale effects in transmissivity.” J. Hydrol., 183(1–2), l–22.
Sandstrom, K. (1995). “Modeling the effects of rainfall variability on groundwater recharge in semi-arid Tanzania.” Nordic Hydrol., 26(4–5), 313–330.
Santini, A., Romano, N., Ciollaro, G., and Comegna, V. (1995). “Evaluation of a laboratory inverse method for determining unsaturated hydraulic properties of a soil under different tillage practices.” Soil Sci., 160(5), 340–351.
Scanlon, B. R., Mace, R. E., Barrett, M. E., and Smith, B. (2003). “Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA.” J. Hydrol., 276(1–4), 137–158.
Schaap, M. G., Leij, F. J., and van Genuchten, M. T. (1998). “Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity.” Soil Sci. Soc. Am. J., 62(4), 847–855.
Schindler, T., and Rodell, M. (2009). “‘Seeing’ groundwater depletion.” 〈http://www.nasa.gov/mission_pages/Grace/multimedia/groundwater.html〉 (Jan. 15, 2013).
Schoups, G., and Hopmans, J. W. (2006). “Evaluation of model complexity and input uncertainty of field-scale water flow and salt transport.” Vadose Zone J., 5(3), 951–962.
Sedighi, A., Klammler, H., Brown, C., and Hatfield, K. (2006). “A semi-analytical model for predicting water quality from an aquifer storage and recovery system.” J. Hydrol., 329(3–4), 403–412.
Shackley, S., Young, P., Parkinson, S., and Wynne, B. (1998). “Uncertainty, complexity and concepts of good science in climate change modelling: Are GCMs the best tools?” Clim. Change, 38(2), 159–205.
Shamsudduha, M., Taylor, R. G., and Longuevergne, L. (2012). “Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal basin.” Water Resour. Res., 48(2), W02508.
Shapiro, A. M., Margolin, J., Dolev, S., and Ben-Israel, Y. (1997). “A graphical user interface for the US Geological Survey modular three-dimensional finite-difference groundwater flow model (MODFLOW-96) using Argus numerical environments.”, U.S. Geological Survey, Reston, VA.
Shepherd, K. D., and Walsh, M. G. (2000). “Sensing soil quality: The evidence from Africa.” Natural Resource Problems, Priorities and Policies Programme Working Paper 2000-1, Int. Centre for Research in Agroforestry, Nairobi, Kenya.
Sherif, M. M., and Singh, V. P. (1999). “Effect of climate change on sea water intrusion in coastal aquifers.” Hydrol. Proc., 13(8), 1277–1287.
Shi, F., Zhao, C., Sun, D., Peng, D., and Han, M. (2012). “Conjunctive use of surface and groundwater in central Asia area: A case study of the Tailan River basin.” Stochastic Environ. Res. Risk Assess., 26(7), 961–970.
Šimůnek, J., and Bradford, S. A. (2008). “Vadose zone modeling: Introduction and importance.” Vadose Zone J., 7(2), 581–586.
Šimůnek, J., van Genuchten, M. T., and Sejna, M. (2008). “Development and applications of the HYDRUS and STANMOD software packages and related codes.” Vadose Zone J., 7(2), 587–600.
Šimůnek, J., Wendroth, O., and van Genuchten, M. Th. (1998). “Parameter estimation analysis of the evaporation method for determining soil hydraulic properties.” Soil Sci. Soc. Am. J., 62(4), 894–905.
Singer, P. C., Pyne, R. D. G., Mallikarjun, A. V. S., Miller, C. T., and Mojonnier, C. (1993). “Examining the impact of aquifer storage and recovery on DBPs.” J. Am. Water Works Assoc., 85(11), 85–94.
Sivapalan, M., and Wood, E. F. (1986). “Spatial heterogeneity and scale in the infiltration response of catchments.” Scale problems in hydrology: Runoff generation and basin response, V. K. Gupta, I. Rodríguez-Iturbe, and E. F. Wood, eds., Springer, Dordrecht, the Netherlands.
