Case Studies
Dec 7, 2011

Bayesian Uncertainty Analysis of the Distributed Hydrological Model HYDROTEL

Publication: Journal of Hydrologic Engineering
Volume 17, Issue 9

Abstract

In this study, a Bayesian, inference-based, Markov chain Monte Carlo (MCMC) method coupled with an autoregressive moving average (ARMA) error model framework was used to assess the uncertainty of the process-based, continuous, distributed hydrological model HYDROTEL when simulating daily streamflows. The uncertainty analysis was performed, as a case study, in two distinct watersheds (Montmorency, Quebec, Canada, and Sassandra, Ivory Coast, West Africa). The MCMC uncertainty analysis showed to be effective, primarily with respect to the fulfillment of the statistical assumptions of the error model. The results of the uncertainty analyses demonstrated that almost 95% of the observed daily outlet flows were bracketed by the 95% prediction uncertainty bands. This indicates that the parameter uncertainty associated with the ARMA error model could reach the prediction uncertainty. It was possible to mimic the prediction uncertainty using only the most sensitive model parameters for the Montmorency and Sassandra watersheds. The uncertainty framework, as presented herein, may be applied to any distributed, continuous, hydrological model such as HYDROTEL. Given sufficient computational resources, such framework could become quite useful in providing uncertainty bands within the scope of predicting inflows to reservoirs for subsequent planning and management purposes.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank the reviewers and the editors for the attention and time they took to review the manuscript. Their comments and questions were very useful in improving the initial version of the paper. The authors would like to acknowledge the contributions of Jin Yang of Singapore-MIT Alliance for Research & Technology (SMART); Alain Mailhot, Alain Royer and Stéphane Savary of INRS-ETE; and Richard Turcotte of the Centre d’Expertise Hydrique du Québec. Financial support was provided by Hydro-Québec, Ouranos, NSERC (Natural Sciences and Engineering Research Council of Canada), and Agriculture and Agrifood Canada.

