Technical Papers
Jul 5, 2013

Simulation of Distributed Base Flow Contributions to Streamflow Using a Hillslope-Based Catchment Model Coupled to a Regional-Scale Groundwater Model

Publication: Journal of Hydrologic Engineering
Volume 19, Issue 5

Abstract

The estimation of base flow contributions to streamflow, and in particular the partitioning of base flow into shallow and deep aquifer components, is a challenging problem in water resources management. In this study, the newly developed hillslope-storage Boussinesq analytic-element (hsB/AE) model is applied to the Allen River headwater catchment in southern Quebec, Canada, which is a major recharge area for the transboundary Chateauguay River watershed. This first application to a real catchment serves as an illustration of the basic principles behind the coupled model and an investigation into interaquifer interactions and the origins of base flow contributions to streamflow. The hsB component of the model represents local groundwater flow in sloping, shallow Quaternary sediments, whereas the AE component represents the underlying regional bedrock aquifer. The catchment is partitioned into hillslopes of regular convergent, divergent, or combined planform shapes. Simulations are run for the summer periods of 2008 and 2009, and the resulting base flows show good correspondence with estimates on the basis of standard hydrograph separation techniques, in particular, those for low-flow periods from July to September. Overall, satisfactory matches are obtained for the bedrock aquifer heads, but with some underestimation of heads further away from the river. In terms of exchanges between the aquifers, 95% of total leakage is directed toward the bedrock aquifer, whereas only 5% flows in the reverse direction and feeds the hilllsope aquifer, especially in the steeper portion of the catchment. The simulated base flow is partitioned into roughly 65% originating from the shallow hillslope aquifer and 35% from the deep bedrock aquifer, with small interannual variations on the order of 3–5%. This ratio is relatively insensitive to changes in parameter values. For example, a 50% decrease in aquitard thickness reduces the deep bedrock aquifer contribution by only 12%.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support of the Ouranos Consortium and the Natural Sciences and Engineering Council of Canada (NSERC grant CRDPJ-319968-04), the Fonds de Recherche du Québec-Nature et Technologies (FQRNT), and the Global Environment and Climate Change Center (GEC3). The authors also thank Henk Haitjema for his valuable input related to the GFLOW model application.