Smerdon, J. E., et al. (2004). “Air-ground temperature coupling and subsurface propagation of annual temperature signals.” J. Geophys. Res., 109(D21), D21107.
Smith, R. E., and Hebbert, R. H. B. (1979). “A Monte Carlo analysis of the hydrologic effects of spatial variability of infiltration.” Water Resour. Res., 15(2), 419–429.
Sobieraj, J. A., Elsenbeer, H., and Vertessy, R. A. (2001). “Pedotransfer functions for estimating saturated hydraulic conductivity: Implications for modeling storm flow generation.” J. Hydrol., 251(3–4), 202–220.
Soldati, M., Corsini, A., and Pasuto, A. (2004). “ Landslides and climate change in the Italian dolomites since the late glacial.” Catena, 55(2), 141–161.
Sophocleous, M. (2002). “Interactions between groundwater and surface water: The state of the science.” J. Hydrogeol., 10(1), 52–67.
Sophocleous, M. (2004). “Climate change: Why should water professionals care?” Ground Water, 42(5), 637–792.
Sophocleous, M., Koelliker, J. K., Govindaraju, R. S., Birdie, T., Ramireddygari, S. R., and Perkins, S. P. (1999). “Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas.” J. Hydrol., 214(1), 179–196.
Soria, J. L., Siringan, F., and Parreño, P. E. (2007). “Compaction rates and paleo-sea levels along the delta complex north of Manila Bay, Luzon Island, Philippines.” Science Diliman, 17(2), 39–45.
Spanoudaki, K., Stamou, A. I., and Nanou-Giannarou, A. (2009). “Development and verification of a 3-D integrated surface water—Groundwater model.” J. Hydrol., 375(3–4), 410–427.
Sparks, T., Bockelmann-Evans, B., and Falconer, R. (2013). “Development and analytical verification of an integrated 2-D surface water—Groundwater model.” Water Resour. Manage., 27(8), 2989–3004.
Stillman, J. S., Haws, N. W., Govindaraju, R. S., and Rao, P. S. C. (2006). “A semi-analytical model for transient flow to a subsurface tile drain.” J. Hydrol., 317(1–2), 49–62.
Stisen, S., Sonnenborg, T. O., Højberg, A. L., Troldborg, L., and Refsgaard, J. C. (2011). “Evaluation of climate input biases and water balance issues using a coupled surface—Subsurface model.” Vadose Zone J., 10(1), 37–53.
Strzepek, K. M., and Yates, D. N. (1997). “Climate change impacts on the hydrologic resources of Europe: A simplified continental scale analysis.” Clim. Change, 36(1), 79–92.
Sudicky, E. A. (1986). “A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process.” Water Resour. Res., 22(13), 2069–2082.
Sun, A. Y., Green, R., Swenson, S., and Rodell, M. (2012). “Toward calibration of regional groundwater models using GRACE data.” J. Hydrol., 422–423(1), 1–9.
Swain, E. D., and Wexler, E. J. (1996). A coupled surface-water and ground-water flow model (MODBRNCH) for simulation of stream-aquifer interaction, U.S. Geological Survey, Reston, VA.
Taniguchi, M. (2002). “Estimations of the past groundwater recharge rate from deep borehole temperature data.” Catena, 48(1–2), 39–51.
Taniguchi, M., Burnett, W. C., and Ness, G. D. (2008). “Integrated research on subsurface environments in Asian urban areas.” Sci. Total Environ., 404(2–3), 377–392.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C. (2004). “The gravity recovery and climate experiment: Mission overview and early results.” Geophys. Res. Lett., 31(9), L09607.
Tartakovsky, D. M. (2012). “Assessment and management of risk in subsurface hydrology: A review and perspective.” Adv. Water Resour., 51(1), 247–260.
Taylor, C. J., and Alley, W. M. (2001). “Ground-water level monitoring and the importance of long-term water-level data.” U.S. Geological Survey Circular 1217, U.S. Geological Survey, Reston, VA.
