Case Studies
Jun 1, 2013

Semidistributed Hydrological Model with Scarce Information: Application to a Large South American Binational Basin

Publication: Journal of Hydrologic Engineering
Volume 19, Issue 5

Abstract

In this paper the process to implement the Soil and Water Assessment Tool (SWAT) in Catamayo-Chira binational basin (11,910.74km2) in the border area between Ecuador and Peru (South America) is detailed. The basin under study has a low density of meteorological and hydrological stations as well as a notable variation in its biophysical characteristics, which further highlights the lack of information. The SWAT model requires a great amount of parameters for its implementation. Its performance was studied, even though the writers had scarce information. The SWAT model made a relatively satisfactory reproduction of the historical record of flows, i.e., Nash-Sutcliffe model efficiency coefficient of 0.73, with certain limitations in calculation of sediment production. Two land-use scenarios were analyzed, observing that an increase of natural forest and shrub areas could significantly reduce sediment production.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The writers place on record their gratitude to the Secretaria Nacional de Ciencia, Tecnología, e Inovacion for funding the research reported in this paper through the scholarship program SENESCYT 2007.

References

Abbaspour, K. C., et al. (2007). “Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT.” J. Hydrol., 333(2), 413–430.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). “Large area hydrologic modeling and assessment part I: Model development.” J. Am. Water Resour. Assoc., 34(1), 73–89.
Bekiaris, I. G., Panaopoulos, I. N., and Mimikou, M. A. (2005). “Application of the SWAT (soil and water assessment tool) model in the Ronnea catchment of Sweden.” Global NEST J., 7(3), 252–257.
Bosque, J., and García, R. (1999). “Asignación óptima de usos del suelo mediante generación de parcelas por medio de SIG y técnicas de evaluación multicriterio.” Proc., Conf. Iberoamericana Sobre SIG, Sociedad Iberoamericana de Sistemas de información geográfica, Luján, Argentina, (in Spanish).
Bouraoui, F., Benabdallah, S., Jrad, A., and Bidoglio, G. (2005). “Application of the SWAT model on the Medjerda river basin (Tunisia).” Phys. Chem Earth, 30(8–10), 497–507.
Bouraoui, F., and Grizzetti, B. (2007). “An integrated modelling framework to estimate the fate of nutrients: Application to the Loire (France).” Ecol. Modell., 212(3–4), 450–459.
Chanasyk, D. S., Mapfumo, E., and Willms, W. (2003). “Quantification and simulation of surface runoff from fescue grassland watersheds.” Agr. Water Manage., 59(2), 137–153.
Chuvieco, E. (2002). Teledetección ambiental: La observación de la tierra desde el espacio, Ariel, Barcelona, Spain (in Spanish).
Consorcio Asesores técnicos asociados–Universidad nacional de Piura–Universidad Nacional de Loja (ATA–UNP–UNL). (2003). Caracterización territorial y documentación básica en el ámbito de la cuenca binacional Catamayo-Chira, Vol. 3, Estudios Básicos, Tomo 3.6 Estudio de Suelos, Loja-Piura, Spain (in Spanish).
Consultores Zonificación Ecológica Económica (ZEE). (2006). Proyecto binacional de ordenamiento, manejo y desarrollo de la cuenca Catamayo–Chira, zonificación ecológica económica, Loja–Piura, Spain (in Spanish).
Dingman, S. L. (2002). Physical hydrology, 2nd Ed., Prentice Hall, Upper Saddle River, NJ.
Eastman, J. R. (2006). IDRISI Andes: Tutorial, Clark Labs, Clark Univ., Worcester, MA.
FitzHugh, T. W., and Mackay, D. S. (2000). “Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model.” J. Hydrol., 236(1), 35–53.
Fohrer, N., Haverkamp, S., Eckhardt, K., and Frede, H. G. (2001). “Hydrologic response to land use changes on the catchment scale.” Phys. Chem. Earth B, 26(7–8), 577–582.
Freeman, J. A., and Skapura, D. M. (1993). Redes neuronales: Algoritmos, aplicaciones y técnicas de propagación, Addison-Wesley, Boston (in Spanish).
Grizzetti, B., Bouraoui, F., Granlund, K., Rekolainen, S., and Bidoglio, G. (2003). “Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model.” Ecol. Modell., 169(1), 25–38.
Hargreaves, G. L., Hargreaves, G. H., and Riley, J. P. (1985). “Agricultural benefits for Senegal River Basin.” J. Irrig. and Drain. Engr., 111(2), 113–124.