References

Barrington, S., Philion, H., and Bonin, J. (1992). “An evaluation of the water reserve potentials: The ecological region of the Covey Hill “Gulf”.” Rep. Dept. of Agricultural Engineering, Faculty of Agriculture and Environmental Science, McGill Univ., Montreal, Canada.
Barthel, R. (2006). “Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale.” Adv. Geosci., 9, 63–71.
Bingeman, A. K., Kouwen, N., and Soulis, E. D. (2006). “Validation of the hydrological processes in a hydrological model.” J. Hydrol. Eng., 451–463.
Bogaart, P. W., and Troch, P. A. (2006). “Curvature distribution within hillslopes and catchments and its effect on the hydrological response.” Hydrol. Earth Syst. Sci., 10, 925–936.
Broda, S., Larocque, M., Paniconi, C., and Haitjema, H. (2012). “A low-dimensional hillslope-based catchment model for layered groundwater flow.” Hydrol. Process., 26(18), 2814–2826.
Broda, S., Paniconi, C., and Larocque, M. (2008). “Evaluation of the hillslope-storage Boussinesq model with leakage.” Calibration and Reliability in Groundwater Modelling, Proc., ModelCARE 2007, Vol. 320, IAHS Press, Oxfordshire, U.K., 182–187.
Broda, S., Paniconi, C., and Larocque, M. (2011). “Numerical investigation of leakage in sloping aquifers.” J. Hydrol., 49–61.
Brodie, R. S., Hostetler, S., and Slatter, E. (2008). “Comparison of daily percentiles of streamflow and rainfall to investigate stream-aquifer connectivity.” J. Hydrol., 349(1–2), 56–67.
Bronstert, A. (1999). “Capabilities and limitation of detailed hillslope hydrological modelling.” Hydrol. Process., 13(1), 21–48.
Camporese, M., Paniconi, C., Putti, M., and Orlandini, S. (2010). “Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data.” Water Resour. Res., 46(2), W02512.
Chapman, T. (1996). “Common unitgraphs for sets of runoff events. Part 1: Unitgraph identification from streamflow data.” Hydrol. Process., 10(6), 773–782.
Chapman, T. (1999). “A comparison of algorithms for stream flow recession and baseflow separation.” Hydrol. Process., 13(5), 701–714.
Clément, J. C., Aquilina, L., Bour, O., Plaine, K., Burt, T. P., and Pinay, G. (2003). “Hydrological flowpaths and nitrate removal rates within a riparian floodplain along a fourth-order stream in Brittany (France).” Hydrol. Process., 17(6), 1177–1195.
Croteau, A., Nastev, M., and Lefebvre, R. (2010). “Groundwater recharge assessment in the Châteauguay River watershed.” Can. Water Resour. J., 35(4), 451–468.
De Vries, J. J., and Simmers, I. (2002). “Groundwater recharge: An overview of processes and challenges.” Hydrogeol. J., 10(1), 5–17.
Eckhardt, K. (2005). “How to construct recursive digital filters for baseflow separation.” Hydrol. Process., 19(2), 507–515.
Environment Canada. (2010). “Climatic database for the Hemmingford Four Winds station, Québec.” 〈http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html〉 (Feb. 9, 2014).
Fan, Y., and Bras, R. L. (1998). “Analytical solutions to hillslope subsurface storm flow and saturation overland flow.” Water Resour. Res., 34(4), 921–927.
Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., and Fitzback, J. (2001). “A distributed watershed model compatible with remote sensing and GIS data, Part 1: Description of the model.” J. Hydrol. Eng., 91–99.
Fournier, V. (2008). “Hydrologie de la tourbière du Mont Covey-Hill et implications pour la conservation.” M.Sc. thesis, Univ. du Québec à Montréal, Montreal, Canada (in French).
Gagné, S. (2010). “Apport de l’eau souterraine aux cours d’eau et estimation de la recharge sur le Mont Covey Hill.” M.Sc. thesis, Univ. du Québec à Montréal, Montreal, Canada (in French).
Globensky, Y. (1986). “Géologie de la région de Saint-Chrysostome et de Lachine (sud).” Rapport Géologique MM 84-02. Ministère de l'Énergie et des Ressources, QC, Canada, 166 (in French).
Godin, R., and Rouleau, A. (2006). “Essais perméamétriques en forage dans le socle rocheux du bassin de la rivière Châteauguay.” Rep. Ministère du Développement Durable, de l’Environnement et des Parcs, Centre d’Études sur les Ressources Minérales, Univ. du Québec à Chicoutimi, Chicoutimi, Canada (in French).
Haigh, M. J., Singh, R. B., and Krecek, J. (1998). “Headwater control: Matters arising.” Headwaters: Water resources and soil conservation, M. J. Haigh, J. Krecek, G. S. Rajwar, and M. P. Kilmartin, eds., A. A. Balkema, Rotterdam, Netherlands, 3–24.
Haitjema, H. M. (1995). Analytic element modeling of groundwater flow, Academic Press, San Diego.
Hilberts, A. G. J., Troch, P. A., and Paniconi, C. (2005). “Storage-dependent drainable porosity for complex hillslopes.” Water Resour. Res., 41(6), W06001.
Hilberts, A. G. J., van Loon, E. E., Troch, P. A., and Paniconi, C. (2004). “The hillslope-storage Boussinesq model for non-constant bedrock slope.” J. Hydrol., 291(3–4), 160–173.
Hood, J. L., Roy, J. W., and Hayashi, M. (2006). “Importance of groundwater in the water balance of an alpine headwater lake.” Geophys. Res. Lett., 33(13), L13405.
Hunt, R. J. (2006). “Ground water modeling application using the analytic element method.” Ground Water, 44(1), 5–15.
Jones, J. P., Sudicky, E. A., Brookfield, A. E., and Park, Y. J. (2006). “An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow.” Water Resour. Res., 42(2), W02407.
Kollet, S. J., and Maxwell, R. M. (2006). “Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model.” Adv. Water Resour., 29(7), 945–958.
Kraemer, S. R. (2007). “Analytic element ground water modeling as a research program (1980 to 2006).” Ground Water, 45(4), 402–408.
Ladouche, B., et al. (2001). “Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France).” J. Hydrol., 242(3–4), 255–274.
Larocque, M., Leroux, G., Madramootoo, C., Lapointe, F. J., Pellerin, S., and Bonin, J. (2006). “Mise en place d’un laboratoire naturel sur le mont Covey Hill (Québec, Canada).” Vertigo, 7(1), 1–11 (in French).