Taylor, R., et al. (2010). “Groundwater and global hydrological change-current challenges and new insight.” Hydrocomplexity: New Tools for Solving Wicked Water Problems Kovacs Colloquium, United Nations Educational, Scientific and Cultural Organization, Paris, 51–61.
Taylor, R. G., et al. (2012). “Groundwater and climate change.” Nature Clim. Change, 3(4), 322–329.
Teatini, P., Ferronato, M., Gambolati, G., and Gonella, M. (2006). “Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend.” Water Resour. Res., 42(1), W01406.
Tian, W., Li, X., Cheng, G.-D., Wang, X.-S., and Hu, B. X. (2012). “Coupling a groundwater model with a land surface model to improve water and energy cycle simulation.” Hydrol. Earth Syst. Sci. Discuss., 9(9), 10917–10962.
Tiwari, V. M., Wahr, J., and Swenson, S. (2009). “Dwindling groundwater resources in northern India, from satellite gravity observations.” Geophys. Res. Lett., 36(18), L18401.
Tolikas, P. K., Sidiropoulos, E. G., and Tzimopoulos, C. D. (1984). “A simple analytical solution for the boussinesq one-dimensional groundwater flow equation.” Water Resour. Res., 20(1), 24–28.
Tombul, M., Akyurek, Z., and Sorman, U. A. (2004). “Research note: Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey.” Hydrol. Earth Syst. Sci., 8(6), 1200–1209.
Toride, N., Watanabe, K., and Hayashi, M. (2013). “Special section: Progress in modeling and characterization of frozen soil processes.” Vadose Zone J., 12(1), 1–4.
Trefry, M. G., and Muffels, C. (2007). “FEFLOW: A finite-element ground water flow and transport modeling tool.” Ground Water, 45(5), 525–528.
Trichakis, I., Nikolos, I., and Karatzas, G. P. (2011). “Artificial neural network (ANN) based modeling for karstic groundwater level simulation.” Water Resour. Manage., 25(4), 1143–1152.
Tritz, S., Guinot, V., and Jourde, H. (2011). “Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model.” J. Hydrol., 397(3), 250–262.
Vacher, H. L., Hucthings, W. C., and Budd, D. A. (2005). “Metaphors and models: The ASR bubble in the Floridan aquifer.” Ground Water, 44(2), 144–154.
van Dam, J. C., Groenendijk, P., Hendriks, R. F. A., and Kroes, J. G. (2008). “Advances of modeling water flow in variably saturated soils with SWAP.” Vadose Zone J., 7(2), 640–653.
van Dam, J. C., Stricker, N. M., and Droogers, P. (1994). “Inverse method to determine soil hydraulic functions from multi-step outflow experiments.” Soil Sci. Soc. Am. J., 58(3), 647–652.
van der Gun, J. (2012). “Groundwater and global change: Trends, opportunities and challenges.”, United Nations Educational, Scientific and Cultural Organization, Place de Fontenoy, Paris.
van der Gun, J. A. M. (2010). “Climate change and alluvial aquifers in arid regions: Examples from Yemen.” Climate change adaptation in the water sector, F. Ludwig, P. Kabat, H. van Schaik, and M. van der valk, eds., Earthscan Publishing, London, 159–176.
van Genuchten, M. T. (1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J., 44(5), 892–898.
Van Lanen, H. A. J., Wanders, N., Tallaksen, L. M., and Van Loon, A. F. (2013). “Hydrological drought across the world: Impact of climate and physical catchment structure.” Hydrol. Earth Syst. Sci., 17(5), 1715–1732.
Vereecken, H., Kaiser, R., Dust, M., and Pütz, T. (1997). “Evaluation of the multistep outflow method for the determination of unsaturated hydraulic properties of soils.” Soil Sci., 162(9), 618–631.
Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T. (2007). “Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review.” Vadose Zone J., 6(1), 1–28.
Vermeulen, P. T. M., te Stroet, C. B. M., and Heemink, A. W. (2006). “Limitations to upscaling of groundwater flow models dominated by surface water interaction.” Water Resour. Res., 42(10), W10406.