References

Abbaspour, K. C. (2009). “SWAT-CUP2: SWAT Calibration and Uncertainty Programs.” A user manual Version 2. Dept. of Systems Analysis Integrated Assessment and Modelling (SIAM), EAWAG, Duebendorf, Switzerland, 95.
Avenard, J. M.,et al. (1971). “Le Milieu Naturel de la Côte d'Ivoire (The Natural Environment of Ivory Coast).” Éditions de l'ORSTOM.
Best, N. G., Cowles, M. K., and Vines, S. K. (1995). Convergence diagnosis and output analysis software for Gibbs sampler output: Version 0.3, Medical Research Council Biostatistics Unit, Cambridge, UK.
Beven, K. J. (2006). “On undermining the science?.” Hydrol. Processes, 20(14), 3141–3146.
Beven, K. J., and Binley, A. (1992). “The future of distributed models: model calibration and uncertainty prediction.” Hydrol. Processes, 6(3), 279–298.
Beven, K. J., and Freer, J. (2001). “Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology.” J. Hydrol., 249(1–4), 11–29.
Beven, K. J., Smith, P., and Freer, J. (2007). “Comment on “Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology” by P. Mantovan and E. Todini.” J. Hydrol., 338(3–4), 315–318.
Box, G. E. P., and Cox, D. R. (1964). “An analysis of transformations.” J. Royal Statistical Society Series B (Methodological), 26(2), 211–252.
Box, G. E. P., and Cox, D. R. (1982). “An analysis of transformations revisited, rebutted.” J. Am. Stat. Assoc., 77(377), 209–210.
Brisson, N. (1989). “Modèle de simulation de la culture du soja et de son fonctionnement hydrique: Estimation agrometeorologique des potentialités de production.” Doctoral thesis, l’Institut National Agronomique, Paris-Grignon (in French).
Campbell, E. P., Fox, D. R., and Bates, C. B. (1999). “A Bayesian approach to parameter estimation and pooling in nonlinear flood event models.” Water Resour. Res., 35(1), 211–220.
Campbell, G. S. (1974). “A simple method for determining unsaturated conductivity from moisture retention data.” Soil Sci., 117(6), 311–314.
Casella, G., and George, E. I. (1992). “Explaining the Gibbs sampler.” Am. Stat., 46(3), 167–174.
Chau, K. W., Wu, C. L., and Li, Y. S. (2005). “Comparison of several flood forecasting models in Yangtze River.” J. Hydrol. Eng., 10(6), 485–491.
Chang, L. C., Chang, F. J., and Tsai, Y. H. (2005). “Fuzzy exemplar-based inference system for flood forecasting.” Water Resour. Res., 41(2), W02005,.
Cheng, C. T., Ou, C. P., and Chau, K. W. (2002). “Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration.” J. Hydrol. 268(1–4), 72–86.
Cheng, C. T., Wang, W. C., Xu, D. M., and Chau, K. W. (2008). “Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos.” Water Resour. Manage., 22(7), 895–909.
Cowles, M. K., and Carlin, B. P. (1996). “Markov chain Monte Carlo convergence diagnostics: A comparative review.” J. Am. Stat. Assoc., 91(434), 883–904.
Clapp, R. B., and Hornberger, G. M. (1978). “Empiral equations for some hydraulic properties.” Water Resour. Res., 14(4), 601–604.
Duan, Q., Gupta, H., Sorooshian, S., Rousseau, A.N., and Turcotte, R. (2003). “Advances in calibration of watershed models.” Water Science & Application 6, American Geophysical Union Water Resources Monograph Series.
Duan, J. G., and Schwar, M. T. (2003). “Modeling of flow and sediment transport at a river confluence with the EnSed2D model.” Proc., World Water & Environmental Resources Congress, ASCE, Reston, VA, 1–10.
Duan, Q. Y., Sorooshian, S., and Gupta, V. K. (1992). “Effective and efficient global optimization for conceptual rainfall-runoff models.” Water Resour. Res., 28(4), 1015–1031.
Duan, Q. Y., Gupta, V. K., and Sorooshian, S. (1993). “Shuffled complex evolution approach for effective an efficient global minimization.” J. Optim. Theory Appl., 76(3), 501–521.
Fortin, J. P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., and Villeneuve, J. P. (2001a). “A distributed watershed model compatible with remote sensing and GIS data. Part I: Description of model.” J. Hydrol. Eng., 6(2), 91–99.
Fortin, J. P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., and Villeneuve, J. P. (2001b). “A distributed watershed model compatible with remote sensing and GIS data. Part II: Application to Chaudière watershed.” J. Hydrol. Eng., 6(2), 100–108.
Geman, S., and Geman, D. (1984). “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.” IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6(6), 721–741.