Larocque, M., and Pharand, M.-C. (2010). “Dynamique de l’écoulement souterrain et vulnérabilité d’un aquifère du piémont appalachien (Québec, Canada).” Revue des Sciences de l’Eau, 23(1), 73–88 (in French).
Lasalle, P. (1981). “Géologie des sédiments meubles de la région de St-Jean-Lachine.” Ministère de l’Énergie et des Ressources du Québec, Direction Générale de l’Exploration Géologique et Minérale, DPV, QC, Canada.
Lavigne, M. A., Nastev, M., and Lefebvre, R. (2010). “Numerical simulation of groundwater flow in the Châteauguay River aquifers.” Can. Water Resour. J., 35(4), 469–486.
Levison, J., Larocque, M., Fournier, V., Gagné, S., Pellerin, S., and Ouellet, M. O. (2013). “Dynamics of a headwater system and peatland under current conditions and with climate change.” Hydrol. Process., in press.
Marin, I. S. P., Wendland, E., and Strack, O. D. L. (2012). “Simulating groundwater flow in fractured porous rock formations using the analytic element method.” Proc., XIX Int. Conf. Computational Methods in Water Resources (CMWR 2012), Urbana, IL.
Matonse, A. H., and Kroll, C. N. (2009). “Simulating low streamflows with hillslope-storage models.” Water Resour. Res., 45(1), W01407.
Matonse, A. H., and Kroll, C. N. (2013). “Applying hillslope-storage models to improve low flow estimates with limited streamflow data at a watershed scale.” J. Hydrol., 494, 20–31.
Ministère du Développement Durable, de l’Environnement et des Parcs du Québec (MDDEP). (2006). “Système d’information hydrogéologique.” 〈www.mddep.gouv.qc.ca/eau/souterraines/sih/index.htm〉 (Feb. 9, 2014) (in French).
Nastev, M., and Lamontagne, C. (2010). “Survol hydrogéologique de l’aquifère transfrontalier du bassin versant de la rivière Châteauguay, Canada-États Unis.” Can. Wat. Resour. J., 35(4), 359–376 (in French).
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., and King, K. W. (2002). “Soil and water assessment tool. Theoretical documentation, version 2000.”, Texas Water Resources Institute, College Station, TX.
Noël, P., Rousseau, A. N., Paniconi, C., and Nadeau, D. F. (2014). “Algorithm for delineating and extracting hillslopes and hillslope width functions from gridded elevation data.” J. Hydrol. Eng., 366–374.
Oudin, L., et al. (2005). “Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2, Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling.” J. Hydrol., 303(1–4), 290–306.
Paniconi, C., Troch, P. A., van Loon, E. E., and Hilberts, A. G. J. (2003). “Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model.” Water Resour. Res., 39(11), 1317.
Pellerin, S., Lagneau, L. A., Lavoie, M., and Larocque, M. (2009). “Environmental factors explaining the vegetation patterns in a temperate peatland.” C. R. Biol., 332(8), 720–731.
Refsgaard, J. C. (1997). “Parameterization, calibration and validation of distributed hydrological models.” J. Hydrol., 198(1–4), 69–97.
Rosa, E., Larocque, M., Pellerin, S., Gagné, S., and Fournier, B. (2008). “Determining the number of manual measurements required to improve peat thickness estimations by ground penetrating radar.” Earth Surf. Process. Landforms, 34(3), 377–383.
Shukla, S., Mostaghimi, S., Petrauskas, B., and Al-Smadi, M. (2000). “Multivariate technique for baseflow separation using water quality data.” J. Hydrol. Eng., 172–179.
Strack, O. D. L. (1989). Groundwater mechanics, Prentice Hall, Englewood Cliffs, NJ.
Sujono, J., Shikasho, S., and Hiramatsu, K. (2004). “A comparison of techniques for hydrograph recession analysis.” Hydrol. Process., 18(3), 403–413.
Tan, S. B. K., Lo, E. Y.-M., Shuy, E. B., Chua, L. H. C., and Lim, W. H. (2009). “Hydrograph separation and development of empirical relationships using single-parameter digital filters.” J. Hydrol. Eng., 271–279.
Therrien, R., McLaren, R. G., Sudicky, E. A., and Panday, S. M. (2010). “HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport.” Groundwater Simulations Group, Univ. of Waterloo, Waterloo, Canada.
Tremblay, T., Nastev, M., and Lamothe, M. (2010). “Grid-based hydrostratigraphic 3D modelling of the Quaternary sequence in the Châteauguay River watershed, Quebec.” Can. Water Resour. J., 35(4), 377–398.
Troch, P. A., Paniconi, C., and van Loon, E. E. (2003). “Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response.” Water Resour. Res., 39(11), 1316.
Wang, D. (2011). “On the base flow recession at the Panola Mountain Research Watershed, Georgia, United States.” Water Resour. Res., 47(3), W03527.
Wels, C., Taylor, C. H., Cornett, R. J., and Lazerte, B. D. (1991). “Streamflow generation in a headwater basin on the precambrian shield.” Hydrol. Process., 5(2), 185–199.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 19Issue 5May 2014
Pages: 907 - 917

History

Received: Oct 1, 2012
Accepted: Jul 3, 2013
Published online: Jul 5, 2013
Discussion open until: Dec 5, 2013
Published in print: May 1, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Stefan Broda [email protected]
Research Associate, Research Institute on Mines and Environment, Polytechnique Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, Canada H3C 3A7; formerly, Centre ESCER pour l’Étude et la Simulation du Climat à l’Échelle Régionale, Dept. des Sciences de la Terre et de l’Atmosphère, Univ. du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal, Canada H3C 3P8 (corresponding author). E-mail: [email protected]
Marie Larocque [email protected]
Professor, Centre ESCER pour l’Étude et la Simulation du Climat à l’Échelle Régionale, Dept. des Sciences de la Terre et de l’Atmosphère, Univ. du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal, Canada H3C 3P8. E-mail: [email protected]
Claudio Paniconi [email protected]
Professor, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Univ. du Québec, 490 Rue de la Couronne, Québec, Canada G1K 9A9. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share