Voss, C. I., Boldt, D., and Shapiro, A. M. (1997). “A graphical-user interface for the U.S. Geological Survey’s SUTRA code using Argus ONE (for simulation of variable-density saturated-unsaturated ground-water flow with solute or energy transport).”, U.S. Geological Survey, Reston, VA.
Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., and Swenson, S. C. (2013). “Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-western Iran region.” Water Resour. Res., 49(2), 904–914.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P. (2010). “Global depletion of groundwater resources.” Geophys. Res. Lett., 37(20), 1–5.
Waele, J. D., Plan, L., and Audra, P. (2009). “Recent developments in surface and subsurface karst geomorphology: An introduction.” Geomorphology, 106(1–2), 1–8.
Walvoord, M., and Striegl, R. (2007). “Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen.” Geophys. Res. Lett., 34(12), L12402.
Warrick, A. W., and Hussen, A. A. (1993). “Scaling of Richards’ equation for infiltration and drainage.” Soil Sci. Soc. Am. J., 57(1), 15–18.
Warrick, A. W., Islas, A., and Lomen, D. O. (1991). “An analytical solution to Richards equation for time varying infiltration.” Water Resour. Res., 27(5), 763–766.
Warrick, A. W., Mullen, G. J., and Nielsen, D. R. (1977). “Scaling field measured soil hydraulic properties using a similar media concept.” Water Resour. Res., 13(2), 355–362.
Welsh, W. D. (2006). Great Artesian basin transient groundwater model, Australian Government Bureau of Rural Sciences, Canberra, Australia.
Wen, X-H., and Gómez-Hernández, J. J. (1996). “Upscaling hydraulic conductivities in heterogeneous media: An overview.” J. Hydrol., 183(1–2), ix–xxxii.
Wendroth, O., and Šimůnek, J. (1997). “Soil hydraulic properties determined from evaporation and tension infiltration experiments and their use for modeling field moisture status.” Characterization and measurement of the hydraulic properties of unsaturated porous media: Parts 1 & 2, M. T. van Genuchten, F. J. Leij, and L. Wu, eds., Riverside, CA, 737–748.
Western, A. W., and Grayson, R. B. (1998). “The Tarrawarra data set: Soil moisture patterns, soil characteristics, and hydrological flux measurements.” Water Resour. Res., 34(10), 2765–2768.
Western, A. W., Grayson, R. B., and Blöschl, G. (2002). “Scaling of soil moisture: A hydrologic perspective.” Annu. Rev. Earth Planet. Sci., 30(1), 149–180.
White, M. D., and Oostrom, M. (2000). “STOMP Subsurface transport over multiple phases.” Theory Guide PNNL-12030 (UC-2010), Pacific Northwest National Laboratory, Richland, Washington.
White, W. B. (2002). “Karst hydrology: Recent developments and open questions.” Eng. Geol., 65(2–3), 85–105.
White, W. B. (2010). “Groundwater flow in Karstic aquifers.” Handbook of groundwater engineering, J. W. Delleur, ed., CRC Press, Boca Raton, FL, 21.1–21.36.
Williams, P. W. (2008). “The role of the epikarst in karst and cave hydrogeology: A review.” Int. J. Speleology, 37(1), 1–10.
Wilson, J. L., and Gelhar, L. W. (1981). “Analysis of longitudinal dispersion in unsaturated flow 1. The analytical method.” Water Resour. Res., 17(1), 122–130.
Woldeamlak, S. T., Batelaan, O., and De Smedt, F. (2007). “Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium.” Hydrogeol. J., 15(5), 891–901.
Wong, C. I., Mahler, B. J., Musgrove, M., and Banner, J. L. (2012). “Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions.” J. Hydrol., 468–469(1), 159–172.
Woolhiser, D. A., Smith, R. E., and Giraldez, J. V. (1996). “Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow.” Water Resour. Res., 32(3), 671–678.
Wosten, J. H. M., Pachepsky, Y. A., and Rawls, W. J. (2001). “Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics.” J. Hydrol., 251(3–4), 123–150.