Gelman, A., Carlin, J. B., Sten, H. S., and Rubin, D. B. (1995). Bayesian data analysis, Champman & Hall/CRC, London/Boca Raton.
Hall, J., O’Connell, E., and Ewen, J. (2007). “On not undermining the science: coherence, validation and expertise. Discussion of invited commentary by Keith Beven Hydrological Processes, 20, 3141–3146 (2006).” Hydrol. Processes, 21(7), 985–988.
Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika, 57(1), 97–109.
Heidelberger, P., and Welch, P. D. (1983). “Simulation run length control in the presence of an initial transient.” Oper. Res., 31(6), 1109–1144.
Huard, D., and Mailhot, A. (2008). “Calibration of hydrological model GR2M using Bayesian uncertainty analysis.” Water Resour. Res., 44(2), W02424.
Kuczera, G. (1999). “Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference.” Water Resour. Res., 35(5), 1551–1557.
Kuczera, G., and Parent, E. (1998). “Monte Carlo assessment of parameter uncertainty in conceptual catchment models. The Metropolis algorithm.” J. Hydrol., 211(1–4), 69–85.
Lee, K. L., and Kim, S. U. (2008). “Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method.” Hydrol. Processes, 22(12), 1949–1964.
Linacre, E. T. (1977). “A simple formula for estimating evaporation rates in various climates, using temperature data alone.” Agric. Meteorol., 18(6), 409–424.
Mantovan, P., and Todini, E. (2006). “Hydrological forecasting uncertainty assessment: Incoherence of GLUE methodology.” J. Hydrol., 330(1–2), 368–381.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). “Equation of state calculations by fast computing machines.” J. Chem. Phys, 21(6), 1087–1092.
Montanari, A. (2007). “What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology.” Hydrol. Processes, 21(6), 841–845.
Monteith, J. L. (1965). “Evaporation and environment.” Symp. Soc. Expl. Biol., 19, 205–234.
Muleta, M. K., and Nicklow, J. W. (2005). “Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model.” J. Hydrol., 306(1–4), 127–145.
Patoine, M., and Fortin, J. P. (1992). “Ajustement d’un modèle informatise de gestion de l’irrigation.” Can. Agric. Eng., 34(4), 305–317.
Priestley, C. H. B., and Taylor, R. J. (1972). “On the assessment of surface heat flux and evaporation using large scale parameters.” Mon. Weather Rev., 100(2), 81–92.
Ratto, M., Lodi, G., and Costa, P. (2001). “Sensitivity analysis in model calibration: GSA-GLUE approach.” Comput. Phys. Commun., 136(3), 212–224.
Riley, J. P., Israelsen, E. K., and Eggleston, K. O. (1972). “Some approaches to snowmelt prediction.” Actes du Colloque de Banff sur le Role de la Neige et de la Glace en Hydrologie, AISH, 2(107), 956–971.
Reichert, P. (2001). UNCSIM—A Program package for uncertainty analysis and bayesian inference: User manual, EAWAG, Dübendorf, Switzerland, 36.
Reichert, P. (2005). “UNCSIM—a computer programme for statistical inference and sensitivity, identifiability, and uncertainty analysis.” In: Teixeira, J. M. F., and Carvalho-Brito, A. E. (eds.), Proc., 2005 European Simulation and Modelling Conference (ESM 2005), October 24–26, Porto, Portugal, EUROSIS-ETI, pp. 51–55.
Reichert, P. (2006a). “A standard interface between simulation programs and systems analysis software.” Water Sci. Technol., 53(1), 267–275.
Reichert, P. (2006b). “A computer program for statistical inference and sensitivity, identifiability and uncertainty analysis.” User’s Manuel Version 2.0, EAWAG, Dübendorf, Switzerland.
Reis, D. S., and Stedinger, J. R. (2005). “Bayesian MCMC flood frequency analysis with historical information.” J. Hydrol., 313(1–2), 97–116.
Rousseau, A. N., Savary, S. B., and Konan (2008). “Implantation du modèle HYDROTEL sur le bassin de la rivière Motmorency afin de simuler les débits observés et de produire des scénarios de crues du printemps 2008.” Rapport. Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, INRS-ETE, Québec, PQ.
Rousseau, N. A.,et al. (2011a). “PHYSITEL, a specialized GIS for supporting the implementation of distributed hydrological models.” Water News, Official Magazine of CWRA– Canadian Water Resources Association, 31, 18–20.
Rousseau, N. A.,et al. (2011b). “PHYSITEL, a multiscale landscape discretization tool for hydrological modelling.” J. Spat. Hydrol., in press.