Iman, R. L., and Conover, W. J. (1980). “Small sample sensitivity analysis techniques for computer models, with an application to risk assessment.” Communications in Statistics: Theory and Methods, A(9), 1749–1874.
Kleinbaum, D. G., and Klein, M. (2002). Logistic regression: A self-learning text, 2nd Ed., Springer, New York.
McKay, M. D. (1988). “Sensitivity and uncertainty analysis using a statistical sample of input values.” Uncertainty analysis, Y. Ronen, ed. CRC press, Inc., Boca Raton, FL, 145–186.
McKay, M. D., Conover, W. J., and Beckman, R. J. (1979). “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code.” Technometrics, 21, 239–245.
Monteith, J. L. (1965). “Evaporation and environment: the state and movement of water in living organisms.” Symp. Soc. Exp. Biol., 19, 205–234.
Morris, M. D. (1991). “Factorial sampling plans for preliminary computational experiments.” Technometrics, 33, 161–174.
Nash, J. E., and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models part I–A discussion of principles.” J. Hydrol., 10(3), 282–290.
Ndomba, P., Mtalo, F., and Killingtveit, A. (2008). “SWAT model application in a data scarce tropical complex catchment in Tanzania.” Phys. Chem. Earth, 33(8–13), 626–632.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., and King, K. W. (2002). Soil and water assessment tool theoretical documentation version 2000, Texas Water Resources Institute, College Station, TX.
Oñate-Valdivieso, F., and Bosque, J. (2010). “Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling.” J. Hydrol., 395(3), 256–263.
Pontius, R., Cornell, J., and Hall, C. (2001). “Modeling the spatial pattern of land-use change with GEOMOD2: Application and validation in Costa Rica.” Agr. Ecosyst. Environ., 85(1), 191–203.
Priestley, C. H. B., and Taylor, R. J. (1972). “On the assessment of surface heat flux and evaporation using large-scale parameters.” Mon. Weather Rev., 100, 81–92.
Richards, J. A., and Jia, X. (2006). Remote sensing digital image analysis, 4th Ed., Springer, Berlin.
Rodríguez, L. (1999). Estudio de lluvias intensas, Instituto de Meteorología e Hidrología, Quito, Ecuador (in Spanish).
Rosenberg, N. J., Epstein, D. L., Wang, D., Vail, L., Srinivasan, R., and Arnold, J. G. (1999). “Possible impacts of global warming on the hydrology of the Ogallala aquifer region.” Clim. Change, 42(4), 677–692.
Saunders, R. W., and Kriebel, K. T. (1988). “An improved method for detecting clear sky and cloudy radiances from AVHRR data.” Int. J. Remote Sensing, 9, 123–150.
USDA. (1972). “National Engineering Handbook, Section 4, Hydrology.” Chapter 10, Estimation of direct runoff from storm rainfall, U.S. Department of Agriculture, Soil Conservation Service, Washington, D.C., 10.1–10.24.
USGS. (2000). Shuttle radar topography mission, 1 arc second scene SRTM_f03_s005w081, filled finished 2.0, Global Land Cover Facility, Univ. of Maryland, College Park, MD.
Valarezo, J. I. (2007). Validación y complementación de los estudios de suelos de la cuenca binacional Catamayo Chira con miras a implementar el modelo SWAT, Proyecto Binacional Catamayo Chira–Proyecto TWINLATIN, Loja–Piura, Spain (in Spanish).
Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., and Srinivasan, R. (2006). “A global sensitivity analysis tool for the parameters of multi-variable catchment models.” J. Hydrol., 324(1), 10–23.
Williams, J. R. (1975). “Sediment routing for agricultural watersheds.” Water Resour. Bull., 11(5), 965–974.
Zhang, X., Hao, F., Cheng, H., and Li, D. (2003). “Application of SWAT model in the upstream watershed of the Luohe River.” Chin. Geogr. Sci., 13(4), 334–339.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 19Issue 5May 2014
Pages: 1006 - 1014

History

Received: Jun 27, 2012
Accepted: May 29, 2013
Published online: Jun 1, 2013
Discussion open until: Nov 1, 2013
Published in print: May 1, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Fernando Oñate-Valdivieso [email protected]
Departamento de Geología, Minas e Ingeniería Civil, Universidad Técnica Particular de Loja, C/, Marcelino Champagnat S/N, 1101608, Loja Ecuador (corresponding author). E-mail: [email protected]
Joaquín Bosque Sendra [email protected]
Dept. de Geografía, Univ. de Alcalá, C/, Colegios 2, 28801 Alcalá de Henares, Madrid, España. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share