Wyatt, D. E., Waddell, M. G., and Sexton, G. B. (1996). “Geophysics and shallow faults in unconsolidated sediments.” Ground Water, 34(2), 326–344.
Wylie, B. K., Shaffer, M. J., Brodahl, M. K., Dubois, D., and Wagner, D. G. (1994). “Predicting spatial distributions of nitrate leaching in northeastern Colorado.” J. Soil Water Conserv., 49(3), 288–293.
Xu, X., Huang, G., Zhan, H., Qu, Z., and Huang, Q. (2012). “Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas.” J. Hydrol., 412–413(1), 170–181.
Yang, Y., et al. (2013). “TOUGHVISUAL: A friendly graphical user interface for building TOUGHREACT models under complex 3D geological environments.” Proc., Int. Conf. on Software Engineering and Computer Science (ICSECS2013), Atlantis Press, Paris, France.
Yeh, T. C., Gelhar, L. W., and Gutjahr, A. L. (1985). “Stochastic analysis of unsaturated flow in heterogeneous soils, 1: Statistically isotropic media.” Water Resour. Res., 21(4), 447–456.
Yeh, T.-C., Gelhar, L. W., and Gutjahr, A. L. (1982). “Stochastic analysis of effects of spatial variability on unsaturated flow.”, Hydrology Research Program, Geophysical Research Center, Research and Development Div., New Mexico Institute of Mining & Technology, Socorro, NM.
Young, I. M., Crawford, J. W., and Rappoldt, C. (2001). “New methods and models for characterising structural heterogeneity of soil.” Soil Tillage Res., 61(1–2), 33–45.
Yusoff, I., Hiscock, K. M., and Conway, D. (2002). “Simulation of the impacts of climate change on groundwater resources in eastern England.” Geol. Soc. London, 193(1), 325–344.
Zehe, E., and Blöschl, G. (2004). “Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions.” Water Resour. Res., 40(10), 1–21.
Zektser, S., Loáiciga, H. A., and Wolf, J. T. (2005). “Environmental impacts of groundwater overdraft: Selected case studies in the southwestern United States.” Environ. Geol., 47(3), 396–404.
Zhang, D. X. (1999). “Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous media.” Water Resour. Res., 35(4), 1127–1141.
Zhang, Z. F., Ward, A. L., and Gee, G. W. (2002). “A parameter scaling concept for estimating field-scale hydraulic functions of layered soils.” Bridging the Gap between Measurement and Modeling in Heterogeneous Media, Proc., Int. Groundwater Symp., A. N. Findikakis, ed., Madrid, Spain, 103–107.
Zhang, Z. F., Ward, A. L., and Gee, G. W. (2004). “A parameter scaling concept for estimating field-scale hydraulic functions of layered soils.” J. Hydraul. Res., 42(1), 93–103.
Zhu, J., and Mohanty, B. P. (2002). “Spatial averaging of van Genuchten hydraulic parameters for steady-state flow in heterogeneous soils: A numerical study.” Vadose Zone J., 1(2), 261–272.
Zhu, J., and Mohanty, B. P. (2003). “Upscaling of hydraulic properties of heterogeneous soils.” Methods of scaling in soil physics, Y. Pachepsky, et al., eds., CRC Press, Boca Raton, FL, 97–117.
Zhu, J., and Sun, D. (2009). “Effective soil hydraulic parameters for transient flows in heterogeneous soils.” Vadose Zone J., 8(2), 301–309.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 20Issue 1January 2015

History

Received: Feb 28, 2013
Accepted: Oct 22, 2013
Published online: Oct 24, 2013
Discussion open until: Nov 26, 2014
Published in print: Jan 1, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907 (corresponding author). E-mail: [email protected]; [email protected]
M. Ramadas, S.M.ASCE [email protected]
Ph.D. Student, School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. E-mail: [email protected]; [email protected]
Rao S. Govindaraju, M.ASCE [email protected]
Professor, School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share