Rousseau, A. N.,et al. (2011c). “A hydrological modelling framework for defining watershed-scale achievable performance standards of pesticides beneficial management practices.” J. Environ. Qual., in press.
Saltelli, A., Tarantola, S., and Chan, K. (1999). “A quantitative model-independent method for global sensitivity analysis of model output.” Technometrics, 41, 39–56.
Singh, V. P., and Frevert, D. K. (2002a). Mathematical models of large watershed hydrology, Water Resources Publications, Highlands Ranch, CO.
Singh, V. P., and Frevert, D. K. (2002b). Mathematical models of small watershed hydrology and applications, Water Resources Publications, Highlands Ranch, CO.
Smith, R. E., and Parlange, J.-Y. (1978). “A parameter-efficient hydrologic infiltration model.” Water Resour. Res., 14(3), 533–538.
Thornthwaite, C. W. (1948). “An approach toward a rational classification of climate.” Geogr. Rev., 38(1), 55–94.
Todini, E., and Mantovan, P. (2007). “Comment on: ‘On undermining the science?’ by Keith Beven.” Hydrol. Processes, 21(12), 1633–1638.
Turcotte, R., Fortin, J.-P., Rousseau, A. N., Massicotte, S., and Villeneuve, J.-P. (2001). “Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network.” J. Hydrol., 240(3–4), 225–242.
Turcotte, R., Rousseau, A. N., Fortin, J. P., and Villeneuve, J. P. (2003). “A process-oriented multiple-objective calibration strategy accounting for model structure.” Calibration of watershed models, Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., and Turcotte, R., eds., Water Sci. Appl., Vol. 6, AGU, Washington, DC.
Turcotte, R., Lacombe, P., Dimnik, C., and Villeneuve, J.-P. (2004). “Distributed hydrological prediction for the management of Quebec’s public dams | [Prevision hydrologique distribuee pour la gestion des barrages publics du Quebec].” Can. J. Civ. Eng., 31(2), 308–320.
Turcotte, R., Fortin, L.-G., Fortin, V., Fortin, J.-P., and Villeneuve, J.-P. (2007). “Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada.” Nordic Hydrol., 38(3), 211–234.
van Griensven, A., and Meixner, T. (2006). “Methods to quantify and identify the sources of uncertainty for river basin water quality models.” Water Sci. Technol., 53(1), 51–59.
Wang, Q. J. (2001). “A Bayesian joint probability approach for flood record augmentation.” Water Resour. Res., 37(6), 1707–1712.
Wang, W. C., Chau, K. W., Cheng, C. T., and Qiu, L. (2009). “A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series.” J. Hydrol., 374(3–4), 294–306.
Wu, C. L., Chau, K. W., and Li, Y. S. (2009) “Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques.” Water Resour. Res., 45(8), W08432.
Yang, J., Reichert, P., Abbaspour, K. C., and Yang, H. (2007a). “Hydrological modelling of the Chaohe basin in China: Statistical model formulation and Bayesian inference.” J. Hydrol., 340(3–4), 167–182.
Yang, J., Reichert, P., and Abbaspour, K. C. (2007b). “Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland).” Water Resour. Res., 43(10), W10401.
Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., and Yang, H., (2008). “Comparing uncertainty analysis techniques for a SWAT application to the Chaoche basin in China.” J. Hydrol., 358(1–2), 1–23.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 17Issue 9September 2012
Pages: 1021 - 1032

History

Received: Sep 5, 2010
Accepted: Dec 5, 2011
Published online: Dec 7, 2011
Published in print: Sep 1, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Médard Bouda [email protected]
Postdoctoral Researcher, Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 Rue de la Couronne, Québec G1K 9A9, Canada. E-mail: [email protected]
Alain N. Rousseau [email protected]
M.ASCE
Professor-Researcher, Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec G1K 9A9, Canada (corresponding author). E-mail: [email protected]
Hydrometeorological Advisor, Hydroelectric forecasts and data quality, Direction of Production Planning, Hydro-Québec, 75 boul. René-Lévesque ouest, 9e étage Montréal, QC, Canada. H2Z 1A4. E-mail: [email protected]
Patrick Gagnon [email protected]
Doctoral Student, Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec G1K 9A9, Canada. E-mail: [email protected]
Silvio J. Gumiere [email protected]
Professor-Researcher, Laval Univ., Soil Science 2480, Boulevard Hochelaga, Université Laval, Québec G1V 0A6, Canada. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share